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Abstract

The area of misfire detection is important because of the effects of misfires on
both the environment and the exhaust system. Increasing requirements on the
detection performance means that improvements are always of interest. In this
thesis, potential improvements to an existing misfire detection algorithm are eval-
uated.

The improvements evaluated are: using Gaussian processes to model the clas-
sifier, alternative signal treatments for detection of multiple misfires, and effects
of where flywheel tooth angle error estimation is performed. The improvements
are also evaluated for their suitability for use on-line.

Both the use of Gaussian processes and the detection of multiple misfires
are hard problems to solve while maintaining detection performance. Gaussian
processes most likely loses performance due to loss of dependence between the
weights of the classifier. It can give performance similar to the original classifier,
but with greatly increased complexity. For multiple misfires, the performance
can be slightly improved without loss of single misfire performance. Greater
improvements are possible, but at the cost of single misfire performance. The
decision is in the end down to the desired trade-off.

The flywheel tooth angle error compensation gives nearly identical perfor-
mance regardless of where it is estimated. Consequently the error estimation
can be separated from the signal processing, allowing the implementation to be
modular. Using an EKF for estimating the flywheel errors on-line is found to be
both feasible and give good performance. Combining the separation of the error
estimation from the signal treatment with a, after initial convergence, heavily re-
stricted EKF gives a vastly reduced computational load for only a moderate loss
of performance.
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1
Introduction

1.1 Background

The subject of engine misfire detection is important for a few different reasons.
One of the more obvious ones is the fact that in many parts of the world there is
legislation in place that specifies detection rates for misfires. The requirements
for detection have become incrementally more stringent. Starting with model
year 2010 the complete failure of a cylinder must be detected, and that increased
to include detection of intermittent misfires from model year 2013 [16]. Legisla-
tion is however only the reaction to the underlying reason for misfire detection.
Likely one of the driving reasons is the impact on the environment from misfires,
as well as other emissions. There is the obvious emission of unburned fuel when
a misfire occurs. Apart from the immediate impact, misfire also risks degrading
the catalytic converters, with the consequence of increasing the overall levels of
emissions from a vehicle. OBD-II is a commonly used standard for the require-
ments of emission control that was introduced in the 1990s and has its origin in
California, where the first emission requirements was introduced in the 1960s to
combat the smog problem, and they have become increasingly more stringent as
time has progressed [17].

For the manufacturers and owners of the vehicles, detection of misfires is also
of interest since it may be the indication of some fault in the engine, and early
detection and mitigation may potentially save on costs for repairs that escalated
problems could incur.

1.2 Goals and purpose

The overall purpose of this thesis is to evaluate possible improvements to the
misfire detection algorithm proposed in [10] as well as to the flywheel tooth error
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2 1 Introduction

compensation added in [11]. The possible ways of improvement are all concerned
with a specific part of the original algorithm, and they are summarised in the
following research questions:

1. Can a Gaussian process be used to describe the weights of the classifier?

2. Can the algorithm be adapted to handle multiple misfires?

3. Is it possible to improve the estimation of the flywheel tooth angle error?

4. Can the current algorithm be implemented efficiently for use on-line, and
what can be done to improve its performance?

The work presented in [10, 11] was performed using data from vehicles with
six-cylinder engines, but also validated on data from a four-cylinder engine to
show the algorithm to be generalisable. In this thesis the data used is from four-
cylinder engines, and thus it also serves as a further validation that the algorithm
works for other engines than the six-cylinder one.

1.2.1 Gaussian processes

One idea for improving the algorithm is to model the weights of the classifier
using Gaussian processes. Currently, the algorithm divides the operating range
into segments, and a classifier is trained for each of them. This has the conse-
quence that the weights are constant over each segment. Thus, the effect is that
very similar measurements may be classified by two different classifiers, while
two more distant points are classified using the same classifier, simply due to the
segmentation of the algorithm. The rationale behind using Gaussian processes is
that it would allow for more accurate weights locally. It is also a potential way
of having a much higher resolution classifier while at the same time limiting the
memory needed for storage.

1.2.2 Multiple misfires

The algorithm proposed in [10] performed well for single misfires. The perfor-
mance degrades when there are multiple misfires present during one cycle. This
is most likely due to the fact that the removal of the mean is no longer as suitable.
Removing the mean is intended to remove the effects of other torques acting on
the power train, but at the same time, misfires are still visible in the magnitude
of the torque signal. The problem that arises when there are multiple misfires
present is that the mean falls enough for the misfires to no longer be visible in
the magnitude. Logically the variance of the torque signal would still be affected
by the misfires, but that is outside of the scope of the algorithm studied here.
Looking at the variance would also likely be too computationally intensive to be
feasible on-line. The desire here is to find an alternative quantity to remove, one
that is not subject to the same problem as the mean in the presence of multiple
misfires.
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1.2.3 Flywheel tooth angle errors

To compensate between vehicles for the flywheel tooth angle errors the calcula-
tions are currently performed on the normalised torque estimate. This has good
performance, but may not be the most suitable point of estimation for a few rea-
sons. Firstly, the idea of implementing the estimation with an Extended Kalman
Filter (EKF) for use on-line may mean that efficient execution is hampered by
the additional operations needed to perform the data treatment in the EKF. To
facilitate the use of the flywheel tooth angle error compensation it is desirable to
estimate the errors at a different point in the treatment. This would also have the
added benefit of, depending on the point of estimation, separating the estimation
of the errors from the processing of the data and the detection of misfires, making
an on-line implementation more modular.

1.2.4 On-line adaptation

In its current implementation, the algorithm works well when run on desktop
PCs. There is a substantial difference in performance between a desktop PC and
the embedded computers used in cars. This means that the algorithm needs to
be optimised for use on limited hardware, and likely under hard real-time re-
quirements. This also means that there is always the need to balance detection
performance with computational requirements. Here the purpose is to adapt the
current implementation of the algorithm to perform faster, however as this will
still be done on a desktop PC, the adaptations cannot be verified as actually being
sufficient to arrive at a feasible on-line implementation. It is however a first step.

1.3 Method

The work is performed on data available from the work presented in [10, 11]
that this thesis builds upon. Actual work is performed using the software Matlab
to manipulate the data, and to implement and evaluate the proposed improve-
ments.

As the original work was performed mainly for vehicles with 6-cylinder en-
gines, but the work presented here is performed for 4-cylinder engines, a base-
line of the algorithms performance is needed. This is done by simply running the
algorithm on the new data. In addition to giving a baseline performance, it also
verifies that the algorithm at least gives reasonable performance on the new data.

Next, the theoretical underpinnings of the ideas for improvement are investi-
gate and adapted for implementation into code.

From this point, the work mainly consists of implementing and tuning the
solutions to maximise their potential effect on the performance of the algorithm.

The practical work with the data and performing the misfire detection uses
the convention in modelling to split the data into two parts. One is used to train
the classifier, while the other part is used to validate the performance. This is
so that over-fitting is not performed, which could result in a classifier that can
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describe the behaviour of known data well, while it performs much worse on
new data.

The central performance metric for evaluating the changes implemented will
be the rates of missed detection (MD) and false alarms (FA). It is also natural to
compare performance achieved here to what [10, 11] found, as it is the foundation
this work seeks to improve upon.

1.4 Related research

For the work performed in this thesis there are a few areas of research that are
of interest. Firstly, the whole area of misfire detection is highly relevant. Further-
more, Gaussian processes are of interest, in terms of statistics as well as in terms
of the estimation of them.

1.4.1 Misfire detection

There are a few ways of detecting misfires. They can be divided into two main
categories: in-cylinder detection and post-cylinder detection. [1]

In-cylinder detection is often complicated by the fact that the environment is
hostile to most sensors. It is also not common to have sensors already in place
in the cylinder, thus detection in-cylinder means there is the need of adding sen-
sors. This increases both the complexity of the diagnostics system and the cost of
hardware [1].

Post-cylinder detection has the advantage of it being a less hostile environ-
ment for sensors, and this is also where a lot of sensors used for other purposes
are found. These sensors can also be used to detect misfires in the engine. Such
methods either use measurements on the exhaust gases, or the mechanical be-
haviour of the engine to detect the misfires. The work this thesis builds on uses
speed measurements from the flywheel for the detection. This method has the ad-
vantage that it is possible to directly attribute the measurements to a cylinder. If
measurements from the exhaust system are used the position of the sensor affects
how they relate to the cylinders, and the relationship is not necessarily constant
with varying operating points.

The research into misfire detection spans all of these fields. In [18] the crankshaft
signal is used in an attempt to estimate the vibrations in the engine and detect
misfires from these. Another post-cylinder approach is to use the exhaust temper-
ature [23] to perform the detection. For the in-cylinder approach ion-current is
one possible way of measuring the combustion, in [3] shown to be able to detect
misfires and used in conjunction with post-combustion measurements to perform
the detection.

1.4.2 Gaussian processes

"A Gaussian process is a generalisation of the Gaussian probability distribution"
[19], and as such much of the general theory for Gaussian variables apply to Gaus-
sian processes, with the appropriate adaptations. The use of Gaussian processes
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in this thesis is only to describe the behaviour of the weights in the classifier, and
this area has already been thoroughly studied. In [8] Gaussian process regres-
sion is shown to be suitable for modelling engine behaviours, and it is done with
general limitations of ECUs in mind. For system identification where there is
quantisation present, [6] offers insight into how this can be done when statistical
measures are desired. However not directly applicable to this thesis, the prospect
of managing the quantisation is relevant if sampling with higher angular resolu-
tion is to be done.

However, on the topic of Gaussian processes, one area that is not investigated
in this thesis, but could be an interesting area for future focus is the use of Gaus-
sian process classifiers. One area in particular that could be well suited for the
problem at hand is a one class classifier, as presented in [12], although used for
image recognition it could have applications in misfire detection since only data
from normal operations would be required.

1.5 Characteristics of the data

The data used in this work was collected from vehicles with four-cylinder engines
of the same model. Focus will be on performance on data from driving on roads,
there is however also data collected on dynamometers available if testing under
more controlled circumstances is to be performed.

The vast majority of the data is collected under conditions where the cold start
mode of the engine control never engaged. In total, less than 2600 combustions
under cold start conditions are available. This corresponds to roughly 600 to 700
cycles. The small amount of cold start data coupled with the fact that the work in
[10] found the performance to be satisfying, as well as the limited time available
to perform the work means that cold starts will not be treated.

There are a lot of signals available in the raw data files. However only a few
are of interest for the algorithm, as well as a few more for training the classifier
and compute the performance. The table below lists the signals of interest for the
algorithm after extraction and adaptation.

Table 1.1: Available signals.

Signal Description
T Estimated torque signal

flywheel Time for each 30◦ rotation.
load Air mass flow.

speed Engine speed.
cylID ID of the crank positions.

catwrm Flag for warming of the catalytic converter.
misfire Flag for misfire injection.

exe Flag for diagnosable operations.

If the data is studied in bivariate histograms, a few observation can immedi-
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Figure 1.1: Histogram of the data used for training the classifier.

ately be made:

• Most of the data is for low loads.

• There is clear clustering in speed of the data.

• There is more variation in load for low speeds.

As the data used here was collected from vehicles on the road, the clustering
in speed can potentially be attributed to different gears and speed limits. The
variation in load for low speeds can possibly be due to the greater range in opera-
tional situations.

To give a feeling for how the data is distributed the multivariate histograms
in Figures 1.1 and 1.2 displays the distribution for the data used for training the
classifier and estimating the flywheel tooth angle errors.

1.6 Outline

The thesis consists of ten chapters, briefly described below.
Chapter 1 introduces the area of misfire detection, what the goals of the thesis

are and how they will be achieved. It continues with an overview of the current
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Figure 1.2: Histogram of the data used for flywheel tooth angle errors.

research and then looks at the data that will be used, before giving this outline of
the thesis.

