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For most diagnosis all that is needed is an ounce of knowledge, an ounce of
intelligence, and a pound of thoroughness.
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Abstract

Models are of great interest in many fields of engineering as they enable predic-
tion of a systems behaviour, given an initial mode of the system. However, in the
field of model-based diagnosis the models are used in a reverse manner, as they
are combined with the observations of the systems behaviour in order to estimate
the system mode. This thesis describes computation of diagnostic systems based
on models implemented in Dymola. Dymola is a program that uses the language
Modelica. The Dymola models are translated to Matlab, where an application
called Fault Diagnosis Toolbox, FDT is applied. The FDT has functionality for
pinpointing minimal overdetermined sets of equations, MSOs, which is devel-
oped further in this thesis. It is shown that the implemented algorithm has expo-
nential time complexity with regards to what level the system is overdetermined,
also known as the degree of redundancy. The MSOs are used to generate residu-
als, which are functions that are equal to zero given that the system is fault-free.
Residual generation in Dymola is added to the original methods of the FDT and
the results of the Dymola methods are compared to the original FDT methods,
when given identical data. Based on these tests it is concluded that adding the
Dymola methods to the FDT results in higher accuracy, as well as a new way to
compute optimal observer gain.

The FDT methods are applied to 2 models, one model is based on a system of
JAS 39 Gripen; SECS, which stands for Secondary Enviromental Control System.
Also, applications are made on a simpler model; a Two Tank System. It is val-
idated that the computational properties of the developed methods in Dymola
and Matlab differs and that it therefore exists benefits of adding the Dymola im-
plementations to the current FDT methods. Furthermore, the investigation of the
potential isolability based on the current setup of sensors in SECS shows that full
isolability is achievable by adding 2 mass flow sensors, and that the isolability is
not limited by causality constraints. One of the found MSOs is solvable in Dy-
mola when given data from a fault-free simulation. However, if the simulation is
not fault-free, the same MSO results in a singular equation system. By utilizing
MSOs that had no reaction to any modelled faults, certain non-monitored faults
is isolated from the monitored ones and therefore the risk of false alarms is re-
duced.

Some residuals are generated as observers, and a new method for constructing
observers is found during the thesis by using Lannerheds theorem in combina-
tion with Pontryagin’s Minimum Priniple. This method enables evaluation of
observer based residuals in Dymola without any selection of a specific operating
point, as well as evaluation of observers based on high-index Differential Alge-
braic Equations, DAEs. The method also results in completely different behaviour
of the estimation error compared to the method that is already implemented in
the FDT. For example, one of the new observer-implementations achieves both
an estimation error that converges faster towards zero when no faults are imple-
mented in the monitored system, and a sharper reaction to implemented faults.
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1
Introduction

The emotional response to faults in technology is one thing that unites humanity
in the modern world, regardless if it is engineers who struggles to control a nu-
clear plant or beginners who are trying to install their first PC. Finding and/or
repairing the faults is convenient when installing computers, and when control-
ling nuclear plants it is quite crucial.

When searching for faults in a system, PC or nuclear plant alike, understanding
the behaviour of the specific system when it is flawless (or faultfree) is a neces-
sity for detecting any malfunctions in the system. In order to achieve this neces-
sity the client of this project, Saab, has a model of their systems Cabin Pressure
Control (CPC) and Secondary Enviroment Control System (SECS), which are im-
plemented in Dymola. Simulation of one of these models can give hints of what
behaviour is to be expected of the flawless system under a variety of conditions.

As said before, knowledge of the flawless system is necessary to be able to tell
the difference between the system being functional or non-functional. It is how-
ever, not sufficient, the knowledge of the model must be processed in order to
be able to draw correct conclusions based on the available observations of the
system. This process is known as model-based diagnosis as the model of the
system is used to perform diagnostics on the system. By using methods from
model-based diagnosis a diagnostic system can be computed. However, doing
this process manually requires lots of calculations as well as the people doing the
calculations being experts of the specific system. Therefore, automation of this
process enables Saab to save both time and manpower as well as providing them
with the benefits of fault-detection. This project, Structural Diagnosis Implemen-
tation of Dymola Models using Matlab Fault Diagnosis Toolbox, therefore has the
general goal to supply Saab with an automatic method for generating diagnostic
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2 1 Introduction

systems from Dymola models.

1.1 Purpose

By supplying Saab with a method to automatically generate a diagnostic system,
detection and isolation of faulty behaviours in their systems can be achieved. This
also enables analysis of what locations sensors should be placed in order for these
systems to achieve their full diagnostic potential.

