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Abstract

Failure detection and isolation (FDI) is essential for reliable operations of com-
plex autonomous systems or other systems where continuous observation or main-
tenance thereof is either very costly or for any other reason not easily accessible.

Beneficial for the model based FDI is that there is no need for fault data to detect
and isolate a fault in contrary to design by data clustering. However, it is limited
by the accuracy and complexity of the model used. As models grow more com-
plex, or have multiple interconnections, problems with the traditional methods
for FDI emerge.

The main objective of this thesis is to utilise the automated methodology pre-
sented in [Svärd, 2012] to create a model based FDI system for the Columbus air
loop. A small but crucial part of the life support on board the European space
laboratory Columbus.

The process of creating a model based FDI, from creation of the model equations,
validation thereof to the design of residuals, test quantities and evaluation logic
is handled in this work. Although the latter parts only briefly which leaves room
for future work.

This work indicate that the methodology presented is capable to create quite de-
cent model based FDI systems even with poor sensor placement and limited in-
formation of the actual design.

Carl Svärd. Methods for Automated Design of Fault Detection and Isolation Sys-
tems with Automotive Applications. PhD thesis, Linköping University, Vehicular
Systems, The Institute of Technology, 2012
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1
Introduction

The European space laboratory Columbus is designed and built by European
Aeronautic Defence and Space company NV (EADS), now Airbus Group SE (Air-
bus SE), affiliate Astrium, now Airbus Defence and Space (Airbus DS) [Airbus
Defense and Space, 2013a], and is a part of the International Space Station (ISS).
It is equipped with a range of experimental facilities and basic life support for
up to three astronauts. Together with the microgravity environment, Columbus
has enabled numeral extraordinary experiments previously not possible in many
scientific fields such as physics, material science, biology, medicine, and human
physiology [Airbus Defense and Space, 2013b,c].

1.1 The Columbus air loop

The Columbus air loop main function is to provide a forced air flow to avoid dead
air pockets which is safety critical for the crew. The forced air flow also enables
fire detection and removes heat from air cooled equipment. As the Columbus
Module has no O2 or CO2 control, the inter module ventilation has to provide
fresh air to support life on board.

The air loop consists of four fans, three with check valves, one without, a high-
efficiency particulate arrestance (HEPA) filter and a condensate heat exchanger.
A simple overview of the system is shown in Figure 1.1. The system is designed
to be operating in 8 stable modes and additionally 43 interim modes intended for
air loop reconfiguration.

1



2 1 Introduction

Figure 1.1: A schematic overview of the Columbus air loop, [Source: Airbus
DS, 2013]

1.2 Columbus failure management system

The failure management system on Columbus consist of multiple parts; First is
the on board COLumbus Data Management System (COL-DMS) that collects and
logs all measured signals. Being fully automatic it can quickly initiate required
responses but due to sparse resources, the diagnosis part of COL-DMS is limited
to only detect time critical failures like fire outbreaks and other environmental
hazards.

The second part is the COLumbus Control Centre (COL-CC) which is the primary
ground based unit. It receives data from COL-DMS in near realtime through
a downlink and performs data analysis, both manually and automatically. The
failure management part of COL-CC has a similar purpose as the onboard unit
and focuses primarily on detection of critical failures and short term responses.
This is supported by an Engineering Support Centre that does offline analyses of
selected data to find and direct long term corrective actions for COL-CC and an
Assembly, Integration and Test facility for testing and development purposes.

An onboard monitoring experiment, the ERNO BOX, has been added as a third
part to the failure detection arsenal. This system runs in parallel to COL-DMS,
monitoring the same data but with no means for interaction. Instead the re-
sponses are submitted to COL-CC for comparison with the decisions made by
COL-DMS [Noack et al., 2012].

There has been some recent developments in the COL-CC infrastructure too im-
prove the failure management efficiency [Sabath et al., 2012, 2014].
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1.3 Background

Since launch in February 2008, Columbus has encountered multiple failures and
abnormalities. The failures have either been minor or been recovered before any
serious damage to the system has occurred. It has emerged that the original fail-
ure detection system has weak robustness and poor fault sensitivity [Noack et al.,
2010].

Upon request from Astrium, European universities have been engaged in devel-
opment and improvement of the diagnosis system on Columbus. BTU Cottbus
is using a data mining approach and Linköping University by means of model
based failure detection. [Noack et al., 2011, 2012, Noack and Schmitt, 2012]

Beneficial for the model based failure detection and isolation (FDI) is that there
is no need for fault data to detect and isolate a fault in contrary to data cluster-
ing. However, it is limited by the accuracy and complexity of the model used. As
models grow more complex, or have multiple interconnections, problems with
the traditional methods for FDI emerge. In [Svärd, 2012] an automated method-
ology is presented for design of an FDI system for complex systems operating in
multiple modes.

This thesis focuses on the design of a model based FDI system for the Columbus
air loop. A small but critical part of the Columbus life support.
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4 1 Introduction

1.4 Model and data

A model of the Columbus air loop was proposed during the summer of 2012
by Jasper Germeys and Mikael Persson. This model, which is based on physical
relations and measured data from the time span of 2008 to 2010 provided by
Astrium, has been used as basis for the model in this thesis. A second batch of
data containing a more detailed selection of all the more interesting parts from
the initial set was later received.

In this thesis only the second data set and an additional third data set, where the
fans’ rotation are increasing in steps, are used. This third data set has been used
as training data for the parameterisation of the model. A selection of the signals
in the second and third data sets are displayed in Figure 1.2 and Figure 3.1 respec-
tively. In Tables 2.1 and 2.2 the sensors contained in the data sets are listed. Ad-
ditionally, Figure 1.1 and Figures 2.1-2.4 are taken from these documentations.

1.5 Problem formulation

The purpose of this thesis is to develop a diagnosis system that will not only
detect but isolate the failures included in the model. The system suffers from
noisy sensors and fault propagation, hence will simple means for fault isolation
not suffice in aspect to minimise the risk of false alarms. This includes detection
of the fans’ current work mode and determine actual mass flow as it is this central
state that has poor observability. This will pose a problem in unknown modes and
when clogging or leaks occur as those faults are highly linked.

The FDI system should;

• Be designed based on a model of the air loop.

• Be able to detect which mode the fans operate in.

• Detect and isolate single faults such as fan loss, leaks, wear, (partial) clog-
ging, and sensor loss.

1.6 Related research

A model-based design of a diagnosis system can be divided into three phases;
A modelling phase, a residual generation phase and finally an evaluation phase
where the rules for fault detection and isolation are set. These phases entwine
and will be done iteratively.

In the modelling phase the full model equation set will be extended with the
desired detectable faults and modes. Structural fault detectability and isolability
will be analysed by using the Dulmage-Mendelsohn decomposition [Frisk et al.,
2012]. The parameters of the equations will then be estimated from sample data
with no faults.
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The residual generation phase consist of extracting the minimal structurally over-
determined set (MSO) to generate the residuals [Krysander et al., 2008]. As it is
unknown how many alternative sets the model allows, initially a greedy selection
algorithm described in [Svärd et al., 2013] will be applied.