Chapter 2 describes the work previously done to develop the misfire detec-
tion algorithm that this work builds upon. It aims to give the reader an overall
understanding of the basic components in the algorithm.

Chapter 3 introduces the concept of Gaussian processes, as well as bootstrap.
It also goes into the possible problems in this particular application, as well as
the restrictions inherent to it.

Chapter 4 first gives the reason for the original algorithm’s data treatment,
and then explores possible replacements, their definitions and possible imple-
mentations, and the necessary considerations associated with each one.

Chapter 5 explores the different points of estimation and how the choice can
potentially affect the estimated flywheel tooth angle errors. It finishes with a look
into how the problem can be solved off-line through optimisation.

Chapter 6 looks at the ideas presented over Chapters 3-5 and the original
classifier, discussing how they can be adapted for use on-line.

Chapter 7 goes through all the performed evaluations of the proposed im-
provements, with the focus being on the best performing version of each imple-
mentation.

Chapter 8 discusses the results from Chapter 7 and the likely reasons behind
them.
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Chapter 9 summarises the main results, both improvements and the best op-
tions for the proposed improvements.

Chapter 10 presents areas that would be of interest for continued work. Both
areas from this thesis to look deeper into, as well as areas that are related but
outside the scope here, are suggested.



2
Misfire detection algorithm

The algorithm below is the one presented in [10] and further developed in [11].
This chapter aims at familiarising the reader with the specific algorithm to the
degree needed for a general understanding of this thesis. The aim is however not
to give as detailed a description as in [10, 11].

The requirement in misfire detection of distinguishing between cylinders, to-
gether with the chosen approach means that each cylinder can be considered on
its own when performing the misfire detection. The only shared part between
the cylinders is the mean.

The engine considered is a four-stroke, and thus for each two revolutions of
the crankshaft, each cylinder goes through one full cycle. The detection is being
performed on a per-cycle basis.

2.1 Torque model

Central to the misfire detection algorithm is the estimation of torque from the
flywheel-timing signal. The time it takes the flywheel to rotate through 30◦ is
measured continuously, and it can be converted into fluctuations in the torque of
the power train.

Firstly, for each time measurement it is easy to convert into the angular ve-
locity of the flywheel using equation (2.1a). From mechanics it is well known
that for a rotating disc the torque is defined as equation (2.1b). The moment of
inertia J does not need to be known, as long as it is kept constant for all calcula-
tions it is only a scaling of the magnitude of the estimate. To connect these two
equations, the relationship between angular velocity and angular acceleration is
needed, (2.1c)

9



10 2 Misfire detection algorithm

ω[k] =
θ
t[k]

(2.1a)

T = α · J (2.1b)

ω̇[k] = α[k] (2.1c)

From the equations above it is possible to go from time measurement to torque.
However, this would require sampling that is time synchronous to directly work
due to the time derivative in (2.1c). The available data is sampled synchronous
with the angle of the flywheels rotation. Therefore, a substitution is needed. Us-
ing partial derivatives and the product rule of derivatives the results in (2.2) can
be used to perform the substitution.

α = ω̇ =
dω
dt

=
dω
dθ

·
dθ
dt

=
dω
dθ

·ω (2.2a)

d(ω2)
dθ

=
d(ω ·ω)
dθ

=
dω
dθ

·ω + ω ·
dω
dθ

= 2 ·
dω
dθ

·ω↔ dω
dθ

·ω =
1
2
d(ω2)
dθ

(2.2b)

From the equations listed above an expression relating angular velocity to
torque is now available (2.3a). However, since the signal available from the fly-
wheel corresponds to the angular velocity, and the equation uses its derivative
to calculate the torque, the derivative needs to be estimated. This is done using
Euler forward approximation (2.3b). Combining all but the conversion from time
to angular velocity (2.1a) yields the torque equation in (2.3c).

T =
J
2
d(ω2[k])
dθ

(2.3a)

d(ω2[k])
dθ

=
ω2[k + 1] − ω2[k]

∆θ
(2.3b)

T =
J
2
ω2[k + 1] − ω2[k]

∆θ
(2.3c)

There are additional torques present in the power train other than the torque
generated by the combustions (2.4b). Variations in these torques do not depend
on the misfires, and thus it is of interest to remove them. By realising that these
torques vary slower than the torque generated by the combustions, they can be
assumed constant for each cycle, and thus only bias the torque estimates. To
account for this the algorithm removes the mean torque over each cycle (2.4c).

T = Tcyl + Tload (2.4a)

Tcyl =

ncyl∑
i=1

Tcyl,i (2.4b)
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T0[k] = T [k] − 1
24

24∑
l=1

T [l] (2.4c)

In addition to the variations of other torques, the torque estimates are also
subject to influences from the load on the engine. For this, the intake manifold
pressure is a good representation. This signal is however not available, but rather
the algorithm uses the fact that it is proportional to the air mass induced per
revolution in the six-cylinder engines. It also mostly holds for the four-cylinder
engine. This proportionality means that the air mass can be used to perform
normalisation with the load. The resulting estimate will not have the correct
magnitude, nor is all the contributing physical properties available to calculate
the actual pressure. However, due to the proportionality and since it is sufficient
to capture the variations of the torque, the magnitude of the resulting estimate is
not important. The torque estimate after the removal of the mean is normalised
with the load, and the resulting torque estimate is given in (2.5).

Tma [k] =
1
ma

T [k] − 1
24

24∑
l=1

T [l]

 (2.5)

The normalised torque estimate arrived at above typically behaves as in Fig-
ure 2.1 for fault-free data over one cycle.
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Figure 2.1: Normalised estimated torque for one cycle without misfire.

2.2 Classifier

To detect misfires, a classifier of the type Support Vector Machine (SVM) is used.
For the misfire detection a binary classifier is used, that is misfire or normal oper-
ation. Trying to find the hyperplane that best separates the two classes arrives at a
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SVM classifier. [9] The data is made up of two parts. The first one is observations
from each combustion stroke, that is: six torque estimates per cylinder. The sec-
ond one is the class to which the observation belongs. If the data is separable, the
goal is also to maximise the margin, i.e. the distance from the hyperplane to the
closest point in either class, with the hyperplane chosen so that the closest points
are the same distance away. If the data is not separable, the goal is instead to
minimise some misclassification cost. The implementation of SVM used for the
algorithm uses a cost that tries to keep the relative number of misclassifications
as low as possible.

When designing a SVM classifier, one of the most impactful decisions can
be the choice of which predictors to use. A predictor is a characteristic in the
data used to describe the different classes. Due to the restrictions on computa-
tional resources in vehicles, only the direct torque estimates were used, rather
than higher order combinations of them. The general reason for using higher or-
der combinations of signals as predictors is that training the classifier remains a
problem of finding a linear hyperplane, only in higher dimensions of the predic-
tors [9]. Transformed back in to the original dimensions, the limits would then be
of a higher order. Computationally it is more attractive to find the higher order
linear hyperplanes, rather than estimating higher order surfaces directly.

With y being the classification, β a column vector with the weights for each
of the torque estimates, x a column vector with the actual torque estimates and
b the bias, the general form for the separating hyperplane (2.6a) and classifier
(2.6b) for a linear SVM are obtained. In Figure 2.2 a two-dimensional example
of the classifier is given. It also illustrates how the cost being relative to the
number of samples in the class effects the classification. All misclassifications in
the example are of normal operations, i.e. false alarms.

β · x′ + b = 0 (2.6a)

y = β · x′ + b (2.6b)

Due to the behaviour of the torque estimates over the operating ranges in
speed and load of the engine, the original algorithm segments the data by speed.
A separate classifier is trained for each range and cylinder. This does increase the
required storage in the vehicles, but results in increased detection performance.

When using the classifier the test quantity (TQ) is typically distributed sim-
ilarly to Figure 2.3. For positive values of the TQ a misfire is assumed to have
occurred.

2.3 Flywheel tooth angle error compensation

Thus far, all of the steps in the algorithm have been performed on the same ve-
hicle, and variations due to manufacturing are not a problem when considering
only one vehicle. However, if the algorithm is evaluated on another vehicle with-
out adaptation, with the same set-up in terms of its power train, the performance
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Figure 2.2: Example of a 2-D hyperplane for two crank positions from cylin-
der one. Data from two classes, normal combustions (x) and misfires (o), are
used and the separating hyperplane is the illustrated with the line.
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Figure 2.3: Distribution of the test quantity for fault-free and misfire data.

will likely diminish. It has been shown that a small deviation in the tooth angles
of the flywheel can drastically impact the performance of the misfire detection
algorithm. This is due to small differences in the angles between flywheels. By
estimating the errors of each vehicle relative to the test vehicle a compensation
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can be arrived at. Since it would be impractical to collect the same amount of
data for production vehicles as for test vehicles to compute the flywheel errors
from before delivery, the errors are estimated on-line.

For the vehicle used for training, data is already available. Data for the torque,
load and rpm is used to estimate torque curves for each of the 24 crank positions
in a cycle. For points where there are multiple torque estimates available the av-
erage is used. To compensate for differences between flywheels the torque curves
can be used in other vehicles to estimate the flywheel tooth angle error using an
extended Kalman filter (EKF). One added benefit this may also yield is to com-
pensate for slow changes in the error over time.

To compensate for the tooth angle errors, denoted Ψ, the errors are modelled
as additive and are included into the calculation for both the angular velocity as
well as the torque. The updated equations are then:

ω[k] =
∆θ + Ψ i

∆t[k]
(2.7a)

T [k|Ψ] =
J
2
ω2[k + 1] − ω2[k]

∆θ + Ψ i
(2.7b)

The indexing used here is k = 1, . . . , 24 for the crank positions and i = 1, . . . , 11
for the tooth angle errors, which repeats again for k = 13, . . . , 23 since two revo-
lutions are considered. The last tooth angle error, for k = 12, 24 is not estimated
directly. Since the errors are deviations from the angles on the training vehicle,
the total deviation should sum to zero. Then it follows that the last error on each
revolution is given by equation (2.8). This indexing will be used throughout the
thesis.

Ψ12 = −
11∑
l=1

Ψ l (2.8)
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Gaussian processes

To improve the misfire classification algorithm, one way may be to use Gaussian
processes (GPs) to model the weights of the classifier. As the GP does not store
the weights for each operating point, but rather parameters that describe its be-
haviour over the full range, it could potentially reduce the storage requirements.

3.1 Theory of Gaussian processes

The Gaussian process is a generalisation from the Gaussian, or Normal, distribu-
tion in statistics. The Gaussian process is assumed to be continuous, and for each
point there is an associated normally distributed random variable [19]. In the
misfire detection problem at hand, the Gaussian process will be used to model
the weights and bias of the classifier.

As for structuring the GP mathematically, there are two ways. The first as-
sumes zero mean, and uses basis functions outside the GP to model what would
be done by the mean in the second. When assuming the mean to be zero, that
changes many of the covariance functions due to how variance is commonly de-
fined. However, as long as the orders of the models used for the basis functions
and covariances are not changed the result is functionally the same, even if the
numeric values differ. In this work the first representation will be used as it is
consistent the Matlab implementation that will be used.

The use of the GP here is in the form of a regression. Using the zero-mean
GP notation, the regression is given by equation (3.1). The term h(x)T β consists
of the basis functions in h(x) and their corresponding coefficients β. This part of
the regression models the behaviour that is due to the actual position in speed
of an observation. The order of the basis functions determines how complex
behaviours the model is capable of capturing. The second part of the regression
is the covariance of the GP, K(x, x′), also known as a kernel. In addition to these

15
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parts there is also an assumption of some zero-mean error, modelled as random
noise, which cannot be explained by the GP. The lower the noise, the better is the
fit to the data used to estimate the GP, which makes the noise an indicator that
gives a rough sense of how well suited a particular GP is.

y = h(x)T β + f (x), f ∼ GP (0, K(x, x′)) (3.1)

Figure 3.1 (a) illustrates one potential behaviour of a GP, following the actual
weights well, but having some uncertainty in-between points with data used for
training. In Figure 3.1 (b) the GP does not model the actual weights as accurately,
and as a consequence, the prediction error is greater and does not shrink as much
close to points where training data was available.
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Figure 3.1: Example of a Gaussian process. The estimated GP in (a) follows
the training data (∗) nicely, while the shaded area illustrates uncertainty with
the 95 % prediction interval. In (b) the GP does not model the behaviour as
accurately, and as a consequence the prediction error is greater.
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3.2 Bootstrap

One idea for improving the detection performance is to use bootstrap, most com-
monly used as a tool for evaluating statistical accuracy [9]. The primary applica-
tion in this work is to estimate the mean weights, with the idea being to lower
the effects of the weights from the SVM that are due to outliers in the data used
for training. For the SVM, outliers are particularly troublesome as it uses only
the data-points that directly give the classifier, not their distribution in load and
speed.