Previous Saab methods for diagnosis and supervision has mostly been manual
and model-specific, which often results in simple solutions that lack in general-
ity and performance. By automatizing the process and utilizing the benefits of
structural methods, great benefits regarding generality and performance can be
achieved. Before implementing this automation in full scale however, a couple
of questions must be investigated. One of the main purposes of this thesis was to
investigate these questions , that are summarized in Section 1.2. The questions
were answered mainly by using the Fault Diagnosis Toolbox (FDT) developed in
Matlab [6] by Erik Frisk and Mattias Krysander at Linköping university, the book
Model Based Diagnosis of Technical Processes [18] by Erik Frisk and Mattias Ny-
berg and earlier non-linear observer implementations [12]. More details on the
sources used in the thesis is found in Section 2.6.

1.2 Research Questions

Based on the SECS, CPC and other simpler models, properties of the FDT was
investigated. The questions that were answered in this thesis are summarized
below.

1. Is it possible to parse CPC from Modelica to FDT-compatible form in Mat-
lab?

2. What time complexity is achieved when computing a diagnostic system for
SECS in the FDT?

3. What isolability is currently achievable in the SECS model according to the
FDT given no demands on the residuals causality?

4. How does causality restrictions on the residuals effect the generated diag-
nostic system?

5. What benefits and drawbacks follow from adding residual-implementations
in Dymola to the current FDT?

6. Will additional sensors improve the isolability found in issue 3?
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If so, what placement of sensors will result in the greatest gain for a
given limit of the number of sensors?

7. Can false alarms be prevented in the diagnostic system generated for SECS?

If so, in what way?

1.3 Delimitation

The time budget of the project is limited and therefore the subject treated in this
thesis also has certain limits. The project will not include any additional mod-
elling or modification of the given models. This is avoided in order to remain
in compliance with demands from the client of the project, Saab. Certain data,
such as details on limits of the given system and measurements that reveal the
behaviour of the system in that state, may not be accessible because of confiden-
tiality. The limits of the system and treatment of data surrounding that state will
therefore not be included in the project.

Furthermore, the residual evaluation will be based on simulations of the corre-
sponding model, no real measurements are taken into account in this thesis. The
specifics of all Dymola-implementations are seen in Table 1.1 and all FDT im-
plementations are based on the version of the FDT from 2016-12-22 and Matlab
R2016B.

Table 1.1: Dymola specifics for the implementations of the thesis

Version 2018 alpha
Solver name Dassl
Solver tolerance 0.0001
Number of Intervals 500
Start time 0
Stop time 250
Step length Adaptive

Given the high complexity of the CPC model it will not be translated com-
pletely to Matlab. However, a structural model, resembling what variables that
are present in what equations, will be computed. This delimitation is motivated
by the complexity, which originates mostly from the thermodynamic components
of the Modelica library ’medium’ and non-linear functions that lack counterpart
in Matlab. The SECS model however will be treated as a complete model, al-
though a the low fidelity version of the model (LFM) is treated.

When investigating the time complexity of the diagnostic system generation, only
the computation time of MSOs (see Section 2.2.2) in relation to redundancy (see
Section 2.1) is taken into account, as time-consumption for model-specific design
choices are harder to perform experiments on in a consistent way.





2
Background Theory

When reading this thesis, certain knowledge in the fields of model-based diagno-
sis, signal processing, and optimal control is necessary for fully understanding
the implementations. This knowledge is provided in this chapter. For the ad-
vanced reader, the summary in Section 2.6 might suffice, while the other sections
provides a more detailed description of the field stated in the title of the corre-
sponding section.

2.1 Diagnosis and Supervision

When technology is functional, all the performance of a diagnostic system might
seem like a waste of resources. This loss however is compensated by many bene-
fits when the system is malfunctioning. These include information about whether
something in the monitored system is malfunctioning, ’detectability’, and in cer-
tain cases also the ability to pinpoint the specific fault, ’isolability’. These prop-
erties provides how much potential the diagnosis system has when it comes to
generating a diagnosis, that is, whether something is wrong or not, and what
faults that might cause the incorrect behaviour. In other words, the diagnosis
describes what mode the system is currently in. These terms are clarified by the
following example of how a diagnostic system can be implemented.

Example 2.1
A system consists of a tank with pressure p, which is monitored by two pressure
sensors, p1 and p2. The measurement signal of these sensors are denoted yp1 and
yp2, which results in the equations

yp1 = p (2.1)

yp2 = p (2.2)

5



6 2 Background Theory

Equation 2.1 and equation 2.2 indicates hardware redundancy, as there are mul-
tiple sensors that measure the pressure p. The hardware redundancy can be used
to construct a diagnostic system. This is practically achieved by measuring the
difference between the measurement signals of the two sensors, resulting in the
following diagnostic system;

yp1 − yp2 , 0→ The system is in a malfunctioning mode (2.3)

The diagnostic system described by (2.3) clearly has detectability for faults in the
measurements provided by the sensors. But, given that it cannot be determined
which of the two sensors that is malfunctioning, the system lacks in isolability.