The evaluation phase consist of creating the rules for detection and isolation.
There are many methods available for detection, where constant thresholds be-
ing the simplest, but also more robust methods as cumulative sum (CUSUM),
likelihood functions, adaptive thresholds [Sneider and Frank, 1996], or combina-
tions thereof [Meinguet et al., 2012] have proven effective. As the system requires
robustness and will be operating in multiple modes, a relaxed generalized likeli-
hood ratio (GLR), as proposed in [Svärd et al., 2014], was to be considered.

1.7 Expected results

The expected results of this work is an FDI system that detects and isolates faults
in the air loop system. The system should be able to work in real time and detect
faults within reasonable time. It is also expected that the system could measure
wear on the fans and partial clogging.

An evaluation shall be done if the methodology presented in [Svärd, 2012] is a
working methodology for this system or not. Also an analysis if the solution can
be improved by using Kullback-Leiber divergence for fault isolation as suggested
by [Eriksson et al., 2011].

Additionally an evaluation on how well the FDI system works in comparison to
the uncertainties in the model and if simpler methods could suffice.

1.8 Outline of the report

The plan for the report outline is as following;
Chapter 1 introduces the problem and the system, the chosen methodology and
related research as well as the expected results and this outline of the rest of the
report.

In Chapter 2 the details on the model and the equations sets are listed. The
work of setting the model parameters are presented in Chapter 3 together with
an estimation of the expected noise while in no fault node. Chapters 2 and 3 will
together form the modelling phase of the work.

Chapter 4 displays the full model including modes and faults and continues to
the residual generation and what sets the methodology generates. These are then
evaluated and the result are presented. How well the design works against col-
lected data is presented in Chapter 5.

Chapter 6 contains the evaluation of the work, made together with ideas for po-
tential future work.





2
Model description

The Columbus air loop consist of a small set of flows with some sensors and fans.
This chapter will describe these compontents and the models used to represent
them. A 3D model of the air loop has been provided by Astrium which is shown
in Figure 2.1. Even though the 3D model is trusted to be an accurate representa-
tion of the air loop, no detailed data has been gathered from this figure.

Figure 2.1: A 3D model of the Columbus air loop, [Source: Airbus DS, 2013]

7



8 2 Model description

2.1 The ducts

The ducts have been split into the different regions based on the air flow they
are expected to contain for modelling purposes as shown in Figure 2.2. Below
follows a description of the different sections. The actual dimensions of the ducts
are not known but it can be fair to assume they all are static.

Harmony module: The module supplying Columbus with air and receiving the
returned air. This module is not considered a part of this system and is thus
not modelled. We can not assume there are any correlation between the two
flows from this section due to unknown internal structure.

supply: Transfers air from the Harmony module. This region has many un-
knowns as the only sensors are those from the inter module ventilation
(IMV) supply fan (ISFA). The input flow may have any temperature or hu-
midity even if it is assumed to be constant during normal operation. There
is both a check valve and a manually controllable valve.

outlet: From the junction of the supply and fan{1,2} to the multiple outlets to the
cabin. In this section the air gets filtered through a HEPA filter, regulated
in a controllable cabin temperature control unit (CTCU) with a condensate
heat exchanger (CHX) and finally distributed to the cabin. Apart from the
cabin this is the only section where the properties of the air is expected to
change. The pressure loss is expected to be quite high. There is a sensor
measuring the pressure difference over the heat exchanger. It is unknown
if the water purging system is contained between this sensor or not.

fanJ: Small region where both cabin fans share the ducts, it is unknown if the
majority of this section is before or after the actual fans but should not be
relevant for modelling purposes as it should only contain the air flow that
is produced by the cabin fans.

fan{1,2}: Small region where only the cabin fan{1,2} (CFA) affects the flow, draw-
ing air from the inlet region to the supply and outlet junction. Both fans
have check valves and should virtually be identical. These sections are sub-
sections of the fanJ section.

inlet: Small region that is transferring air from the cabin to the fanJ and return
section. There should be an air filter that can be clogged here. There is also
smoke detectors mounted in this section.

return: The section where air returns to the Harmony module. Just as for the
supply section, only the sensors provided by the IMV return fan (IRFA) are
known, however, this section should not affect the system that much on a
whole. There is no check valve in this section but there is a controllable
valve.

cabin: The actual cabin. Some of the sensors, like pressure and cabin tempera-
ture, should be mounted in this section. This section is not a duct and can
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not be considered sealed. It is however, fair to assume that there is some
correlation between the in and out flow from this section.

supply outlet

fa
nJ

inletreturn

H
ar

m
on

y
m

od
u

le

cabin

Figure 2.2: A schematic overview of the ducts and air flows

2.1.1 Mass conservation

Under the assumption that there are no leaks in the system, the local pressure
will variate based on the mass flow in and out of each node as a function of in
and out flow.

ṗ = f (Qin, Qout) (2.1)

Additionally, it is assumed that the local pressures in the system are constant in
the time frame giving the following relations between the flows:

Qoutlet =Qsupply + Qf anJ (2.2a)

Qf anJ =Qf an1 + Qf an2 (2.2b)

Qinlet =Qreturn + Qf anJ (2.2c)

The sections are described in Section2.1.

2.1.2 Passive flow

Sections without a fan will have a flow driven by the pressure difference. This can
be modelled by using the Bernoulli equation but as there are too many unknowns
in the system, as duct size, number of bends and if the flow is laminar or not, a
simplified model is used instead given by

∆pi = Kf ,i(QiKc,i − Kd,i)2 (2.3)

which translate to that most terms in Bernoullis equation are considered constant,
neglectable or flow dependant.
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2.2 Fans

Each fan has a certain number of sensors as listed in Table 2.1. All four fans are of
the same type with an attached electronic unit (EU). Thus, one model structure
should apply to them all. There is a check valve connected to the fan output to
prevent reverse flow for all fans, except the IMV return fan. A schematic overview
of a fan is displayed in Figure 2.3.

Figure 2.3: A schematic overview of a fan. [Source: Airbus DS, 2013]

Table 2.1: Fan signals

Measurements
part signal unit

Delta_P_ kP a
Fan_Speed_ min−1

CFA{1,2}_/ Input_Current_ A
I{S,R}FA_ EU_Temp_ oC

Fan_Temp_ oC
Input_Voltage_ V
Switches/Analyses

CFA{1,2}_/ Pwr_Stat_ ON/OFF
I{S,R}FA_ Avail_Stat_ (UN)AVAIL
CFA_ Redun_Stat_ (UN)AVAIL

I{S,R}SOV_
Vlv_Open_Stat_ X/OPEN
Vlv_Closed_Stat_ X/CLOSED
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2.2.1 Fan curve

It is common practice to utilise fan curves when designing ventilation systems to
ensure that the fans are working in their efficient load regions by calculating the
different operation points. Figure 2.4 shows the fan curve for the current fans.
This curve is normally generated in ideal (dry) conditions and to scale this for
other fan speeds (N ) and air densities (ρ) the affinity equations

dp1

dp2
=
ρ1

ρ2

(
N1

N2

)2

,
Q1

Q2
=

(
N1

N2

)
,

Wf 1

Wf 2
=
ρ1

ρ2

(
N1

N2

)3

(2.4)

are utilised. A map has been made to calculate flow (Q) as a function of total
dynamic head (KH) (dp), i.e., the fan’s workload. However, there are two possi-
ble flows, and the fluid effect (Wf ) the fan can generate depends on where on
the curve the fan is operating as illustrated in Figure 2.4. The lower flow out-
put, the so called stall region, is considered a fault as it is not only less efficient
but also induces more wear on the fan. There are multiple reasons for a fan to
enter stall mode where the most common ones are from the design stage like over-
dimensioning of the fans or competing parallel flows. It is assumed that this fan
curve is valid for 8500 rpm and with an air density of 1.2041 kg/m3 (dry air at
20oC).