Bootstrap sampling is the idea to select N values with replacement from an
original dataset of the same size, N , and do this B times. Each of these B sets is
called a bootstrap sample.[9] For each bootstrap sample a classifier can be trained.
As this results in B classifiers there needs to be a way to reduce this down to only
one classifier, which in this case will use the mean weights over all bootstrap
samples. The concept of bootstrap sampling can be illustrated by Figure 3.2,
which is a slight adaptation of the illustration used in [9] to explain the concept.
It goes from the set X, to the bootstrap samples X∗, and finally the weights of the
classifiers estimated from those samples, here denoted by S(X∗).

If the number of bootstrap samples, B, is sufficiently large, the means of the
weights and bias should reasonably well classify the data. This is since over a
large number of bootstrap samples the effects of the outliers are reduced. Thus,
if most of the data is homogeneous, most of the torque estimates in the bootstrap
samples for each crank position should be similar, giving similar weights when
training the classifiers. If the weights are similar, then the mean is sufficiently
robust to be used for arriving at a representative weight. The effects of the out-
liers are not fully removed with this approach, as they are as likely as any other
sample to be included in a bootstrap sample.

X = x1, x2, . . . , xN

X∗2X∗1 X∗B

S(X∗2)S(X∗1) S(X∗B)

Figure 3.2: Structure of the concept of Bootstrap, with the original set of size
N at the top, followed by the B bootstrap samples and finally the bootstrap
realisations, which are in this application the weights of the classifier.
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3.3 Estimation of Gaussian processes

When using Gaussian processes to model the weights of the classifier two differ-
ent approaches to data partitioning will be evaluated. The first is to estimate
weights for non-overlapping ranges and associate each observation to its range
centre-point. If each observation was associated with its actual values in speed,
the fact that all observations on a range have the same weights would result in
an approximately piece-wise constant behaviour. The second way is to estimate
weights over a sliding range, thus using overlap between the ranges and poten-
tially smoothing out the behaviour of the weights as part of the data would re-
main the same over multiple neighbouring ranges. The use of overlapping ranges
can also be motivated by the fact that when using non-overlapping ranges there
is a limit to how narrow they can be made while still guaranteeing data from
both fault-free operations and misfires. This is necessary for training a binary
classifier. The limiting factor here is the misfire data since it is scarcer.

Using overlapping ranges allows estimation of weights closer together, which
could in turn mean a smoother behaviour of the weights. For a smoother be-
haviour, a set of lower order basis functions would be able to describe it. There
is however a drawback inherent to the SVM that could make a too dense grid
problematic: the high influence afforded to outliers. If there are outliers, they
can give drastically different weights for a small change in speed, which would
asymptotically introduce steps into the weights used to estimate the GP as the
distance between range-centres approaches zero. If the behaviour of the weights
becomes smoother for a dense grid, that makes it more feasible to use the actual
speed of each observation to predict the weights, rather than the range-centre
value.

Of interest here is to model the weights as functions of the speed. The basic
approach to estimation is to use speed as the predictor and weight as the output.
This means that each weight is predicted from speed. One potential problem with
this approach is the dependence between the weights in relation to the classifica-
tion. The six weights and the bias are all related such that the misclassification
cost in the SVM is minimized. If the GP is not estimated with a very good fit for
all actual weights, the consequence can be a loss of detection performance since
the dependence between the weights is lost.

The estimation of the GPs is implemented with fitrgp in Matlab. It esti-
mates a Gaussian regression on the form given in equation (3.1). The implemen-
tation results in a model that for the same grid requires more storage than the
basic implementation, which means that for the GP to be feasible in on-line use
it has to use a sparser grid than the original implementation. This will be treated
in further detail in Chapter 6.



4
Multiple misfires

The algorithm from [10], as mentioned in Section 1.2.2, works well for a single
misfire in a cycle. However, when evaluated on data with multiple misfires in
the same cycle, it performs much worse. Also mentioned in 1.2.2, the reason is
likely to be the fact that the effect of multiple misfires on the mean results in the
misfires no longer being clearly visible in the treated signal.

4.1 Data treatment

Data treatment is essential for the algorithm since the main purpose is to remove
the effects of any torque not due to combustion, making the misfire detection
easier [10]. If the treatment is not performed, then the estimation of classifiers
can become harder since there is potentially more variation in the observations,
and misfires may then be less visible in the data.

4.2 Alternatives to mean

The original algorithm removes the mean as its way of treating the data. The
mean is potentially not the best measurement of the general behaviour of the
torque in the presence of misfires, but the effects of one misfire are not enough to
throw the algorithm off. That is not the case for multiple misfires in one cycle.

There are a few ways of dealing with the mean not working for multiple mis-
fires. Firstly, one can entirely replace the mean with the median. Alternatively,
the mean can be calculated over multiple cycles, a moving average, such that
the effects of the misfires are diminished. For the moving average, there are also
multiple choices in terms of how to implement it.
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Figure 4.1: Comparison between mean and median for the log-normal dis-
tribution. It illustrates the reaction of the mean (dotted) and the median
(dashed).

4.3 Median

Just like the mean is a measurement of central tendency, so is the median. It is
a robust alternative to the mean when working with skewed data [14]. If for ex-
ample the lower end of the data suddenly became substantially further removed
from the other data, making the data negatively skewed, the mean would reflect
that with a sudden drop. The median on the other hand would not show any
indication of this change as long as the middle sample remained the same. To
illustrate this the log-normal distribution is used in Figure 4.1. Here it is evident
that the mean has a more pronounced reaction to a skewed distribution.

The median is defined as the middle value for an ordered set with an odd
number of data points, whereas if the number of data points is even, it is the
mean of the two most central ones. If X1, . . . , Xn is a set of n ordered observations,
then the median can be expressed as equations (4.1a) and (4.1b). [20]

m = Xk+1, n = 2k + 1 odd. (4.1a)

m =
Xk + Xk+1

2
, n = 2k even. (4.1b)

If the structure of the original algorithm is followed, then the median is com-
puted over one cycle. To increase the usefulness of the median it can alternatively
be computed over multiple cycles. With this approach, the increased number of
samples reduces the effect of any one cycle, making the median less sensitive to
cycles substantially deviating from expectation.
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4.4 Moving average

To combat the drop in mean that comes with multiple misfires, a moving average
(MA), a mean over multiple cycles, can be used instead. This would mean that
the effects of multiple misfires in one cycle have less impact on the moving av-
erage since it constitutes a smaller part of the total number of torque estimates
used. This approach will work as long as there are not multiple misfires in too
many of the cycles used for computing the average. If the number of cycles with
multiple misfires becomes too high, it will have the same problem as the original
algorithm.

The first choice in implementing the MA is between using a finite impulse re-
sponse (FIR) or an infinite impulse response (IIR). In this work, implementations
of both types will be evaluated. A note on nomenclature is that in [15] and [7]
moving average is used to describe how noise is modelled. Moving average is in
this work instead used to refer to a treatment method for the torque estimates
that takes the mean over multiple cycles.

When designing the moving averages there is also the need to consider the
update rate used. This is since it can affect the resulting MA. First, there will
be a short section on the possible update rates, and then in the respective sec-
tions for FIR and IIR implementations there will be a more thorough look at the
consequences for them.

4.4.1 Update rate

Concerning the rate at which to update the MA, there are a few limitations due
to the misfire detection algorithm. The slowest possible rate at which to update
the MA is once per cycle, this is since the combustions in each cycle are currently
treated at the same time. If updating were performed any slower it would mean
that multiple cycles would have to use the same MA, effectively varying the po-
sition of the current cycle relative to the ones used for computing the MA. The
fastest rate at which it is practical to update the MA is once per combustion. It
is possible to update more frequently, but then there may be effects from older
cycles making classification harder since the same quantity is not removed from
all torque estimates in the same cycle. From what was said above about the rates
at which to update the MA, there are only two real options, once per cycle or once
per observation. Each of the approaches can have an effect on the implementa-
tion, and that will be treated in their respective sections below.

4.4.2 FIR implementation

The MA implemented here draws inspiration from the MA-process in [7] and the
MA-model in [15]. Neither has any external inputs, but by using the ARMAX-
model [15] that is added, and through selection of the coefficients it is possible
to construct what could loosely be called a MAX-model, or following the nomen-
clature in literature: an X-model, as it does not model the noise. It results in the
treatment model as given in (4.2).
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The FIR implementation of the moving average requires a few things. Firstly,
the length of the average, the number of cycles to include, k, needs to be chosen.
Secondly, the weights wi needs to be set for all k cycles. In addition to these
parameters the means mi for the k last cycles needs to be stored for computing
the moving average. In equation (4.2) the expression is given, with Mn denoting
the moving average and mn the mean for the nth cycle. Here Mn is the output,
with the input being mn.

Mn = wn ·mn + wn−1 ·mn−1 + ... + wn−k+1 ·mn−k+1 (4.2)

Concerning which rate to use to update the MA can be somewhat simplified
for a FIR implementation. Equation (4.3a), with N being the number of crank
positions used, is the expression for updating for every torque estimate, which
is then simplified to the expression for updating every cycle. That it actually is
every cycle can be realised by substituting in (4.3b), which is the number of crank
positions in each cycle, and then (4.3c), which is the mean over one cycle. This
holds regardless of where a cycle is defined to start in the rotation of the engine,
even mid observation. That would however not be practical for the purposes
here. One thing that is not included here, but a fully possible intermediate step
is the expression for updating for every combustion. This means that if the same
weights are used the expressions will be equivalent each time the per-cycle one
updates.

1
N

(wN · tN + wN−1 · tN−1 + . . . + wN−24k+1 · tN−24k+1) =

1
k

 kN
N∑

n=N−3

(wn · tn) +
k
N

N−4∑
n=N−7

(wn · tn) + . . . +
k
N

N−24 · k+4∑
n=N−24 · k+1

(wn · tn)

 (4.3a)

N = 24 · k ⇔ k
N

=
1

24
(4.3b)

mc =
1

24

24∑
n=1

(wn · tn) (4.3c)

4.4.3 IIR implementation

Similarly to the FIR implementation having likenesses with literature’s MA, the
IIR is instead related to the AR-process and AR-model [15, 7]. When adding the
input to the model and assuming no noise it coincides with the ARX-model [15].

The implementation of the moving average as an IIR requires three things.
The mean of the current cycle, mn, the moving average for the previous cycle,
Mn−1, which contains information about all the previous cycles, as well as some
factor for weighing together new and old information, α. This factor determines
how much the new cycle and the previous MA influences the new MA. A large
factor allows the mean of the current cycle to highly influence the MA, while the
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effect of previous MAs die away quickly. If α is chosen to be small, each new
mean has little impact on the MA, while the influence of old MAs persist longer.
The resulting expression is found in equation (4.4).

Mn = α ·mn + (1 − α) ·Mn−1 (4.4)

As was mentioned in the beginning of this section, the IIR implementation
can be considered an ARX-model. This is since the input, the mean of the current
cycle, mn, is put in relation to one or multiple outputs, M, for a cycle. This is
evident if equation (4.4) is rewritten as (4.5).