The lack of isolability in Example 2.1 results from the lack of redundancy,
which means to what extent the system is overdetermined. This small example
has two equations, that follows from the measurements of each of the sensors,
and one unknown quantity; the pressure. This results in the level (or degree) of
redundancy being 2 − 1 = 1. Therefore, in the current situation, there is only one
way to construct a residual from the given equations. The residual is a relation
between known signals that is equal to zero when no faults are present in the
system, see Section 2.3. The residual of Example 2.1 is therefore described by
(2.3), as both sensors must provide the same correct measurement if the system
is flawless. It is worth mentioning that the number of possible residuals is not
equal to the level of redundancy in the general case, see the example of Section
2.1.1 for instance.

2.1.1 Model-based diagnosis

While achieving higher degree of redundancy by hardware redundancy is an easy
method to achieve highly reliable fault detection, the additional sensors also re-
sults in increased costs and complexity [18]. By utilizing a model of the system
instead, additional equations can be used to increase the constraints on the moni-
tored system, and thereby also increase the level of redundancy according to the
reasoning in the end of Section 2.1. The usage of models for diagnosis in this
manner is known as model-based diagnosis. Similar to the previous subsection,
this is concretized by an example.

Example 2.2
Assume the same premises as in the example of Section 2.1, with the addition of

G(w) = p (2.4)

where G is a known function that follows from elementary chemistry, and the
weight w is measured by a scale w1 with measurement signal yw1. This measure-
ment can be written as

yw1 = w + fw1 (2.5)

where fw1 denotes the measurement error of w1.
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The addition of (2.4) and (2.5) results in the degree of redundancy being 4−2 = 2.
Another consequence of this addition is that there are at least 2 additional ways to
achieve overdetermined sets of equations by combining equation (2.8) with each
sensor. Lets assume that only measurement faults are considered, that is, the set
of possible faults being F = { fp1, fp2, fw1 } and corresponding system behaviour
modes then being Fp1, Fp2, Fw1. The resulting equation system with these faults
implemented is;

yp1 = p + fp1 (2.6)

yp2 = p + fp2 (2.7)

yw1 = w + fw1 (2.8)

G(w) = p (2.9)

The equations in (2.6) to (2.9) results in the following diagnostic system

yp1 − yp2 = r1 , 0→ D1 = Fp1 ∨ Fp2 (2.10)

yp1 − G(yw1) = r2 , 0→ D2 = Fp1 ∨ Fw1 (2.11)

yp2 − G(yw1) = r3 , 0→ D3 = Fp2 ∨ Fw1 (2.12)

where Di corresponds to diagnosis i.

The diagnostic system of Example 2.2 clearly has advantages compared to the
system of Example 2.1. For example; each residual reacts to a different subset of
F. The system of Example 2.2 also resulted in that every fault in F is not causing
any reaction in one of the residuals r1 to r3. The achievement of this non-reaction
is called decoupling of the corresponding fault. For instance it follows from equa-
tion 2.10 that fw1 is decoupled in r1. Decoupling is necessary in order to achieve
isolability according to [18].

A compact way of describing what faults that are decoupled in each residual
is by defining a structure known as the influence structure, which is basically a
matrix where each row corresponds to the sensitivity of one test to each of the
faults, specified by the element of the corresponding column. The definitions of
[18, p. 25] is followed here for simplicity, which means that 0 corresponds to the
fault being decoupled, X corresponds to the test reacting to the fault but not with
any guarantee, while 1 corresponds to a guaranteed reaction. For this specific ex-
ample, the influence structure is summarized in Table 2.1.
The reason that the influence structure in Table 2.1 consists of elements with
value X instead of 1 is that there is a risk that faults cancel each other out in the
residuals and therefore it cannot be guaranteed that these residuals react to the
undecoupled faults under every circumstance. Another interpretation is that no
conclusion can be drawn from a residual that has no reaction in this case, while
an influence structure with ones would exclude any detectable faults from the
diagnosis in the event of no reaction. For general systems an additional reason
for having X:es in the influence table is that some faults may only be detectable
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Table 2.1: Influence structure of resulting diagnostic system from Example
2.2

fw1 fp1 fp2
r1 0 X X
r2 X X 0
r3 X 0 X

when the system is in a special operation point. It is clearly beneficial to have 1s
instead of X:es from the viewpoint of isolablility.

Formally, the isolability between the system modes b1 and b2, with the corre-
sponding observations Ob1 and Ob2, can be defined as follows;

Definition 1. [18] A system behavioral mode b1 is isolable from the system behavioral
mode b2, if Observations of the system being in mode b1 is not a subset of the Observations
of the system being in b2, or Ob1 < Ob2.