Figure 2.4: Characteristics of the fans, [Source: Airbus DS, 2013]
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2.2.2 Fluid work

All attempts to utilise the fan curve to determine an operational point by mea-
sured power consumption has been very unreliable. The system loss is not in-
significant. Analysis indicates that the effect in the fan curve is measured (Wm)
and not fluid effect (Wf ), this implies the scaling law for W does not apply di-
rectly. This observation is strongly supported by data as well.

Wm = Wf + Wloss

To determine Wloss in the ideal conditions is not feasible and there is no basis to
assume Wloss would scale as nicely. Instead, a model which is given by

W = Kp∆pQ + KqQ
2 + Kd (2.5)

has been estimated from the fan curves map by linear regression where Kp would
be the fan’s efficiency in building pressure, Kq flow work efficiency and Kd any
constant losses. This approach is accurate enough to determine if the fan is work-
ing in the desired mode or in the faulty stall mode. This is later validated in
Section3.4.

2.2.3 Fan flow by power consumption

An already parameterised model has been received from Astrium which is a di-
rect correlation between the fan power consumption and the flow that the fans
produce. This model is done by linear regression of collected and, possibly, pre-
processed data.

W = Kf Q + Kd (2.6)

The validation in Section3.6 conclude that this model is accurate within certain
intervals which should be enough for residual generation.

2.3 Sensors

A complete listing of the available sensors is shown in Table 2.1 together with
Table 2.2. Some of these sensors have been concluded to be of no use to the
current model and are consequently not included.

AFS : The air mass flow sensors, positioned in the junction between supply,
fan{1,2} and outlet. Will be abbreviated as AFS{1,2} in most parts of this
document. The sensors are validated in Section3.3 but are often saturated
and due to local vertices does rarely produce redundancy. An improved
model (2.7) has been made in combination with (2.2a) which is validated in
Section3.5.

AFSi =
∑

Kj,iQj + K0 (2.7)

CHXFA : The pressure sensors over the condensate heat exchanger fan. Are
in used in combination with (2.3) to produce an estimation of Qoutlet , val-
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idated in Section 3.5 and directly in (3.2) which also is validated in Sec-
tion3.5.

CTCU : Multiple sensors and switches, only the cabin temperature signals are
used in the current model and these are validated in Section3.3.

CWSA : Condensate water separator assembly. None of these signals are used
in the current model.

HS : Air humidity sensor, measuring percentual water saturation in the air,
used to calculate current air density (2.11) and is validated in Section3.3.

TPS : Air pressure sensor, measured in mmHg and used in the system and is
validated in Section3.3. Will be abbreviated as TPS(1-4).

LCOS : Liquid carry over sensor. Used to detect if the CWSA fails which is
outside the scope of this thesis.

Cabin : Smoke detectors and a low airflow state, none of these are currently in
use by this model.

Table 2.2: Non fan signals

Measurements
part signal unit
AFS{1,2}_ Cab_Air_Massflow_ kg/h
CHXFA_ Delta_P{1,2}_ P a

CTCU{1,2}_
Cabin_Temp{1-3}_ oC
Avg_Cabin_Temp_ oC
TCV_Posn_ %

CWSA{1,2}_
Input_Current_ A
Delta_P_Air_ kP a
Delta_P_Water_ kP a

HS{1,2}_ Air_Humidity_ %rH
TPS{1-4}_ Air_Press_ mmHg
LCOS{1,2}_ Level_ V

Cabin_
SD{1,2}_Obscuration_ V
SD{1,2}_Scatter_ V

Switches/Analyses

CTCU{1,2}_

Pwr_Stat_ ON/OFF
Kick_Posn_Up_Stat_ (IN)ACTIVE
Kick_Posn_Down_Stat_ (IN)ACTIVE
Kick_TCV_Hold_Posn_ (IN)ACTIVE
Dryout_Stat_ DISABLED
Cntl_Loop_Stat_ (DIS)ABLED

CWSA{1,2}_ Pwr_Stat_ ON/OFF
Cabin_ Low_Airflow_Stat_ NOM/LOW
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2.4 Other equations

There are some other equations used in the model that are of a more generic type,
like the pressure difference

∆p = pa − pb (2.8)

and conversion from mass flow (q) to volume flow (Q)

q = ρQ (2.9)

Ohm’s Law for calculating power

W = IV (2.10)

used to calculate the fans’ power consumption where W equals Watt, I the sup-
plied current and V the voltage.

To calculate the air density (ρ) as a function of pressure (p), temperature (T ) and
relative humidity (φ) the ideal gas law is used

ρ = f (T , p, φ) (2.11)

ρ =
pair
RairT

+
pwater
RwaterT

, pwater = psatφ, pair = p − pwater

where px are partial pressures and Rx being the specific gas constants.



3
Model parametrisation and validation

This chapter contains verification and parametrisation of the models listed in
Chapter 2. Starting with an overview of the data sets used throughout the chap-
ter and a description of how the model error is measured. This is followed by
verification of the system redundancy and the fan curve assumptions. Finally the
parametric models are both estimated and verified.

3.1 Data sets

For parametrisation of the models, a data set where the fans are being tested in
different modes has been used. This training data is not normal operation but
made upon request for assisting in modelling the system. For validation some
data sets with fairly normal operation has been selected and a data set which is a
subsampled version of all available data not used as training data. Below follows
a short description of each data set and an overview of the training data set is
shown in Figure 3.1.

Training data: Data set from 20100[1-2]* which is a testing run to gather infor-
mation of how the system change in the different modes. Both IRFA and
ISFA is enabled with open valves. The temperature, cabin pressure and
humidity is either constant or within normal variation.

n20080319: Validation data set with low sample rate on some signals, CFA2 is
doing the cabin flow and all fan modes and valves are kept at a constant
rate.

n2008070: Validation data set going from normal operation to internal mode
where the supply fan gets disabled and both cabin fans are run at high

15
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Figure 3.1: Raw sensor data from the training data set

speed. The return fan is disabled the whole set but its valve is opened in
the internal mode. The supply valve is not closed. There is a slight peak in
humidity when the valves close.

20091129: Validation data set in normal operation with a swap of which cabin
fan is running, followed by the return fan disabled and its valve closes.
There is also noticeable drops in the AFS sensors due to the CWSA work-
ing.

subsampled data: All available data is subsampled for quicker processing and
used for validation. The last registered value is used when data is missing.

3.2 Model error measurement

To measure the model error, the model equations are evaluated on the validation
data sets. Mean square error (MSE) and mean absolute error percentage (MAE%)
have been used to determine if an equation seem to hold true as

MSE :
1
N

N∑
i=1

(xi − x̂i)2 MAE% :
1

100N

N∑
i=1

|xi − x̂i |
xi

(3.1)

in addition to a manual behavioural check.
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3.3 Validation of sensor redundancy

Validation of the simplest form of redundancy where multiple sensors ought to
monitor the same information. This is done to determine if the sensors truly are
redundant and, if not, how much their output differs. As there is no need for
estimation in this section, the training data set is also used as validation data.