1
α
Mn −

1 − α
α

Mn−1 = mn (4.5)





5
Flywheel tooth angle error

The difference in flywheels between vehicles, be it from variations in the teeth or
off-centre mounting, means that the classifier is not performing as well on other
vehicles than the one used for training. This has been shown in [11] to be possible
to compensate for by estimating the flywheel tooth angle errors.

5.1 Points of estimation

There are multiple possible points in the processing of the torque where the tooth
angle errors can be estimated. The one used in the original algorithm is the nor-
malised torque estimate, i.e. after the removal of the mean and normalisation
with load, see equation (2.5).

Apart from the original point of estimation, there are two natural alternatives
from the structure of the algorithm. Those are the torque signal after removing
the mean and the raw torque estimate before any manipulations have been ap-
plied. The different points of estimation are illustrated in Figure 5.1.

Torque
estimation

Remove
mean Normalise

t T T0 Tma

Points of
estimation

Figure 5.1: The signal processing with the possible points of estimation in-
dicated.
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5.1.1 After removal of the mean

Estimating the torque after only removing the mean, but before normalising with
the load means that the torque estimate being used is:

T0[k] = T [k|Ψ] − 1
24

24∑
l=1

T [l|Ψ] (5.1)

This alternative retains the benefits of removing torques not due to combus-
tion, as it is simply a version of the original treatment, but scaled by the load.
Although, as each cycle varies around zero, the average torque estimate for each
crank position should be a good representation for most of the estimated torques
associated with it. Since this treatment is only scaled by load compared to the
normalised treatment, the estimated errors should be rather close. As each obser-
vation is scaled by its actual load, there may however be a slight skewing of the
torques within the same range, and the consequences would depend on how the
torques vary with changing load.

5.1.2 On raw torque estimate

In the processing of the data from measured time to estimated torque, first the
angular velocity is computed through equation (2.1a), followed by the torque esti-
mate in equation (2.3c). While misfires are visible directly in the angular velocity,
it is easier to perform the detection on the torque estimates [10]. As the torque
and angular acceleration are directly related through (2.1b), with J assumed con-
stant [10], it would be just as feasible to use the latter to perform the misfire
detection if no other treatment was to be used. As torque is more commonly
used when talking about engines, it seems more intuitive and practical to use it.
If it is possible to achieve an accurate torque estimate through using the correct
moment of inertia, then it becomes even more practical to use torque, as it could
be useful for other computations on-line.

The obvious risk with finding the errors directly from the raw torque esti-
mates is that variations in the other torques, the very reason for removing the
mean, can affect the estimates of the errors. Even if the torque map uses the
mean torque for each point to represent the behaviour this may not be enough.

5.2 Off-line optimisation

For comparing the performance of the difference points of estimation, it is possi-
ble to estimate the errors that minimise the difference between compensated data
and the torque map. This is done with all data already collected and can thus be
performed off-line through optimisation. The result from the optimisation can
then also be used to evaluate the accuracy of the on-line implementations after
their estimates have converged.

From equations (2.7a) and (2.7b) the model from time at the flywheel to torque
estimate is already known. It is parameterised by Ψ which can be estimated
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through minimisation of the mean square error by solving equation (5.2). This
approach to finding the errors is only practical on collected data and performed
off-line due to the high computational demands of finding an optimum.

arg min
Ψ

1
N

N∑
k=1

(
Tmap − T̂ (k|Ψ)

)2
(5.2)

This is a non-linear programming problem, and it is possible to formulate it
as a constrained or unconstrained problem depending on how Ψ12 is treated. The
problem is constrained if Ψ12 is used in the cost function and the constraint given
by equation (2.8). It is possible to reformulate the problem to be unconstrained
by substituting Ψ12 by its definition in the objective function. The set of errors,
Ψ, is convex as each element can take any value on R and should remain small
as that creates the best fit with the map. Values of more than one revolution, or
even ∆θ indicates that something in the optimisation did not work properly, or
that the data collected is bad, as the expectation is Ψ l � ∆θ, l = 1, ..., 11. The
objective function is also convex, as it will grow with any change to an element
in Ψ from its optimal value, regardless of the direction of change. The objective
function is also infinitely differentiable in Ψ, making it a problem to which there
are multiple algorithms for solving [22].





6
On-line considerations

One thing that the different parts making up this work have in common is that
they, in addition to improving performance, need to be realisable on limited hard-
ware in production vehicles to be considered practical improvements. While the
more demanding computations, such as training the SVM and estimating the GP
are performed off-line and can benefit from substantially more powerful hard-
ware and no real-time constraints, many of the computations must be performed
on-line to have any real-world value. The two main limiting factors on-line are
memory and processor power. There are also real-time requirements for the sys-
tem to be feasible.

6.1 Classifier

The implementation of the classifier used in the existing code for the work upon
which this thesis is based used Matlab’s built in functions for SVMs both when
training the classifier and performing the classification itself. Training is done
off-line and does not need to be as restrictive with computations. However, the
classification needs to be done with on-line performance in mind, and it is then
not practical to use the predict function for computing the test quantity.

One thing that can impact training performance is if the SVM normalises the
training data or not. This work uses normalisation as it can, as a general practice,
be shown to significantly improve the performance both when classifying and
training [4]. The particular normalisation used here is zero-mean normalisation.
Using the notation xold for the original data, xnew for the normalised data, mx
for the mean of the predictor and σx for its standard deviation, normalisation is
performed by equation (6.1) for each of the predictors, resulting in each having
zero mean and unit variance.

29
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xnew =
xold −mx

σx
(6.1)

When training the SVM in Matlab the result is returned as its own type of
object, which contains more data than necessary for use on-line. The SVM used
here is linear and the separating hyperplane is defined by six coefficients, β, and
one intersect, b. When using Matlab’s built in function for classifying a new ob-
servation, the normalisation is performed automatically. It is possible to remove
the need to store the means and standard deviations used for normalisation by
incorporating them into the coefficients and intersect of the SVM. Equation (6.2)
gives the relationship between new (β∗,b∗) and old (β,b) weights and intersect. µ
is the mean and σ the standard deviation for each crank position of the data used
to train the SVM. This reduces the storage need by twelve values for each cylinder
and range that would otherwise be needed to perform the normalisation.

β∗crnk =
βcrnk
σcrnk

(6.2a)

b∗crnk = −µcrnk · β∗crnk + bcrnk (6.2b)

6.2 Gaussian processes

Much like for the SVM in the previous section the Gaussian process can be imple-
mented by built-in functions in Matlab. This also presents the same drawbacks
in terms of being overly complex for an effective implementation on-line. It does
however not simplify as well as the SVM. There are parts of the object in Matlab
that can be removed, but there is still the need to store all coefficients for the
basis function and the parameters for the covariance function. The Matlab imple-
mentation of the GP stores at least as many parameters for the covariance alone
as the default classifier does for the same split. The result of the estimation is a
discrete function only defined for the points at which data is provided. In addi-
tion, there is also the need to store the coefficients for the basis functions, but its
storage need is only determined by its order, contributing much less. Therefore,
the GP needs to use fewer points for its prediction, or describe the behaviour with
a continuous function, to rival the basic algorithm in terms of storage.

The representation used for the regression, assuming the GP to have zero-
mean, means that there is a set of basis functions with associated coefficients.
Depending on how the regression is designed, the order of the basis functions
may be higher than one. This can rapidly increases their contribution to the com-
putational load. In the case at hand, with the predictor being speed, the number
of combinations is manageable, and can from a computational standpoint be fea-
sible on-line, but if the number of predictors was to increase it would also mean
an rapidly increasing number of coefficients. Even if it may be desirable to keep
the basis functions linear, it may not actually be possible from a performance
standpoint. The combination of the basis functions and the covariance function
aims to accurately describe the weight as it varies with speed. This means that
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the simpler the covariance function is, the more complex the basis functions have
to be to account for that. Since the covariance depends on distance to other val-
ues for the predictor and the basis functions commonly depends on the values of
the predictors, not their differences, the consequence of trying to capture certain
behaviours with the wrong one may result in an overly complicated regression.

6.3 Multiple misfires

The impact of the treatment of multiple misfires depends on which method is
used. This is due to the fact that the averaging methods can use the torque esti-
mates directly and also often simplifies well, whereas the median requires sorting
of the data, effectively needing to do comparisons between many different values.

6.3.1 Moving average

The alternative treatments proposed with MAs work directly on the torque data,
in the case with the IIR only α and the previous value for the MA needs to be
stored. The FIR needs to save the mean for each cycle to be included in the
moving average. Were the coefficients to be different between cycles, or within
cycles, the needs may change somewhat. If the coefficients are constant within
each cycle, the coefficient for each cycle needs to be stored once and applied for
each computation of the MA. In fact, any coefficient that is not varying within its
corresponding cycle can be put directly into the code without the need to store it,
making the means the only values needing to be stored. If the mean for one cycle
has the same weight applied for all crank positions, only the mean, not all torque
estimates, needs to be stored. Much of this also holds for different coefficients
within a cycle, only with the added requirement of storing all torque estimates,
rather than the sums for each cycle.

6.3.2 Median

For using the median as the replacement, the requirements will be higher since
it requires knowing the middle one or two torque values from a list sorted by
magnitude when using an integer number of cycles. This sorting will impact the
complexity of the computation. The sorting introduces the need to perform a lot
of comparisons between the torque estimates. In a simple form, the sorting could
be implemented with a bubble sort, with not so great performance. Requiring
in the best case as many comparisons as the number of torque estimates minus
one, i.e. starting with the data sorted. If the data starts sorted in reverse, the
number of comparisons needed is then instead squared and corresponds to the
worst-case scenario. There are more effective algorithms for sorting the torque
estimates, and there may be merit to using them if the size of the data set is
appropriate. However, assuming only a few cycles are used for computing the
median, the burden of sorting the torque estimates remains, if not low, at least
manageable.



32 6 On-line considerations

1
2
...
b

1
2
...
b

. . .

1
2
...
b

k medians

Figure 6.1: Illustration of a remedian. It consists of k medians with b values
in each.

One possible way of reducing the computational load and the storage needs
for computing the median is to implement the remedian. The remedian is an esti-
mator of the median that can reduce the need for both storage and computational
time. This is done by taking the median over a small number of measurements,
b, and then taking the median for b such medians and repeating k times [21].
The concept is illustrated in Figure 6.1, which is adapted from [21]. Assuming
n = bk , the storage needed for the torque estimates to compute the remedian
is b · k, rather than n. Depending on the number of cycles the median is com-
puted over, the savings in needed storage can be substantial. The time needed to
compute the remedian is asymptotically the same as for the median, but for the
number of samples used here the remedian requires less time to compute.

The use of remedian is further discussed in [2], where a more appropriate
implementation for continuously arriving (streaming) data is studied. Also men-
tioned is the fact that the remedian performs better on bigger sets of data, which
is possibly why it would not be a viable alternative to the median for this particu-
lar use. The error between remedian and median for different b and n evaluated
in [2] reinforces that, where for a small n the relative error is rather large, and
diminishes with growing n regardless of b. The choice of b is best made to be
small, b < 10, as it is not simple to optimally find the median from more samples
[2].

As the intended use of the median in this work is over a limited number of
cycles, while the remedian arrives at one estimate for n samples, some modifica-
tion is needed if the remedian is to be implemented. One straightforward way of
achieving this is slightly alter the last layer: let the median of the previous layer
be pushed to the top of the highest layers list of medians, forcing out the oldest
one. Each of the other layers is emptied when it is full. This would mean that
there is always an estimate of the median for the n last torque estimates.

6.4 Flywheel tooth angle error compensation using
Extended Kalman Filters

While evaluating and comparing the feasibility of different points for where to es-
timate the flywheel tooth angle error is possible off-line, that particular approach
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is not practical for implementation on-line due to the time required and the fact
that it needs all data to be available before working, and takes multiple passes.
As was mentioned in Chapter 1 the intention is to instead use the EKF to estimate
the errors on-line. This makes it possible to estimate the errors every time data
from a new cycle becomes available. The basic EKF presented below is based
upon the presentation in [5], and uses its notation.