Air pressure sensors

The air pressure sensors are quantified to steps of 0.4mmHg. The residual ends
up being within one, occasionally two, quantification steps after adjusting offset.
If this is due to constant local pressure differences or due to bad calibration can-
not be determined. The only contradiction to this can be found in the subsampled
data set as shown in Figure 3.2. The biggest offset is between TPS1 and TPS4 of
9 steps being 0.48kP a (3.6mmHg).

0 500 1000 1500 2000
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740

750

760

770

780
Raw signals in mmHg

TPS1 TPS2 TPS3 TPS4

0 500 1000 1500 2000

-5
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TPS1-TPS2

0 500 1000 1500 2000
-1

0

1

TPS1-TPS3

0 500 1000 1500 2000

-5

0

5

TPS1-TPS4

max: |6.092|

Figure 3.2: Validation of the air pressure sensors on the subsampled data set
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Air flow sensors

At the junction with the air mass flow sensors (AFS) there are multiple models
that could be used to determine the actual flow in the region. As shown in Fig-
ure 3.1 the AFS sensors do not give a good indication of the true flow in the
region. In Table 3.1, the results are listed together with how many percent of the
data is excluded due to saturated sensor. The difference between the sensors is
often bigger when the sensor is capped.

Table 3.1: Air mass flow sensors redundancy error

data MSE MAE% Capped%
training 3847.4 11.42 33.5
n20080319 1088.7 8.22 0.0
n2008070 214.78 1.79 70.7
n20091129 182.27 2.48 21.1
subsampled 4407.9 11.29 32.3

Cabin fan pressure sensors

It is only when both fans are enabled at the same time that we can utilize this
redundancy. It is not known if this is never recorded or if it is discarded. Among
the selected validation data set there is only redundancy in the n2008070 data set
and the subsampled data set. There seems to be an offset between these and we
can assume part of it originates from the differences in duct design. However it
does not seem to be constant which could be due to clogging in the system. In the
n2008070 data set the predicted offset is as large as 10%. The MAE% is 5.34% in
the subsampled data set while 3.79% in the n2008070 data set.

0 500 1000 1500 2000

-0.1

-0.05

0

0.05

0.1
n2008070

0 50 100 150 200 250 300 350
-0.3

-0.2

-0.1

0

subsampled

1
7

-F
e

b
-2

0
0

8

09-Jul-2008 03-Aug-2009

max: |0.07685|

max: |0.2943|

Figure 3.3: Residuals of the cabin fan pressure sensors

At the beginning of the 3rd August 2009 section of the subsampled residual, as
shown in Figure 3.3, there is a clear disturbance that is believed to originate from
that the just starting fan is having problems leaving stall mode. During this
interval both fans are set to run at high speed while the supply fan was abruptly
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disabled indicating that there was something wrong with the supply and a desire
to vent out the module was present. However, it is believed that this made one of
the fans not able to ensure a positive flow.

Fan input voltage

The input voltage to the fans are often varying and the signal is depending on
the modes the fan is working in. This variation is fairly small and the variation
is normally within one percent. In Table 3.2 the MSE and MAE% of the different
fans are shown when comparing to the supply fan.

Table 3.2: Fan voltage redundancy error

ISFA vs IRFA CFA1 CFA2
data MSE MAE% MSE MAE% MSE MAE%
training 0.964 0.79 0.191 0.34 0.859 0.74
n20080319* 2.189 1.20 - - 0.953 0.79
n2008070* - - 0.044 0.17 - -
n20091129* 1.141 0.86 0.134 0.30 0.978 0.80
subsampled 1.945 1.12 0.094 0.24 0.963 0.79

Humidity sensors

As shown in Figure 3.4 are the humidity sensors displaying slightly different dy-
namics indicating that they must have different positions in the system. The MSE
and MAE% are displayed in Table 3.3.
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Figure 3.4: Humidity sensors from the training data set
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Table 3.3: Humidity sensors redundancy error

data MSE MAE%
training 1865.67 5.94
n20080319 1849.63 5.17
n2008070 1178.48 2.16
n20091129 1848.76 3.76
subsampled 1641.13 4.87

Temperature sensors

When comparing the temperature sensors, it is concluded that they stay within a
quantification step between each other. The variation of the average temperature
signal indicates that it is calculated from more detailed data. CTCU2 is most of
the time not in use at all. No offset or drifting has been detected.
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Figure 3.5: Validation of the CTCU1 temperature sensors

3.4 Validation of the fan curves

As no true flow is known in the system, it is assumed that the fan curve together
with the affinity laws generate a flow that could be utilised instead. The equations
displayed in Section 2.2.1 are part of the affinity laws and will not be validated.
Since the estimations involving flows produced by this method yield better re-
sults than the other methods tested indicate that the method is functional.
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Detection of fan modes

To utilise the fan curves the fan mode must be determined. Initially this was done
manually on the training data set to generate estimations but as the generalisa-
tion, described in Section2.2.2, produced an overall better result, all estimations
were re-generated using this. A comparison of the manual and automated mode
detection is shown in Figure 3.6.
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Airflow [kg/h]
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high

 low
ISFA mode

automatic manual

0 500 1000 1500 2000
 low

high

 low
CFA1 mode

automatic manual

0 500 1000 1500 2000
 low

high

 low
CFA2 mode

automatic manual

Figure 3.6: Estimation of modes

Decoupling of air density

Early in the construction of the model it was realised that the air density depen-
dency often was not properly defined among the equations and input signals. In
addition it was desired to decouple the density from the fan curves. The conclu-
sions however, was that the fan curve and mode detection could not be satisfac-
tory decoupled from the air density on a modelling basis. As fan mode is required
to determine the produced flow, air density has not been decoupled from the fan
curve model.
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3.5 Model parametrisation and validation

The model is parametrised using linear regression in the case of (2.7) and (3.2)
and curve fitting (Levenberg-Marquardt) in the case of (2.3). The parametrisation
is done using the whole training data set except in the case of (2.7) where the
samples with capped AFS signals were discarded.

AFS i − Q : AFSi =
∑

Kj,iQj + K0 (2.7)

CHXdp − Q : ∆pi = Kf ,i(QiKc,i − Kd,i)2 (2.3)

kh − CHX : kh = Kv∆p + K0 (3.2)

AFS-Q equation

A complete overview of the parametrisation of (2.7) is shown in Table 3.4. Overall
yields the AFS2 sensor a very good result while the AFS1 parametrisation appears
to be clearly faulty. An observation of the estimated parameters show that AFS2
uses about 60% of ISFA and 30% of the cabin fans. While the AFS1 parametri-
sation uses 30% of them all. An re-parametrisation weighting ISFA higher for
AFS1 might give better results, but as the AFS1 sensor is often saturated, this
might never be possible.
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Figure 3.7: Validation of the AFS-Q parametrisation (n2008070)

In the n2008070 data set, displayed in Figure 3.7, the AFS2 parametrisation
turned worse when the ISFA valve is opened. This could indicate that either
the ISFA check valve is not operational or that there is a passive flow from the
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supply module. This behaviour can also be seen in the n20091129 data set when
the ISFA valve is closed.

Table 3.4: AFS-Q parametrisation error

data AFS1 MSE AFS1 MAE% AFS2 MSE AFS2 MAE%
training 12689 27.14 385.4 4.09
n20080319 4001 18.27 34.2 1.15
n2008070 14738 28.62 806.9 5.38
n20091129 15400 29.91 419.1 5.04
subsampled 13915 28.43 576.2 5.09

CHX-Q equation

It can clearly be seen that the parametrisation of (2.3) is not perfect when viewing
its match to the training data set but seems to be holding quite well overall even
if it appears to be suffering from an offset. It has to be analysed if this is drifting
and thereby could be caused by clogging or any similar fault. In Figure 3.8 can the
worst case of offset among the selected validation data sets be seen. Interesting is
how the offset change sign when the working cabin fan is changed about sample
1700. Additionally the fan is having problems leaving the faulty stall mode which
it finally manages once the return fan gets disabled just before sample 2000.

Table 3.5: CHX-Q parametrisation error

data MSE MAE% MSE filtered MAE% filtered
training 246.0 11.03 151.7 8.90
n20080319 228.5 12.45 58.9 6.08
n2008070 207.0 10.80 9.5 2.20
n20091129 156.0 9.62 52.5 5.71
subsampled 218.1 16.23 69.0 6.47
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Figure 3.8: Validation of the CHX-Q parametrisation (n20091129)
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KH-CHX equation

The results of the parametrisation of (3.2) is shown in Table 3.6. It can be noted
that the parametrisation seem to overshoot when the return valve is closed. This
happens in the first part of the n2008070 data set as seen in Figure 3.9 and in the
latter part of n20091129 data set. This could indicate a back flow through the
return fan or that there is a forced exhaust flow even when the fan is disabled.

Table 3.6: KH-CHX parametrisation error

data MSE MAE% MSE filtered MAE% filtered
training 0.012 10.41 0.0089 8.53
n20080319 0.011 10.36 0.0022 4.00
n2008070 0.023 16.27 0.013 14.19
n20091129 0.014 11.81 0.0084 10.36
subsampled 0.018 13.85 0.010 9.49
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Figure 3.9: Validation of KH-CHX parameterisation (n2008070)
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3.6 Validation of fan flow by power consumption

This model (2.6) has been verified against both the air flow sensors (AFS against
f (W )) as displayed in Table 3.7 and against the air flow generated from the fan
curves (W against f (Q)) (2.4) as shown in Table 3.8 with varying results. The
model seems to hold fairly well when the fans operate in certain regions, but
as this is quite often not the case the usability might be limited. Note that all
fans are identical while the fan model (2.6) has different parameters for each
fan. This could be a case of parametrisation for that fan’s default working region
rather than an overall. When using the parameters for CFA2 on the CFA1 flow
an MAE% improvement of about 10% is achieved. Doing a similar attempt for
IRFA does not yield any improved results, however as the IRFA flow is unknown
this method can not be determined incorrect.

Table 3.7: AFS estimation by power consumption error

data AFS1 MSE AFS1 MAE% AFS2 MSE AFS2 MAE%
training 57562 37.9 56518 37.2
n20080319 4288.7 16.2 1095.0 7.6
n2008070 3360.6 10.8 3377.9 11.6
n20091129 2782.3 9.6 569.6 4.9
subsampled 6730.6 15.6 3361.3 8.1

Table 3.8: Power consumption estimation by fan flow error

ISFA IRFA CFA1 CFA2
data MSE MAE% MSE MAE% MSE MAE% MSE MAE%
training 940.2 20.9 3645.9 58.9 1092.2 28.0 1810.0 18.7
n20080319 3.3 1.2 2891.0 40.7 - - 37.4 6.5
n2008070 14.0 2.6 - - 432.6 19.7 523.1 17.7
n20091129 22.2 3.7 5.6 1.3 928.9 33.7 10.5 3.6
subsampled 14.0 2.6 1684.0 25.5 1161.7 32.4 61.2 6.9





4
Design of fault detection system

This chapter will explain how the faults are implemented, how the residuals
are selected and finally tested. The desired detectable faults are added to the
model where it then is partitioned into minimal structurally overdetermined sets
(MSOs) by using Dulmage-Mendelsohn decomposition analysing the strongly
connected components (SCC) [Frisk et al., 2012, Krysander et al., 2008]. Only
when this is done is the greedy approach used to select the residuals.

4.1 The model

The complete model has 78 equations generating 55 states from 36 input signals.
32 errors are handled and below follows a description on how these are included
in the modelled. The whole system is displayed in Figure 4.1.

Sensor Faults

Sensor faults (Fs) have been added into the model as an additive parameter to the
measured sensor (Ss) as

St = Ss + Fs
As the original signal is known during simulation can multiplicative faults also
be simulated by letting Fs be a function of Ss. This is added to all input signals
except the enabled and open/closed valve signals.

Duct clogging

A simulation of the complete model is required to determine how clogging really
affects the system. This is however not done and a heavily simplified fault is in-

27
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Figure 4.1: Dulmage-Mendelsohn decomposition of the full model

stead simulated that could be seen as clogging. The fault is added as a parametic
fault to (2.3) as additional duct flow resistance.

∆pi = Kf ,i(Qi(Kc,i + Fc,i) − Kd,i)2

Air leaks

Like with the clogging, a complete simulation is required to truly know how this
type of fault is affecting the system. The simplified method here is that the nega-
tive fault (Fq) is added to the flows in (2.2) as

Qout = Qin + Fq

simulating that air has taken route elsewhere than the monitored connections.

4.2 Generating the MSOs

Finding the MSOs for a system this size is a very heavy task and has therefore
been split into simpler sub tasks. For the chosen method the system is first sorted
using Dulmage-Mendelsohn decomposition as shown in Figure 4.1. An upper
subset, A, is arbitrarily selected that is considered fast enough to be completely
searched while still having overdetermined components. After which the rest, B,
of the system is detached. This detached subsystem is searched for all existing
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MSOs and for each found MSO the dependant equations and states from A is
added to form a new matrix C that is again searched for all MSOs.

Consider the system shown in Figure 4.2. After selecting an A, which has at least
an overdetermined part (e5 and e6) the rest B is selected. Analysis of B yields
two MSOs that forms C1 and C2 as illustrated. Observe that for C2 has e2 been
completely removed from the final search.

e1 x
e2 x
e3 x
e4 x
e5 x x
e6 x x
e7 x x
e8 x x
e9 x x x

e10 x x

full system
A

B

e1 x
e2 x
e3 x
e4 x
e5 x x
e6 x x
e7 x x
e8 x x
e9 x x x

e10 x x

C1
e1 x
e2 x
e3 x
e4 x
e5 x x
e6 x x
e7 x x
e8 x x
e9 x x x

e10 x x

C2

Figure 4.2: Illustration of the MSO generation process

This method should find most MSOs of the system but can not guarantee a com-
plete set as this would require that also the exactly determined sets in B have to
be considered for generation of additional C sets.

These MSOs are then sorted according to which structural faults they could detect
in preparation for the residual selection. For this particular system the method
has produced 1.8 (1776385) million MSOs covering 63604 different combinations
of structural fault detectability.

4.3 Selecting the residuals

To select a sufficient subset of MSOs, a greedy search algorithm is applied [Svärd
et al., 2013]. The greedy search works such that a residual is added to the solution
set that fulfils as many new fault isolation requirements as possible. To do this
each of the residual is tested and the best candidate is included in the solution set.
This whole process is repeated until no further improvements are to be found.