The EKF is an extension of the Kalman Filter (KF) to work for non-linear
systems. The EKF used here approximates the non-linear system through first
order Taylor expansion. Like the KF, the EKF assumes zero-mean Gaussian noise.
The state-space model of the dynamic system that the EKF requires is:

x[k + 1] = f (x[k], u[k], v[k]), v[k] ∼ N (0, Q) (6.3a)

y[k] = h(x[k], u[k], e[k]), e[k] ∼ N (0, R) (6.3b)

Using the state-space model the EKF can be expressed as two parts, a predic-
tion step (6.4.1) and an update step (6.4.2).

6.4.1 Prediction update

The prediction update gives the state vector that would result from a certain
input, given the current state vector (6.4a). The fact that prediction is performed
from old data means that the state covariance increases (6.4b).

x̂[k + 1|k] = f (x̂[k|k]) (6.4a)

P [k + 1|k] = Q[k] + f ′(x̂[k|k])P [k|k](f ′(x̂[k|k])T (6.4b)

For the problem of estimating the flywheel tooth angle errors, the errors are
assumed constant as any change from normal wear would be over a very substan-
tial amount of time. With this assumption the state equation is then constant
(6.5a). It then follows that its Jacobian is an identity matrix (6.5b). This allows
some simplification of the prediction update. The predicted state vector will be
the current state vector (6.5a), and predicting the state covariance is reduced to a
simple addition (6.5c).

x̂[k + 1] = x̂[k] (6.5a)

f ′( · ) = I11 (6.5b)

P [k + 1|k] = Q[k] + P [k|k] (6.5c)

This simplification could also have been done by realising that the state equa-
tion is linear, and then use the KF prediction update instead. This would yield
the same results.



34 6 On-line considerations

6.4.2 Measurement update

When new information becomes available about the system, the EKF can be up-
dated to use this information, see equations (6.6a)-(6.6e). Since there is already a
prediction of the state vector available, the measurement update corrects for any
error between the new information and the predicted state.

From a computational standpoint, it would be of interest to simplify the mea-
surement equation, as a linear equation would mean an easier update. However,
as the measurement equation (2.7b) divides by the state, simplification is not pos-
sible. The most computationally demanding part of the measurement update is
the inversion of (6.6b). If the errors can be estimated from the raw torque esti-
mates with negligible performance loss the matrix h′( · ) would become consider-
ably more sparse as each row not using Ψ12 would go from having no zero-entries
to only having two non-zero entries. Unfortunately this does not translate to an
as sparse S[k], but it is still more sparse than what the original algorithm would
have resulted in.

ε[k] = y[k] − h(x̂[k|k − 1]) (6.6a)

S[k] = R[k] + h′(x̂[k|k − 1])P [k|k − 1]h′(x̂[k|k − 1])T (6.6b)

K[k] = P [k|k − 1](h′(x̂[k|k − 1]))T S[k]−1 (6.6c)

x̂[k|k] = x̂[k|k − 1] + K[k]ε[k] (6.6d)

P [k|k] = P [k|k −1]− P [k|k −1](h′(x̂[k|k −1]))T S[k]−1h′(x̂[k|k −1])P [k|k −1] (6.6e)

6.4.3 Constant gain

One proposed way to lessen the computational burden of finding the flywheel
tooth angle errors is to use the constant gain EKF (CG-EKF) [13], rather than the
standard EKF. What the CG-EKF does is it removes the need to recompute the
gain for each measurement update. The gain, K , is instead calculated using a
fixed covariance matrix for the measurement noise. This also removes the most
demanding part of the computations, the matrix inversion for computing K , at
least all but one time off-line.

The usefulness of the CG-EKF can possibly be increased by using multiple
gains depending on how close the estimated torque is to the torque curve. Using
two gains would lessen the need to balance the speed of the filter with its variance,
allowing for higher gain initially and a more conservative one when the estimates
have converged. This means it could be possible to have fast convergence initially,
while achieving low variance when the estimates have stabilised. To determine
when to perform the switch the square sum error between the prediction from
the filter and the torque map can be used.
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6.4.4 Reduced update rate

Much like how the potential usefulness of the CG-EKF can be increased by hav-
ing multiple gains, it and the EKF can be less computationally intensive if they
are updated much more sparsely after converging. This can be done much in
the same way as the multiple gain approach for the CG-EKF, using the difference
between torque map and predicted torque to determine when the filter has con-
verged enough to no longer need to be run as frequently. The reduction in com-
putational load for the EKF with this approach would mean that if it becomes a
feasible alternative, it would likely rule out the CG-EKF as an interesting alterna-
tive. Just like for the multiple gain CG-EKF the square sum error can be used to
switch the update-rate.
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Evaluation

7.1 Classifier

Using the design method for the classifier proposed in [10] results in a classifier
that performs similarly for the four-cylinder engine as it did for the six-cylinder
one.

The classifier was initially only segmented in speed, using both five and four
ranges, where the four-range one merged the two highest speed ranges into one.
The five ranges had midpoints [750 1650 2500 3700 5000] rpm with limits sym-
metrically between each pair of neighbouring midpoints. For the four-range clas-
sifier the 3700 rpm and 5000 rpm ranges where merged into one yielding the
midpoints [750 1650 2500 3700] rpm. The two alternative segmentations have
similar performance as seen in Table 7.1.

Table 7.1: Performance of basic classifier.

Five ranges Four ranges
NF 60366 - 60364 -
MF 893 - 893 -
MD 1 0.1119 % 1 0.1119 %
FA 29 0.0480 % 31 0.0513 %

Looking at the behaviour in Figure 7.1 of the weights of the classifier in both
speed and load shows that the weights varies greatly with speed, but also with
load for one speed. Based on this the classifier was also divided by load, and
looking at how the data is distributed in load and speed, Figure 1.1, the midpoints
of the ranges were initially chosen as [0.1 0.3 0.5 0.8] g/revolution, but removing
the 0.8 g/rev one yields nearly identical performance with centres of the ranges
as [0.1 0.3 0.5] g/rev. Similarly to the speed ranges the limits for the ranges were

37
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chosen centred between the midpoints.
The resulting classifier delivers higher performance than if segmentation was

only performed with regards to speed. However, when combining the five range
segmentation of speed with segmentation in load, there was not enough data to
perform detection for the 5000 rpm and 0.1 g/rev range on the default data. The
data from that range was ignored when performing the classification. The two
alternatives still have very similar performance seen in Table 7.2. To mitigate
the problem of not classifying over the full range the classifier for the 3700 rpm
and 0.1 g/rev range was tried on the 5000 rpm and 0.1 g/rev range as well. The
results was then the same as for the four range classifier.

Table 7.2: Performance for classifier divided in both speed and load.

Five ranges Four ranges
NF 60356 - 60372 -
MF 894 - 894 -
MD 0 0 % 0 0 %
FA 21 0.0348 % 23 0.0381 %

7.2 Gaussian processes

When estimating a Gaussian process from the weights for the initial classifier
in Section 7.1 the performance was lower than for the basic classifier, with MD
at 0.3356 % and FA at 0.6772 %. The classifier weights as well as the weights
predicted from the GP for cylinder one are plotted in Figure 7.2.

The results above only use the split in speed from the classifier, meaning that
each observation uses the weights predicted for its range centre-point. A more
realistic use of the GP is to use predictions that are more local to each observation,
predicting the weights from its actual speed rather than its speed-range. From
Table 7.3 it can be seen that the performance improves slightly.

Table 7.3: Results for GP using actual speed for prediction.

GP
NF 60257 -
MF 891 -
MD 3 0.3356 %
FA 138 0.2285 %

Since part of the idea behind using a GP to model the weights was higher
resolution in speed between the weights, the next logical step in the evaluation is
to estimate the GP from much closer spaced range-centres. This is however not
without problem since there is not enough data to properly perform detection
over the whole speed range when the step-length becomes too short. This was
mitigated by using overlapping ranges, allowing for close centres and essentially
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Figure 7.1: Weights for the basic classifier.
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Figure 7.2: Plots of weights from classifier (red) and GP (blue) for cylinder
one.
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performing smoothing of the weights in speed. Performance for this approach
using centres from 800 to 5300 rpm every 100 rpm with width 500 rpm, is listed
in Table 7.4.

Table 7.4: Performance for GP on overlapping ranges.

GP
Range centres Interpolated weights

NF 60350 - 60220 -
MF 891 - 890 -
MD 3 0.3356 % 4 0.4474 %
FA 45 0.0745 % 175 0.2898 %

Using higher resolution to estimate the GP does not give higher performance,
but rather misclassifies more observations than the original classifier. The be-
haviour of the GP compared to the weights used to estimate it are found in Figure
7.3.

One way of improving the performance when using a GP as proposed in Chap-
ter 3 is to use bootstrapping. First the impact of bootstrapping was evaluated on
the basic classifier, and then on the GP. For the basic classifier with high den-
sity overlapping ranges the performance, Table 7.5, improved slightly for a low
number of bootstraps, while a higher number did not have the same impact. The
corresponding results for the GP can be seen in Table 7.6.

Table 7.5: Performance using only bootstrap.

Number of bootstraps
5 10 100

NF 60227 - 60225 - 60225 -
MF 946 - 946 - 946 -
MD 1 0.1056 % 1 0.1056 % 1 0.1056 %
FA 29 0.0481 % 31 0.0514 % 31 0.0514 %

Table 7.6: Performance for GP using bootstrap weights.

Number of bootstraps
5 10 100

NF 60362 - 60371 - 60371 -
MF 893 - 893 - 893 -
MD 1 0.1119 % 1 0.1119 % 1 0.1119 %
FA 33 0.0546 % 24 0.0397 % 24 0.0397 %

As modelling the weights using GP and bootstrap gives good performance
while only partitioning the data in speed, it is of interest to see what results can be
achieved by partitioning the data both in speed and load. The GPs will however
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Figure 7.3: Plots of weights from classifier (red) and high resolution GP
(blue) for cylinder one.
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still only use the speed as their predictors. The results from this addition are
listed in Table 7.7.

Table 7.7: GP performance for data partitioning in both load and speed.

GP
Range centres Interpolated weights

NF 60368 - 60233 -
MF 893 - 890 -
MD 1 0.1119 % 4 0.4474 %
FA 27 0.0447 % 162 0.2682 %

7.3 Multiple misfires

From Section 7.1 the performance when dividing the data by both load and speed
outperformed splitting only by speed. The evaluation performed below divides
the data by both load and speed since it is the most relevant to practical applica-
tions with its higher performance. The division that will be used is the one with
three load and four speed ranges arrived at in Section 7.1. For comparison with
the alternative treatments, the first evaluation to be performed is using the basic
algorithm on multiple misfires, giving a baseline against which to compare the
alternatives, Table 7.8.

Table 7.8: Performance of the original algorithm on data with multiple mis-
fires.

Number of observations Misclassification rates
NF 25823 -
MF 302 -
MD 3 0.9836 %
FA 72 0.2780 %

The goal with the alternatives to removing the mean is to have a quantity that
reacts less to misfires than the mean. To this end, the first result of interest is the
quantity to be removed, in Figure 7.4 plotted together with the estimated torque
signal.

With an initial visualisation of the treatments reactions, the next step is ac-
tual performance on data. Since the single misfire performance of the algorithm
is already established the first evaluation is of how the alternative treatments
perform for single misfires, Table 7.9. This so that no improvement in multiple
misfire detection is at the cost of single misfire performance, or if some degra-
dation of single misfire performance is allowed, it can easily be compared to the
gain in performance for multiple misfires, Table 7.10. The versions of the median
and MA used here are over 100 cycles and with α = 0.9, respectively. This follows
from the investigations presented in Sections 7.3.2 and 7.3.1.
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Figure 7.4: Effects of signal treatments. Left column is single misfires, right
multiple misfires. Treatment to subtract in red, treated torque in blue.
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Table 7.9: Performance of alternative treatments on data with single mis-
fires.