4.3.1 System modes

As the approach above were selecting residuals purely based on their structural
fault detectability, except when the residuals were tested, it was clear that some
residuals were only valid in certain modes. This is primarily the case for which
cabin fan currently is in operation. To cope with this all the selected residuals
were tested and classified.

Residuals that appeared to be invalid in any mode were completely discarded
and the search operation was re-run from that position onward. This is also done
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Figure 4.3: Final structural detectability matrix

on-the-fly when a new residual has been selected. In the case where there exists
multiple MSOs with the same set of structural detectability has only the second
one been tested if the first has been marked as invalid.

Once a general set was generated with ideal isolability without regards of the
different modes, the specific mode dependant isolation matrices were analysed
and the set was expanded to improve the currently worst matrix using the same
method. This was iterated until no improvements to any of the isolation matrices
could be found. The final structural detectability matrix is shown in Figure 4.3.

4.4 Generating the residual code

During the classification process the residuals have been generated and tested.
The residual itself is processed into executable code using a function that will go
through the directed acyclic graph (DAG) and return the required equations to
calculate each state. A limitation of this function is that it cannot handle when an
equation set has to be solved to generate the next needed state, requiring manual
supervision of the output before execution.

As many of the residuals calculate the same states using the same equation sets,
another function was made to merge residuals by creating new states and equa-
tions when there is a conflict in method to calculate an otherwise shared state.
This allows the generation of one function containing all residuals.
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Figure 4.4: Dulmage-Mendelsohn decomposition of the merged residuals

Even though the merging function is far from ideal and can still produce multiple
identical steps the produced output is remarkably faster than running the residu-
als separately. The Dulmage-Mendelsohn decomposition of the merged residuals
is displayed in Figure 4.4 with horizontal lines marking the splits of the DAG, i.e.,
each block of equation can only be calculated by using the states from previous
blocks.
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4.5 Validation of the residuals

During the classification process a heavily subsampled selection of both training
data and the whole data set was used as described in Section3.1. A fault profile,
that was repeatedly alternating and increasing in magnitude was injected. This
was very effective for the purpose of detecting what modes the residual required
but the results could be very hard to interpret.

Due to that a more simple data set have been selected for validation and a single
percentual fault has been injected. The fault appears at sample 100 as a step of
50% of original signal and stays constant for a few samples to then decrease to
zero. At sample 300 is the same procedure done in reverse. For easy reference,
the fault profile is added to all the figures.
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The data sets n20090803 and n20091127 have been used respectively for the
residuals that require either CFA1 or CFA2 enabled. Regarding residuals work-
ing with both or neither fans have part of both data sets been used, switching at
sample 250.

The results are varying quite much among the residuals, some are noisy and only
detects parts of their indicated faults, like residual 9 displayed in Figure 4.5,
while others are clean and produce easily detectable injected faults.

A few of them are not centred around the zero axis, like residual 7 and 8 displayed
in Figure 4.7, while are still reacting to the injected fault in a detectable way.

Note that residual 7 produces not-a-number (NaN) with an injection on the TPS2
air pressure sensor and could be considered triggering. In the case of residual 19
however, should a NaN not be considered an alarm which seems to be requiring
a separate handling depending on which of the fans are currently running. This
can be seen in Figure 4.6.

Generally, most of the residuals are prone to the fault that they structurally are
able to detect, but they all need unique methods of detection, and in some cases,
a unique method per fault is required.

0 100 200 300 400 500

0

20

40

60

Residual 7 (32010)  [cfa2]

precfaloss returnloss temp3F tps2airpressF no fault

0 100 200 300 400 500

0

200

400

600

800

Residual 8 (44259)  [cfa1]

afs1F afs2F cfa1khF cfa2iF no fault
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5
Results

In this chapter the results of the design are presented both when detecting on
injected faults and when analysing the real data.

5.1 Fault detection and isolation with injected faults

Analysis of the structural fault detectability and isolability of the final system
yield that 20 of 32 faults are fully isolable. The structural fault isolation matrix
is shown in Figure 5.1a.

A manual detection on the residuals with injected single faults cannot with confi-
dence detect any air humidity faults. Neither can it detect the cabin fan 1 current
when the system is in a cabin fan 2 only mode, which would be expected, but
this brings the question on why this is detected for the opposite case. The rest
of the faults are all detectable and about half of the faults are possible to isolate
by manual analysis of the residuals. The isolation matrix when doing a manual
analysis on injected single faults is presented in Figure 5.1b and show a fair re-
duction of isolability which indicate that the residuals selected might not be ideal
and further iterations of the residual picking process may be needed.

Simple test quantities were produced for automated detection on the real data as
manual detection on the residuals is a time consuming task. The test quantities
are using either absolute value, cumulative sum (CUSUM) or a windowed mean
value depending on best detectability on the injected fault data. The thresholds
were then determined automatically using the test validation data so no false
alarms were triggering. For better isolation were the set completed with a few not-
a-number test quantities. In Figure 5.1c is the final isolation matrix presented.
This indicate that the issue with detecting the air humidity faults were not a

35
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residual problem. This automated design can not detect the cabin fan 2 current
fault and a few other pairs can not be isolated from each other.

5.2 Detection and isolation on real data

Analysing the test quantities described in Section 5.1 on the real data yield that
many of the test quantities triggers and many of the faults are detected but it is
not often a single fault could be isolated with certainty at any given time. Almost
all faults isolated are indicated in short time intervals which makes it hard to
determine if these are proper or false alarms. There are however a few cases of
prolonged repeated patterns presented below. Noted can be that less than 3% of
the time no test quantities are triggering giving us a total of only about 11% of
no fault data including the cases where the data is not properly defined.

The figures throughout this chapters displays the alarms as how many test quan-
tities are triggering for this fault in single fault isolation certainty. That means
that if an alarm is lower than 1 then there is at least one conflict in isolation. This
is calculated by count of alarming candidates of detected candidates for the spe-
cific test quantities triggering. No faults are alarming if only one test quantity
is triggering nor if there are contradiction among the test quantities triggering.
This is a simple form of isolation by column matching. One shortcoming with
this is that in case of multiple faults could one fault prevent another faults alarm
to go off which is also the case for false triggering of test quantities. All faults not
covered in the figures are not alarming during the displayed data set, not even
briefly.
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Figure 5.2: First noted alarm in the outset data set. The vertical lines indicate
time lapses with missing data in the data set.

Return fan faults

Figure 5.3a displays the alarm signal for fault on the pressure and rotation speed
on the return fan on real data from 11th Mars 2008. It cannot isolate the two
faults from each other but it is fairly certain there is a fault on either of those
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two sensors. Also to be considered is that this is not a constant indication which
could imply that these all are false alarms. There are occasionally some other
faults alarming, but those are generally brief in nature. Figure 5.2 displays the
first occurrence of this pattern.

Clogging faults

Another pattern that is repeating over quite large portions of the real data pro-
cessed is where there is alarms on multiple parametric faults and pressure sen-
sors. These faults are confirmed in Figure 5.1c to be hard to isolate from each
other. A sample of this real data have been selected and is displayed in Fig-
ure 5.3b.
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Figure 5.3: Alarms during selected parts of the outset data set

Outset data set

Both of the above mentioned patterns are part of the a data set, which is the
longest set, containing more than half of the available real data. The name is arbi-
trary selected due to this set being the first continuous data available for analysis.
This whole set has been marked as return fan loss but there is also documented
unexpected clogging of the return grid. Additionally this data have a fairly low
and inconsistent sampling.

However, the above detected patterns and the documented faults are not entirely
coherent as only half of the data is detected to have return fan problems whilst
the clogging seems to continue further than what has been reported. An overview
of the alarms during this whole set is shown in Figure 5.4 with markings on where
the part of unexpected clogging is documented.
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Figure 5.4: Full overview of the alarms in the outset data set. The vertical
lines indicate the start and end of the time period where within also unex-
pected clogging of the return grid has been reported.
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HEPA filter clogging

Another data set, covering only the 3rd of August 2009, begins with a fairly clear
indication of issues in the post cabin region followed by quite certain alarms on
the HEPA filter. This then stops about 2 am with hardly any alarms until almost 7
hours later where yet again issues are indicated in the post cabin fan region and
finally uncertain alarms on quite many of the components in the system. The
alarms over this set can be examined in Figure 5.6.

The data set itself is flagged as unexpected clogging of the return grid, which
could be one of multiple faults available in this data set, but this is not clearly
isolated and if this design is not producing large quantities of false alarms, is not
the only fault.
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Figure 5.5: Selection of residuals during the 3rd of August 2009.

There are quite a lot of the test quantities triggering in the section where no faults
are being isolated. Figure 5.5 displays a selection of the residuals during a portion
of this time frame and clearly displays that something is detected and that this
is a matter of evaluation rather than detection. Included in the graphs is also the
no fault data used in the validation for easier comparation. This could indicate
a passage with multiple faults. One possible explanation for this could be some-
thing faulty with the supply air, like for example smoke, that then propagates
and cloggs most of the system. This has however not been confirmed.
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Figure 5.6: Full overview of the alarms during the 3rd of August 2009.
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Another return fan failure

One data set, covering the 18th of January 2010, is documented as another unex-
pected clogging of the return grid. However this is not detected by this design. It
does however, briefly, detect but not isolate faults of the parametric type before
it quite certainly detects faults with the return fan.
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Figure 5.7: Selection of residuals during the 18th of January 2010.

When analysing the test quantities during the silent section of the alarms which
are displayed in Figure 5.8 it is observed that many test quantities trigger about
8:23. A selection of the residuals highlighting this event is displayed in Figure 5.7.
This indicate that there is something happening that the current evaluation can-
not isolate which means that the alarming faults that follow could be a result of
the measurements taken towards this fault.

Unknown data set

One of the data sets has no documentation of what type of fault could be present,
if any. The analysis indicate return fan issues as the alarms displayed in Fig-
ure 5.9 tell. However, in general few test quantities trigger which could indicate
that all of these could be false alarms.
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Figure 5.8: Alarms from part of 18th January 2010.
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Figure 5.9: Data set with unknown fault.
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No alarms

There was additionally a few sets where the design could not isolate any faults.
They are all very similar and only triggers alarms very briefly, mostly on the
airflow sensors and post cabin fan loss.

Two of the sets are marked as unexpected return grid clogging, one has docu-
mented return fan loss while the last one is supposed to have loss of the supply
fan. Neither of these faults are isolated even though all set are indicated to only
have one simultaneous fault.

However, many of the test quantities are either constantly on or triggering on
and off repeatedly which could indicate that this section is actually suffering of
multiple faults which is outside of the scope of the current design.



6
Conclusion

In this chapter an overall evaluation of the work will be presented followed by
reflections and suggestions for eventual future work.

6.1 Overall evaluation

The expected results were to have an FDI system that detects and isolates faults
in the air loop system that could work in real time and detect the faults within
reasonable time.

On injected data the system is able to detect and isolate most of the modelled
faults. However the models of leaks and cloggings are all parametric faults that,
in practice, could be either leakage, clogging or wear.

The system can detect some of the indicated faults in the real data and even
though it cannot isolate the faults perfectly, it can indicate the nature of the
fault which, in practice, is sufficient to know which physical components that
requires service. The proposed solution shows promising results but additional
work could improve fault detection and isolation performance by, for example,
consider multiple simultaneous faults during the evaluation process.

The system is based on a model of the air loop and is with fairly high certainty
able to detect which mode the fans are operating in even though that information
currently not is propagated to the fault detection and isolation level.

The methodology presented in [Svärd, 2012] was partially used and is considered
to be working for this system as a whole. Further development following this
methodology is believed to improve the current results when applicable.

45
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The results on real data indicate that the methods used, even though they are
yielding results, are not really sufficient for the design of an FDI solution for this
particular system. This implies that there is a great potential for further improve-
ment if more advanced methods for fault detection and isolation are explored.

6.2 Future work

This section will present suggested future work divided by task in a top-down
fashion as it is suggested that future improvements of this design should be made
in such an order. This as the underlying model itself is to be considered of desired
quality and without need for immediate improvements.

Fault detection and isolation

The algorithms for detection and isolation should be extended so that multiple
simultaneous faults are handled as there are indications that such exist in some,
if not most, sets of real data. It is also recommended that more advanced test
quantities are to be generated from the current selection of residuals.

One possible method to improve this could be fault detection and isolation by
analysing the Kullback-Leibler divergence as was originally suggested for this
work, and should be considered as one of the earlier paths for design improve-
ment [Eriksson et al., 2011].

It could also be of interest to make the set of test quantities more dynamic as this
model has different operation modes. The current solution is fairly basic and the
method described in [Eriksson et al., 2012] could be considered for integration.

Residual generation and selection

For a model with a fair amount of equations, but more importantly, plenty of
interconnections between them, the MSO count is quickly increasing to sizes that
makes the residual generation and selection a very time consuming task. While
this particular model is yet within reasonable size for modern computers, only a
few more additions and it might not be.

Due to this are alternative, preferable automatic, methods of determining which
MSOs to consider for further analysis. One way might be by analysing the residu-
als distinguishability [Eriksson et al., 2013], however, as the task to find the MSOs
is close to the upper limits of feasibility this analysis must be brought closer to
the model equations. My suggestion would be to analyse the signal (and fault)
to noise ratio of the equations themselves and create weights that are to be used
in the MSO search. This would need to be a directional analysis similar to how
causality is handled in [Svärd and Nyberg, 2010] and is particular interesting in
the quantified or otherwise non-linear equations. Due to this is it believed that
this model could be an interesting set for this kind of analysis even if a (almost)
complete MSO set already has been extracted.
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This should not only assist in quicken up the search for MSOs but also should be
able to assist in selecting how to structure the MSOs when designing residuals.

Modelling

In the current model the fan modes are estimated on the fly within the model by
a simple test quantity, this is needed for making the fan curve equations valid.
However, this test quantity is not propagated to the fault detection and isolation
layer of the system. Stall mode is considered a fault and should be implemented
and the detection of it ought to be improved. Multiple faults must be handled
before this is propagated as stall mode occurs fairly often in the live data.

Additionally, in some sets of live data the model has a tough time deciding which
mode the fans are in which in turn gives a very inconsistent output flow for the
fans. Analysis indicate that this might not actually be a fault in the model as
it not only fits the data fairly well but also fits that parallel fans easily can end
up racing each other. In the real data available the sample rate is too low for a
deterministic conclusion. However, due to this might it be interesting to smooth
out the calculated air flows when problems to determine fan mode occur.