Untreated Mean
NF 60293 - 60372 -
MF 892 - 894 -
MD 2 0.2237 % 0 0 %
FA 102 0.1689 % 23 0.0381 %

Median MA
NF 60113 - 60371 -
MF 888 - 893 -
MD 6 0.6711 % 1 0.1119 %
FA 282 0.4669% 24 0.0397 %

Table 7.10: Performance of alternative treatments on data with multiple mis-
fires.

Untreated Mean
NF 25811 - 25823 -
MF 301 - 302 -
MD 4 1.3115 % 3 0.9836 %
FA 78 0.3013 % 72 0.2780 %

Median MA
NF 25806 - 25826 -
MF 302 - 301 -
MD 3 0.9836 % 4 1.3115 %
FA 83 0.3206 % 69 0.2665 %

7.3.1 Comparison of implementations of moving average

As was mentioned in Section 4.4 there are two ways of implementing the MA,
as a FIR or an IIR. Presented below are some of the results pertaining to the
implementations.

In Table 7.11 the performance of the FIR implementation is listed for averages
over one and 50 cycles. They were selected for giving the highest performance
for data with single and multiple misfires respectively. There were a number of
intermediary number of cycles evaluated, but none of them gave as good perfor-
mance, chosen as firstly giving a low number of MDs and then a low total number
of misclassifications for multiple misfires. For single misfires the behaviour was
a general worsening of performance when the number of cycles increased, which
is illustrated by the listed results, even if somewhat limited. The behaviour of
performance for multiple misfires is an initial worsening turning in to a slight
improvement.
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Table 7.11: Performance for FIR MA on data with single and multiple mis-
fires for averages over 1 and 50 cycles.

1
Single Multiple

NF 60362 - 25819 -
MF 893 - 302 -
MD 1 0.1186 % 3 0.9836 %
FA 33 0.0546 % 76 0.2935 %

50
Single Multiple

NF 60296 - 25826 -
MF 892 - 302 -
MD 2 0.2237 % 3 0.9836 %
FA 99 0.1639 % 69 0.2665 %

Using the IIR-implementation of the MA yielded the results in Table 7.12. Just
as for the FIR the results here were chosen such that the number of MDs was as
low as possible, and then the lowest number of total misclassifications. Here α
= 0.4 gave the best performance, followed by α = 0.9. The behaviour of the per-
formance for single misfires was principally that as α grew the performance im-
proved, consistent with the results in Table 7.12. For data with multiple misfires
the number of MDs rose slightly with growing α before coming down slightly as
α neared 1, while the number of FAs instead dropped slightly before rising again,
although not reaching as high. In general, the number of misfires is low, and a
change by one is a significant jump in the rates.

Table 7.12: Performance for IIR MA on data with single and multiple mis-
fires for α = 0.4 and 0.9.

α = 0.4
Single Multiple

NF 60357 - 25830 -
MF 892 - 301 -
MD 2 0.2237 % 4 1.3115 %
FA 38 0.0629 % 65 0.2510 %

α = 0.9
Single Multiple

NF 60371 - 25826 -
MF 893 - 301 -
MD 1 0.1119 % 4 1.3115 %
FA 24 0.0397 % 69 0.2665 %
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7.3.2 Effects of number of cycles included in median

As presented in Section 4.3, the design decision for implementing the median
is the number of cycles to include. Looking at results for using from one up to
100 cycles in the median at best resulted in the performance in Table 7.13. This
performance was selected as in Section 7.3.1, with the added constraint that one
should be for a low number of cycles. The general behaviour of the single misfire
performance is a sharp initial drop in the number of misclassifications, followed
by a slow fall and subsequent rise to about the same level as for two cycles. For
data with multiple misfires the behaviour is similar, with an initial sharp drop,
but then a slight decline as the number of cycles increases. For both cases the
number of MDs varies quite a lot, but has a trend of a slight decrease.

Table 7.13: Performance for median on data with single and multiple mis-
fires for 2 and 100 cycles.

2
Single Multiple

NF 60120 - 25788 -
MF 888 - 299 -
MD 6 0.6714 % 6 1.9672 %
FA 275 0.4553 % 101 0.3901 %

100
Single Multiple

NF 60113 - 25806 -
MF 888 - 302 -
MD 6 0.6711 % 3 0.9836 %
FA 282 0.4669 % 83 0.3206 %

7.4 Flywheel tooth angle error compensation

The rational for estimating the flywheel tooth angle errors elsewhere than on the
normalised torque signal is to reduce the required computational resources for
on-line use. The errors have been estimated for each point along the treatment.
That is: normalised torque, after removal of the mean and for the raw torque
estimate.

Initially a baseline was established by using the uncompensated algorithm
on the calibration set. The performance from this evaluation is listed in 7.14,
alongside the performance for the validation data set from the vehicle used for
training. The normalised torque estimate is used here, and the classifier uses the
four-speed and three-load range split presented in Section 7.1.

As the first step in the compensation, a reference torque map is estimated for
the vehicle used for training. The results for the three points of estimation for a
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Table 7.14: Performance of the original algorithm on another vehicle with-
out compensation.

Training vehicle Calibration vehicle
NF 60372 - 306403 -
MF 894 - 3383 -
MD 0 0 % 15 0.4414 %
FA 23 0.0381 % 1602 0.5201 %

couple of crank positions associated with cylinder one are shown in Figure 7.5
below.

Next, the errors are estimated for the full calibration set. This is done by
optimising the flywheel tooth angle errors such that the quadratic error between
compensated torque and torque map is minimized. The errors for the different
points of estimation are listed in Table 7.15 below.

Table 7.15: Errors from off-line optimisation.

Error # Treatment
Normalised Mean removed Raw estimate

1 0.0123 0.0118 0.0120
2 -0.0014 -0.0017 -0.0014
3 0.0035 0.0027 0.0028
4 -0.0178 -0.0175 -0.0175
5 0.0277 0.0296 0.0296
6 0.0034 0.0042 0.0042
7 -0.0102 -0.0107 -0.0108
8 -0.0157 -0.0176 -0.0178
9 -0.0158 -0.0174 -0.0177

10 -0.0009 0.0000 -0.0002
11 -0.0295 -0.0287 -0.0287
12 0.0443 0.0453 0.0455

For each point of estimation a classifier was trained using the four speed and
three load midpoints as described in Section 7.1, and the performance tested
using the corresponding errors. In Table 7.16 below the performance is listed.

Table 7.16: Performance using compensation on same point of error estima-
tion and classification.

Normalised Mean removed Raw estimate
NF 307863 - 307782 - 307672 -
MF 3385 - 3387 - 3382 -
MD 13 0.3826 % 11 0.3237 % 16 0.4709 %
FA 142 0.0461 % 223 0.0724 % 333 0.1081 %
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Figure 7.5: Torque maps for the different points of estimation. Normalised
torque (a) and (b), mean removed (c) and (d) and raw estimate (e) and (f). (a),
(c) and (e) are from crank position 1, and (b), (d) and (f) from crank position
5.
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From Table 7.16 the best classifier looks to be the one using the normalised
torque estimate. As this classifier is consistent with the one arrived at in [10, 11],
this is the type of classifier that will be used in the next evaluation. Using this
classifier with the different points of error estimation yield the performance listed
in Table 7.17.

Table 7.17: Performance for best classifier for different points of error esti-
mation.

Normalised Mean removed Raw estimate
NF 307863 - 307867 - 307865 -
MF 3385 - 3385 - 3385 -
MD 13 0.3826 % 13 0.3826 % 13 0.3826 %
FA 142 0.0461 % 138 0.0448 % 140 0.0455 %

7.5 Online

7.5.1 Classifier

The performance when using the predict function, compared to using pre-computed
weights that takes the necessary normalisation in to account, is found in Table
7.18.

Table 7.18: Time for performing detection with predict-function or pre-
calculated weights.

Method Predict Weights
Time 14.320 s 3.692 s

7.5.2 Extended Kalman filter

From Section 7.4 it follows that estimation of the flywheel tooth angle errors can
be performed already at the raw torque estimate without loss of performance.
This leads to the subsequent question of doing this efficiently on-line. The next
part of the investigation is to use the EKF and CG-EKF to estimate the errors
and classify the combustions on a per-cycle basis, simulating how the treatment
would be performed on-line.

Initially, the full ranges of load and speed will be evaluated. As no informa-
tion is available about the errors, the filter is initialised with all errors assumed
to be zero. The results of running the filter from that initialisation are given in
Table 7.19. The behaviour of the estimated errors from the EKF is plotted in Fig-
ure 7.6, with (a) being the initial behaviour, (b) an unexpected jump in all errors,
and (c) after convergence with the optimised errors as dashed lines.

The estimated errors are quite different for the two filters after an initial pass.
Due to the nature of the CG-EKF it cannot be expected to perform as well as the
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Figure 7.6: Behaviour of Ψ for the EKF initialised from zero.
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Table 7.19: Results for EKF initialised with all errors zero.

EKF CG-EKF
NF 307869 - 307866 -
MF 3384 - 3375 -
MD 14 0.4120 % 23 0.6769 %
FA 136 0.0442 % 139 0.0451 %

EKF over short amounts of time. Doing another pass with the CG-EKF, and using
the last state estimate from the previous run as the starting state, improves the
results. Detection performance is now on par with the EKF, having fewer FAs but
more MDs. The results are listed in Table 7.20 together with the results for the
EKF on a second run.

Table 7.20: Results for EKF initialised with errors from the previous run.

EKF CG-EKF
NF 307870 - 307876 -
MF 3385 - 3382 -
MD 13 0.3826 % 16 0.4709 %
FA 135 0.0438 % 129 0.0419 %

Thus far the CG-EKF has been run with one gain for each full run. In [11] it
is proposed that one way of making the CG-EKF more competitive with the EKF
is to use different gains initially and after the state estimates have converged.
Performance when using this approach is listed in Table 7.21.

Table 7.21: Results for the CG-EKF using adaptive gain.

Adaptive gain
NF 307872 -
MF 3374 -
MD 24 0.7063 %
FA 133 0.0432 %

As mentioned above the estimated errors are from the full ranges in load and
speed. Reducing the computational load by only updating the EKF during certain
operational conditions has been evaluated using loads ma ∈ [0.1, 0.7] and speeds
ω ∈ [1500, 2500], the results of which can be seen in Table 7.22. The reduction in
evaluated range did not remove the initial behaviour with the subsequent jump
in estimates.

To limit the computational demands when using the filters on-line, another
idea is to, after an initial period of the filter converging, only update for certain
samples, reducing the number of updates of the filter. This approach was evalu-
ated and the results are given in Table 7.23. The reduction was down to updating
ever 200th cycle.
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Table 7.22: Results for EKFs using data from a limited range.

EKF CG-EKF
NF 307845 - 307848 -
MF 3385 - 3381 -
MD 13 0.3826 % 17 0.5003 %
FA 160 0.0519% 157 0.0510 %

Table 7.23: Results for EKFs updating less frequently.

EKF CG-EKF
NF 307862 - 307828 -
MF 3381 - 3380 -
MD 17 0.5003 % 18 0.5297 %
FA 143 0.0464 % 177 0.0575 %





8
Discussion

8.1 Classifier

The misfire detection algorithm presented in [10] performed similarly for the
four-cylinder engine compared to the six-cylinder one used in the initial work.
The performance using only five ranges in speed for the four-cylinder engine was
slightly worse than the nine ranges used for the six-cylinder engine in [10], which
indicates that the algorithm is also valid for engines other than the six-cylinder
one. The four-cylinder engine has the advantage that since the combustions have
greater angular separation, there is more information available to perform the
detection on for each combustion. It is possible that this increase in information
leads to a decreased difference in performance between the engines, even with
the difference in the number of ranges.