Other improvements of the model could be modelling of the dynamic properties
and the parametric faults. There has also been some experimentation on making
a Simulink model of the system with fairly decent results, but such an implemen-
tation could rapidly make the system infeasible in real time. However it is not
suggested to focus on the underlying models unless no further improvements can
be found in the actual detection and isolation layer of the FDI system.





Bibliography

Airbus Defense and Space. Airbus defense and space homepage, 2013a. URL
https://airbusdefenceandspace.com/. Online; accessed 01/10/2016.
Cited on page 1.

Airbus Defense and Space. Columbus celebrates fifth anniversary in
space, 2013b. URL http://www.space-airbusds.com/en/news2/
columbus-celebrates-fifth-anniversary-in-space.html. Online;
accessed 01/03/2013. Cited on page 1.

Airbus Defense and Space. Utilisation and operation of the ISS,
2013c. URL http://www.space-airbusds.com/en/programmes/
utilisation-and-operation-of-the-iss.html. Online; accessed
01/10/2016. Cited on page 1.

Daniel Eriksson, Mattias Krysander, and Erik Frisk. Quantitative stochastic fault
diagnosability analysis. In 50th IEEE Conference on Decision and Control, Or-
lando, Florida, USA, 2011. Cited on pages 5 and 46.

Daniel Eriksson, Erik Frisk, and Mattias Krysander. A sequential test selection
algorithm for fault isolation. In 10th European Workshop on Advanced Control
and Diagnosis, Copenhagen, Denmark, 2012. Cited on page 46.

Daniel Eriksson, Erik Frisk, and Mattias Krysander. A method for quantitative
fault diagnosability analysis of stochastic linear descriptor models. Automatica,
49(6):1591–1600, June 2013. Cited on page 46.

Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino Pulido, and
Gautam Biswas. Diagnosability analysis considering causal interpretations for
differential constraints. IEEE Transactions on Systems, Man, and Cybernetics
– Part A: Systems and Humans, 42(5):1216–1229, September 2012. Cited on
pages 4 and 27.

M. Krysander, J. Aslund, and M. Nyberg. An efficient algorithm for finding min-
imal overconstrained subsystems for model-based diagnosis. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 38(1):
197–206, 2008. Cited on pages 5 and 27.

49

https://airbusdefenceandspace.com/
http://www.space-airbusds.com/en/news2/columbus-celebrates-fifth-anniversary-in-space.html
http://www.space-airbusds.com/en/news2/columbus-celebrates-fifth-anniversary-in-space.html
http://www.space-airbusds.com/en/programmes/utilisation-and-operation-of-the-iss.html
http://www.space-airbusds.com/en/programmes/utilisation-and-operation-of-the-iss.html


50 Bibliography

F. Meinguet, A. SANDULESCU, X. Kestelyn, and E. Semail. A method for fault
detection and isolation based on the processing of multiple diagnostic indices:
Application to inverter faults in ac drives. Vehicular Technology, IEEE Trans-
actions on, PP(99):1, 2012. ISSN 0018-9545. doi: 10.1109/TVT.2012.2234157.
Cited on page 5.

E. Noack, W. Belau, R. Wohlgemuth, R. Müller, S. Palumberi, P. Parodi, and
F. Burzagli. Efficiency of the columbus failure management system. In AIAA
40th International Conference on Environmental Systems, 2010. Cited on page
3.

E. Noack, T. Noack, V. Patel, I. Schmitt, M. Richters, J. Stamminger, and S. Sievi.
Failure management for cost-effective and efficient spacecraft operation. In
Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference on,
pages 137–144. IEEE, 2011. Cited on page 3.

E. Noack, A. Luedtke, I. Schmitt, T. Noack, E. Schaumlöffel, E. Hauke, J. Stam-
minger, and E. Frisk. The columbus module as a technology demonstrator
for innovative failure management. Deutcher Luft- und Raumfahrtkongress,
Berlin, Germany, 2012. Cited on pages 2 and 3.

T. Noack and I. Schmitt. A cyclic process model for monitoring mobile cyber-
physical systems. 2012. Cited on page 3.

Dieter Sabath, Gerd Söllner, and Dirk Schulze-Varnholt. Development and imple-
mentation of a new columbus operations setup. 2012. Cited on page 2.

Dieter Sabath, Thomas Kuch, Gerd Soellner, and Thomas Müller. The future of
columbus operations. In SpaceOps 2014 Conference, page 1618, 2014. Cited
on page 2.

H. Sneider and P.M. Frank. Observer-based supervision and fault detection in
robots using nonlinear and fuzzy logic residual evaluation. Control Systems
Technology, IEEE Transactions on, 4(3):274–282, 1996. Cited on page 5.

Source: Airbus DS. Source: Airbus ds, 2013. URL https://
airbusdefenceandspace.com/. Cited on pages 2, 7, 10, and 11.

Carl Svärd. Methods for Automated Design of Fault Detection and Isolation Sys-
tems with Automotive Applications. PhD thesis, Linköping University, Vehic-
ular Systems, The Institute of Technology, 2012. Cited on pages 3, 5, and 45.

Carl Svärd and Mattias Nyberg. Residual generators for fault diagnosis using
computation sequences with mixed causality applied to automotive systems.
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-
SYSTEMS AND HUMANS, 40(6):1310–1328, 2010. Cited on page 46.

Carl Svärd, Mattias Nyberg, and Erik Frisk. Realizability constrained selection
of residual generators for fault diagnosis with an automotive engine applica-
tion. IEEE Transactions on Systems, Man and Cybernetics: Systems, 43(6):
1354–1369, 2013. Cited on pages 5 and 29.

https://airbusdefenceandspace.com/
https://airbusdefenceandspace.com/


Bibliography 51

Carl Svärd, Mattias Nyberg, Erik Frisk, and Mattias Krysander. Data-driven and
adaptive statistical residual evaluation for fault detection with an automotive
application. Mechanical systems and signal processing, 45(1):170–192, 2014.
Cited on page 5.



52 Bibliography


	Abstract
	Acknowledgements
	Contents
	Abbrevations
	Units
	1 Introduction
	1.1 The Columbus air loop
	1.2 Columbus failure management system
	1.3 Background
	1.4 Model and data
	1.5 Problem formulation
	1.6 Related research
	1.7 Expected results
	1.8 Outline of the report

	2 Model description
	2.1 The ducts
	2.1.1 Mass conservation
	2.1.2 Passive flow

	2.2 Fans
	2.2.1 Fan curve
	2.2.2 Fluid work
	2.2.3 Fan flow by power consumption

	2.3 Sensors
	2.4 Other equations

	3 Model parametrisation and validation
	3.1 Data sets
	3.2 Model error measurement
	3.3 Validation of sensor redundancy
	3.4 Validation of the fan curves
	3.5 Model parametrisation and validation
	3.6 Validation of fan flow by power consumption

	4 Design of fault detection system
	4.1 The model
	4.2 Generating the MSOs
	4.3 Selecting the residuals
	4.3.1 System modes

	4.4 Generating the residual code
	4.5 Validation of the residuals

	5 Results
	5.1 Fault detection and isolation with injected faults
	5.2 Detection and isolation on real data

	6 Conclusion
	6.1 Overall evaluation
	6.2 Future work

	Bibliography