From Figure 7.1 it is clear that there are substantial variations in the optimal
weights of the classifier depending on load, but also that most of the variations
are found at low speeds. Dividing the data also in load gives a better performing
classifier, which should reasonably follow since the tighter grid restricts varia-
tions in load and speed, and in turn possibly the behaviour of the torques. If the
two highest speed ranges are merged into one the performance drops slightly, as
seen in Table 7.1, but when combined with the split in load the performance was
the same as for the five-speed three-load classifier. Although for the latter, it is
important to note that there was no misfire data for the 5000 rpm speed and 0.1
g/rev load range, leading to data on it not being classified. When extending the
classifiers for the 3700 rpm range to cover for the lack, they both performed the
same. From this, there are a few things to note. As the performance became on
par after this adjustment, it implies that the performance for the other speeds
could be the same. It also implies, as the classifier used was not trained on data
from the classified range, but performed the same as the smaller classifier, that

55
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classification at higher speeds is easier than at low speeds, substantiating the ob-
servations previously made from Figure 7.1. Together these two notes implies
that the classifiers also performs identically for the 3700 rpm range, despite dif-
ferences in their data. In addition, as the three lowest speed ranges are identical,
and thus should perform identically, the two classifiers perform identically here.
It is possible that this would change with more data at high speed and low load,
in particular misfires.

The greater variations of the weights by load for lower speeds are potentially
due to the fact that more behaviours of a vehicle are possible there than at higher
speeds, where the vehicle is more likely to only be operating during acceleration.

Something not listed as a result in Section 7.1, but rather pertaining to all eval-
uations throughout Chapter 7, is how the size of the dataset affects the detection
statistics. Based on how the rates for MD and FA are defined, both are their own
problem. For all datasets the resolution of the FA rate is high enough since most
of the data is without misfires. The problem arises when the number of misfires
is low. This is exemplified by the multiple misfires validation data set. It contains
305 injected misfires. This means that one missed detection gives a MD rate of
0.329 %. When put in contrast with what is considered a good rate, 0.1 %, the
lowest possible rate of MD, bar no missed detections, is more than three times
the limit. This could call the reliability of the performance in to question as the
MD may not be due to the chosen structure for the classifier but possibly the data
not being collected in a way that gives enough information for certain ranges. In
terms of desirable resolution, with the limit for good performance at 0.1 %, it
would mean at least 1000 injected misfires are needed to give a resolution that
is high enough to not have greater steps than the limit. It could even be argued
that the number of injected misfires should be even higher, as to get even higher
resolution and thus possibly increase the accuracy of the evaluated performance.
If the approach used here with training and validation data, then the amount of
data needs to be scaled to allow for that split as well.

8.2 Gaussian processes

Using a Gaussian process to model the weights of the classifier shows perfor-
mance that is worse than for the basic classifier. The main difference between
the two is an increase in the false alarm rate. The missed detection rate also in-
creases, but not to the same extent. The increase is possibly due to the fact that
the GP allows for noise in the model, which in turn means that the weights can
be smoothed out by not perfectly reproducing each weight used for training.

Using interpolated weights is clearly a worse alternative than the basic classi-
fier, both when using the basic classifier to train the GP, as well as when using
a higher density partitioning in speed. For the interpolated weights the perfor-
mance actually becomes worse when using the higher density partitioning, which
is not the case for when using the range centre speeds to predict the weights.
Then the higher density partitioning actually improves the FA-rate. The denser
speed partitioning should intuitively result in higher performance since the nar-
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rower ranges give data more similar in load and speed, potentially resulting in
data that are more homogeneous. This in turn can result in a classifier that does
not have to separate as complicated sets of data, giving better performance. Even
with this improvement, the GP is not performing as well as the basic classifier.

Introducing bootstrap into the classifier gives a shift in performance for the
classifier using the high density partitioning. The MD rate lowers slightly, while
the FA rate displays a higher increase, corresponding to an increase in the total
number of misclassifications. When the bootstrap samples are used as the base
for a GP it actually gives an increase in performance, but still falls short of the
basic classifier with partitioning in load. This increase is potentially achieved by
diminishing the effects of outliers that otherwise overly influences the weights.

When partitioning the GP also by load, but still only using speed as its pre-
dictor, the performance increased slightly, but can still not reach the same perfor-
mance as the bootstrap GP or the basic classifier when it is partitioned in load.

Overall, the use of GPs to model the weights has not shown any improve-
ment in performance that would motivate to use it for practical applications. It
is possible to achieve performance that is good in absolute terms, but not when
compared to simple improvements to the basic classifier. As the GPs are also a
more complex solution, it would need to perform better to even be considered in
any on-line application.

As was mentioned about the GP in Section 3.3, the weights are inherently de-
pendent from the training of the classifier, but this dependence is lost when the
GP is estimated. This may account for some of the loss in performance when us-
ing the GPs. The use of bootstrap can be seen as a potential way to improve the
likelihood of maintaining the weights closer to their actual values by reducing
the influence of outliers, which could explain the increase in performance. The
fact that a GP based on bootstrapped weights gives better performance than us-
ing just the bootstrap does however contradict this as the expected result would
then rather be to see a slight decrease in performance when using a GP based on
bootstrap.

Another thing to note is that the GP can fall short in the modelling of the
weights. Looking at Figure 7.3 (c) it is obvious that the GP is not performing
nearly as well as any of its neighbours. This could be down to the available param-
eters in the basis and covariance functions of the GP not being able to capture the
behaviour of the weights, and treating it as a substantial amount of noise. This
is also present in (d) in the same figure, but to a lesser extent. What this could
indicate is that the weights do not have a Gaussian behaviour for these particular
crank positions.

8.3 Multiple misfires

As previously mentioned in Section 1.2.2 the algorithm presented in [10] per-
forms well on single misfires, but the performance degrades when there are mul-
tiple misfires present. When looking for a method to improve the performance
by introducing new alternative treatments, the problem remains a hard one to



58 8 Discussion

solve by only changing the treatment of the torque estimates.
Looking first at how the alternatives perform on multiple misfires, all but the

median gives a similar result, even if the variations in number of MDs correspond
to a substantial relative difference.

The median is the method with the worst performance, even no treatment of
the estimates performs better. As the reasoning behind using the median was
that it is a more robust alternative to the mean, it can be argued that it does not
hold true for the problem at hand, at least not well enough to be used for the
treatment of the signal. It does fulfil the requirement of reacting less to misfires
than the mean, but instead appears to have a delayed and prolonged reaction,
which could possibly be why its performance is not as good as the other methods.
For data with multiple misfires, the median clearly distinguish itself from the
mean and MA, both of which are close to and varying around zero, by being
further removed from zero, seemingly moving the torque estimate away from
varying around zero. This would indicate that there are more negative torque
estimates, but with smaller magnitudes, which in turn translates to the median
being lower than the mean, and not a sufficiently good approximation.

Looking at the mean and MA, the first reacts the most to misfires, while the
latter has the least reaction. As the MA was proposed as a way to mitigate the re-
action to misfires, it seems to have worked as intended as far as the actual values
of the MA. If the actual performance is considered it does to some degree substan-
tiate that observation. The MA has a lower number of total misclassifications, but
as the improvement is in number of FAs, and at the cost of MDs, it comes down
to how the two are prioritised. In relative terms the change in performance from
the mean to the MA is a more substantial rise in MD than fall in FA for multiple
misfires.

Even if the primary reason for introducing alternative ways of performing
the treatment of the torque estimates was to increase performance for multiple
misfires, the performance for single misfires cannot be ignored. Here, just like for
multiple misfires, the median performs worse than the other methods, including
no treatment, practically ruling it out as a solution of interest. When comparing
the performance of the mean and MA to that of not treating the estimate at all,
they both show substantially better performance, and for both MD and FA. This
should not be surprising for the mean as its introduction was to remove the effect
of torques not due to combustions, thus making the data more homogeneous as
the torque developed at similar speeds and loads should be close, regardless of
other torques. The MA should then, as a related solution with the possibility of
tuning, reasonably have similar performance, which is also the case.

Evaluating the FIR and IIR implementation of the MA yielded the best perfor-
mance when using the IIR implementation with α = 0.9. Best is here a balance
between performance for single and multiple misfires. There are other settings
that perform better for multiple misfires, but at the cost of single misfire perfor-
mance.

The FIR and IIR share a similar general behaviour, displaying roughly the
same one with changes in their parameters. The FIRs performance for single mis-
fires shows that a low number of cycles performs the best. The increasing number
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of cycles means that each cycle is given less and less influence over the MA, and
it would seem that the most recent cycle contains the most information about
the current behaviour of the torque, which is only reasonable. When looking at
the behaviour for multiple misfires it is initially consistent with that for single
misfires, but when increasing the number of cycles towards a high number, the
performance improves again. This can be interpreted as the mean over a long
time has more explanatory power than over an intermediate number of cycles.

As the IIR displays two somewhat different behaviours, they have slightly dif-
ferent implications. The single misfire performance indicates that the more sig-
nificant the current cycles is allowed to be, and the quicker old cycles lose their
influence, the better the performance possible to achieve. When there are mul-
tiple misfires present, the performance indicates that either giving the current
cycle low importance, and allowing the influence of old cycles to remain higher
for longer, or mainly looking at the current cycle with the old ones contributing
little, gives the highest performance.

The observations from both FIR and IIR indicate the same behaviour for the
performance. It would seem that for single misfires, most of the pertinent infor-
mation is available in the current cycle, and no increase in the number of cycles
will improve the performance. Unfortunately, this does not hold true for multiple
misfires as either a low or a high number of cycles yields the best performance.

Tuning of the median is done by selecting the number of cycles to include in
it. From this, the selection of the best one was fairly trivial as three of the four
rates shared the same behaviour. This was improving performance with a rising
number of cycles, making the choice 100 cycles. Using 100 cycles to compute the
median means that the introduction of one cycle with multiple misfires has the
smallest possible effect on the median of the evaluated settings. Despite tuning
of the median it would appear that it is not a good enough approximation of the
mean.

8.4 Flywheel tooth angle error compensation

The torque maps in Figure 7.5 are fairly similar. The biggest visual difference
comes from the normalisation with the load, and since the difference is observed
in the load dimension it is to be expected that the behaviour becomes more ex-
ponential, rather than linear, as is the case for the two other treatments. What
difference there is in behaviour in the speed dimension is mostly an effect of the
different scales of the axes as the magnitudes remain similar. One last thing of
note regarding the effects of the load normalisation is that it seemingly smooths
out the map, but that may only be an illusion created by the greater magnitudes
of much of the maps after the normalisation.

The torque maps differ only slightly between the raw estimate and after re-
moving the mean. Removing the mean should mainly constitute a displacement
in magnitude of the torque map, which is also the principal behaviour that can
be observed in Figure 7.5 (c)-(f).

Combining the observations above means that a reasonable assumption is that
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the error estimation is similar for the raw torque signal and after removing the
mean. Normalising with the load seems to reduce the variations in the map,
which, together with the more exponential behaviour, could be the reason why
it results in different estimations of the flywheel tooth angle errors.

The flywheel tooth angle errors in Table 7.15 indicate that there is only a slight
difference between the raw estimate and after removing the mean. Some of the
errors do differ slightly, but they are only relative errors, and as they have very
similar differences between errors, it is not a concern. As the twelfth error is
derived from all the others, and only differs 0.0002, it can be seen as further ver-
ification that the two points of estimation should give comparable results when
classifying.

Estimating the errors from the normalised torque estimate gives a somewhat
different result, but with a similar behaviour of the differences between the errors,
although not as close as for the two other points of estimation. Here the twelfth
error is within 0.0012 of the other two estimates. Even though it is substantially
greater, it is still an order of magnitude smaller than most of the estimated errors.

When the errors are used to classify data from the calibration vehicle, the per-
formance for the different points of estimation are very similar. Since the differ-
ence in performance is only a few observation it is possible that it is down to the
split of data into training and validation skewing it to one estimates advantage,
rather than an actual difference in performance between the points of estimation.
As the detection performance increases when the treatment progresses further, it
would stand to reason that the performance when using the errors should also
improve further along the treatment, as the data should become more homoge-
neous. The fact that the performance first drops and then rises again, while all
being very similar, indicates that the points all give good estimations of the er-
rors, and that any difference could be due to how the data used for training and
validation is split. If the difference in performance was due to the point of esti-
mation, then looking at the errors, the expectation would be a more substantial
difference between the normalised torque and the other two. Now they are all
evenly spaced, and the normalised torque does not stand out compared to the
other ones. Its performance is the worst, and it not being in between the other
two’s performance is consistent with the difference in errors. All this together
strengthens the argument that the split of the data into training and validation
could be the reason for the difference.

The MD rate is the same for all the points of estimation, and this may very
well be due to the classifier not being able to perform better for the data evaluated.
As the classifier was trained on another vehicle than the one classified, there is
the possibility that there are differences in how they were driven to collect the
data. This could result in the data being different enough for the classifier to
not transfer properly between vehicles. This would mean that the restriction on
performance is not the compensation, but rather the classifier. Looking at Figures
1.1 and 1.2 it is obvious that there is a substantial difference between the data
sets.

If the performance when compensating for flywheel tooth angle errors is com-
pared to that of the validation data, it is worse. The rate of FAs only increases



8.5 On-line 61

slightly, but the rate of MDs goes from zero up to 0.3826 %. Not only is this a
worse rate, but also over what can be considered a good performance for the data
used. However, as was discussed in the previous paragraph, the reason is not
necessarily the compensation falling short, but the data not being suited for the
specific task. The torque map is based on only a few observations, which in a
larger data set may be considered outliers, and used to find errors for a substan-
tial part of the calibration data. If the data used for the map is not representative,
the risk is finding errors that are not the actual ones.

8.5 On-line

8.5.1 Classifier

Optimising the computation of the test quantity by replacing Matlab’s built in
function with just weights, and introducing the normalisation into the weights,
reduces the time required to roughly a 13th. Even though this is evaluated on a
desktop PC, and thus the saving may not compare directly to an on-line scenario.
The fact that computing the weights and including the normalisation in them
give the same detection performance, while requiring the least storage on-line
possible for any given partitioning of data, means that storing the pre-calculated
weights is optimal in terms of memory use.

8.5.2 Extended Kalman filters

Using Kalman filters to estimate the flywheel tooth angle errors appears to work
well. The performance when using the Extended Kalman filter is slightly better
than the performance achieved using the errors from the optimisation. This may
seem counter-intuitive as the EKF starts with all errors being zero and the opti-
misation uses the errors that minimises the deviation from the torque maps. The
reason for this difference in performance is likely the fact that the EKF is imple-
mented with continuous classification of the data, one cycle at a time, while the
optimisation classifies all cycles at once. The optimisation uses the same errors
to classify all cycles, while errors from the EKF can change as new observations
become available. This means that the performance when using the EKF can be
higher than for the optimal errors, not because it estimates the actual errors bet-
ter, but because it can adapt to the perceived errors at any time.

The actual error of a flywheel can be seen as the difference relative to the one
on the vehicle used for training. It is here found through optimisation against a
torque map, but it could just as well be measured physically from the flywheels.
The perceived error is the error that for one cycle results in the smallest difference
compared to the torque map, and can thus potentially vary during operation.
If the engine control can vary for the same load and speed, effectively shifting
the torque behaviour in time, it can potentially be a reason behind the errors
changing.

The difference in perceived error at different times can potentially be con-
nected to the data used for the evaluation. As was mentioned in Section 8.4,
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there is a significant difference in the distribution of the data. In Figure 7.6 (b)
the estimated errors quickly change and most of the error estimations switches
signs. This is possibly an effect of the difference in the data, and even if that is
not the reason, something with the data used to estimate the errors is different
from the training data as the initial behaviour of the errors is not towards their
final converged behaviour, but rather quite different. The final estimated errors
are however close to their corresponding results when optimising, seen in Figure
7.6 (c).

The CG-EKF was proposed as a computationally lighter alternative, and it
showed performance that was almost on par with the EKF, at least when given
sufficient time to converge. The slightly lower performance on the initial run can
potentially be attributed to the fact that the gain is fixed, and in order to achieve
a higher gain, the state estimate was assumed to have a higher noise level. This
higher noise level can in turn result in some of the TQs changing sign, and thus
change the classification.

Using multiple gains and switching between them to make the CG-EKF be-
have more like an EKF worked to some degree. It missed one more detection,
while the number of FAs dropped by six, making the total number of misclassifi-
cations lower. The use of multiple gains gave little improvement for the CG-EKF
if not using it, and comparing the results to the EKF, the reduced number of FAs
put it under the level of the EKF, but the MDs are still more than 50 % higher
when compared.

As the computational load of the EKF is rather high, reducing it by only up-
dating the filter with measurements from a certain range in load and speed was
evaluated. Using the smaller range did not give worse MD-rates for either of the
filters, but the FA-rates rose for both. The odd initial behaviour of the error esti-
mates did not disappear when the range was limited, which would indicate that
it is either present in the evaluated range, or that it is some transient behaviour
present for all speeds and loads.

Lastly it was evaluated if reducing the rate at which the filters update after
convergence would be a viable solution, and from the performance numbers in
Table 7.23 it did give worse performance for all rates but the MDs of the CG-EKF.
For the CG-EKF the number of FAs rose substantially, while the overall change in
performance of the EKF was much smaller. As the change evaluated reduced the

update rates of the filters to 1
200

th
of the data rate, this would mean a substantially

lower computational load due to the EKF, negating part of the logic behind using
the CG-EKF. During initial convergence, this approach would still mean a high
computational load, but after that the computational load would be much lower.
Combined with performance that was not much worse than for the full-time EKF,
the reduced update frequency approach is viable, and comes down to a decision
about permissible levels of MD and FA-rates compared to computational load.
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Conclusions

9.1 Classifier

The classifier proposed in [10] can be re-confirmed to work well on the four-
cylinder engine. The weights of the classifier from training the SVM varies heav-
ily with both speed and load. Thus dividing the data not only by speed, but also
by load, increases the performance of the classifier substantially.

It was also shown that merging the two highest speed ranges for low load did
not impact the performance. The lack of misfire data for the highest range did in-
fluence the implementation, but further study would be required to substantiate
any actual difference. What remains true regardless is that the classifier resulting
from combining the two highest speed ranges is a good choice. It reduces the stor-
age need by 20 % while the performance changes less than 5 % in a worst-case
scenario.

9.2 Gaussian processes

The use of GPs as a way to improve the detection performance did not result in an
actual improvement of the performance. There are ways to get the performance
of the GP close to the basic classifier, but never exceeding it. The GP as used here
has the drawback of not maintaining the dependence between the weights that
follows from the SVM, ultimately making it an impractical solution.

The use of GP here did however restrict itself to a limited set of basis and
covariance functions, and without further study it cannot be ruled out that there
are customised alternatives for these that would be a possible improvement over
the basic classifier.
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9.3 Multiple misfires

Using alternative methods to treat the torque estimates showed that the problem
is a hard one to solve, and that only altering the treatment is not enough to fully
solve it. From the combined performance on single and multiple misfires, the
mean is still a viable option next to the alternatives proposed. The median was
not a good choice, being outperformed by all other methods evaluated, including
doing nothing. The MA was the best alternative to the mean, yielding perfor-
mance that was objectively better for single misfires, and depending on how the
MD and FA rates are prioritised, also for multiple misfires. For the MA, the best
performing implementation was the IIR with α = 0.9.

9.4 Flywheel tooth angle error compensation

The estimation of the flywheel tooth angle errors was previously performed after
all the treatment of the torque estimates had been performed. It was shown in
this work that the point at which the estimation is performed only affects the
performance marginally, making it possible to estimate it as early as on the raw
torque estimate. This reduces the number of computations necessary to find the
errors, useful for on-line implementations that are to run on limited hardware.
It also decouples the estimation of the errors from the processing of the torque
estimates, allowing higher flexibility when changing any one part by increased
modularity.

9.5 On-line

Adapting the classifier from its model based form to the minimal number of coef-
ficients necessary works well; it drops the computational needs of classifying to
about one thirteenth of the original.

Using an EKF to estimate the flywheel errors is possible. It can perform
better than finding the globally minimizing errors and then classifying all data.
This highlights the need to have enough data when estimating the torque maps.
Enough is subjective and is the compromise between performance and time spent
collecting data. What can be said is that there needs to be data from all possible
operational behaviour used to estimate the errors. This is exemplified by the
difference in training and calibration data seen in Figures 1.1 and 1.2.

The results for the CG-EKF show that it is competitive when given sufficient
time to converge. Using an adaptive gain slightly increased its performance, and
with more data and tuning would close the gap even further.

Of the other ways proposed to lessen the computational burden while main-
taining performance, the one showing most promise was reducing the rate of
update of the filter. Tuning the switching less aggressively allows the filter to
converged further, and would give better performance. Even if the performance
numbers show it below the basic EKF implementation, it is the best option in
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terms of combining the power of the EKF with a reduction in computational
load.





10
Future work

The work performed in this thesis is limited in that it works of the classifier pre-
sented in [10]. Paired with the limited time and multiple research questions,
there are some thing that cannot be covered, but that would be of interest for
future work.

10.1 Data collection

The data collected can have an impact on the results, and for this work Figure
1.2 shows an example of data that is likely not the most appropriate, which the
results for the EKF in Figure 7.6 possibly illustrates.

It could then be of interest to look into how to best collect data from vehicles
for the general type of work done here. From a more practical point of view it
may be beneficial to determine a driving pattern that gives good initial estimation
of the flywheel errors.

10.2 Classifier

The classifier that is used was chosen under the assumption that the computa-
tions necessary to use classifiers of higher orders than linear are too demanding
for use on-line. It would be interesting to look into how using a quadratic classi-
fier affects the performance. To do this while being cognoscente of the impact on
on-line applications, it would also be relevant to evaluate different subsets of the
possible combinations making up the quadratic and multiplicative terms. One
simple approach would be to only use the pure quadratic terms, leaving out the
multiplicative terms.

In a wider sense it would also likely be beneficial to evaluate different types of
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classifiers. Most other classifiers require more computations and are more com-
plex in terms of their structure, which can be realised already for the quadratic
one. It would be of interest to study the performance of different types of clas-
sifiers for the misfire detection problem, and this could in turn feed into a dis-
cussion on how to strike the necessary balance between detection and on-line
performance.

10.3 Gaussian processes

From the findings about Gaussian processes it is evident that there are certain
problems with achieving the necessary performance, and doing so while man-
aging to reduce the storage need. From that, there are two possible avenues of
continued investigation.

As the functionality in Matlab used for the implementation in this work is lim-
ited by the available basis functions and kernel, the first avenue is modifications
to the GP. One option would be to evaluate the performance when using bespoke
functions, modelling behaviours observed from the weights. If the functions can
be expressed continuously it could reduce the storage need. Another possible so-
lution is to limit the maximum distance used for the covariance, depending on
its behaviour.

Even if the idea of modelling the weights with some function is valid, the
use of GPs may not be the best approach. Therefore, it would be relevant to
investigate if the use of other function estimations may perform better. As the
storage need was mainly due to the covariance in the GPs it should result in a
reduced storage need when it is removed. Judging from the general behaviour of
the weights observed during the work with this thesis, it appears that this would
be a feasible approach.

10.4 Multiple misfires

During the whole of this thesis, the mean that has been used can be considered
a true mean in the sense that it uses the same weight for all included values.
One possible extension to this would be to look in to how using different weights
for different cycles, or even different weights within the same cycle impacts the
detection performance. The latter would essentially determine if certain crank
positions are more indicative of the general behaviour of the torque than others.
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