The definition of isolability from Definition 1 will now be clarified by using
the influence structure of Table 2.1. By assuming that the faults fw1, fp1, fp2 does
not cancel each other out, it can be concluded that observations of r1, r2, r3 are
sufficient in order to achieve isolability for single faults according to Definition
1. This follows from the fact that there is one observable residual that decou-
ples each fault, while reacting to the other monitored faults. From the fact that
all 3 monitored faults are present in the influence structure it follows that the
faults are isolable from the mode of the system that is faultfree, also known as
the nofault-mode, NF. This provides a more solid definition of the detectability
described in the introduction of Section 2.1;

Definition 2. A fault f is detectable if the corresponding behavorial mode is isolable from
NF.

It is worth to consider that these definitions does not take any reactions to non-
monitored faults or disturbances into account. Also note that definition 1 does
not consider any degree of difference between Ob1 and Ob2, just that Ob1 is not
a subset of Ob2. For example, there are residuals that are sensitive to a certain
fault, but still results in the steady state responses of the residuals being zero.
This situation corresponds to the fault being weakly detectable in that residual.

2.2 Structural Methods

The examples of diagnostic system computation that has been shown so far has
been solved by hand. However, in general, a more sophistical method is needed
in order to find the equations that are of interest for diagnostic purposes. One
way to find these set of equations is by using structural methods.
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Similar to many other search-algorithms, one key ability is the ability to label
certain information as non-essential, also known as the ability of pruning the
search-tree. Search-algorithms typically achieves this by using so-called heuris-
tics which approximates the possible future contribution of any node in the searched
tree. When designing a system used for diagnosis, similar pruning of the avail-
able information can be achieved by just using the model structure alone. The
model structure contains the information of what variables that are present in
each equation, but no information regarding in what context the variable is present
[13]. For clarity, the model structure from Example 2.2 is shown in Table 2.2.

Table 2.2: The model structure of the monitored system in Example 2.2

yp1 yp2 yw1 w p fw1 fp1 fp2
(2.6) X X X
(2.7) X X X
(2.8) X X X
(2.9) X X

Structural methods describes methods that uses the model structure when de-
signing the system used for diagnosis. According to [13] only the subset of the
models equations that is overdetermined can be used for diagnosis implementa-
tions. This follows from the fact that an overdetermined system got more equa-
tions than unknowns, which results in redundancy under the assumption that
each unknown variable that is present in an equation also is explicitly express-
ible using this equation. Under this assumption, each variable can be linked to
an equation, which represents the variable being expressed by that same equa-
tion. The process of combining equations and unknowns in this manner can be
loosely interpreted as matching [8].

2.2.1 Matching

As matching is a key concept in the computation of diagnostic systems, the defi-
nition provided so far is too vague. A clarification is needed. In order to achieve
this however, certain theory must be considered. This theory is summarized in
this section.

From earlier it is clear that the analysis done by structural methods, or structural
analysis, does not rely on what type of analytical expression that combines the
variables to a specific equation. Instead, structural analysis is performed based
on the set of unknowns X, the set of known signals Z and the set of faults F, or
more specifically, the subset of each of those sets that are present in each of the
models equations. Each equation in the system contains a subset of elements
from each of these sets. The expressibility of these element in each equation is
described by the Bi-Adjacency Matrix, that is, what variables that exist in each of
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the equations, and whether integration or differentiation is required during the
extraction of these variables. For example, see Figure 2.1 from [8], in which the
equations are represented as rows and elements of X is represented as columns.
This results in the element in row i and column j represents the expressibility
of ’Unknown j’ in equation i. In Figure 2.1 the value X represents the unknown
being expressible, while I and D represent expressibility through integration and
differentiation. Given that equations act as constraints on the unknowns, equa-
tion i is denoted as ci in this context, see Figure 2.1. Using this notation, it is clear
that c10 to c12 represents equations of the type ẋ = dx

dt .

Figure 2.1 clarifies the topic of matching as a set of valid connections between
the rows (representing the set of equations) and columns (representing X), where
a connection is valid if and only if the variable is present in the equation that it
is connected to and the variable/equation is not used in another connection. An
example of a valid connection is therefore c1, q1 according to Figure 2.1.

Figure 2.1: Example of a Bi-Adjacency Matrix. Source [8]

By combining this information of each equation with the fact whether the
equation is included in the underdetermined, exactly determined, or overdeter-
mined part of the system, the Dulmage-Mendelsohn Decomposition is achieved
[8].

2.2.2 Minimal sets of Overdetermined equations

The sorting that is achieved by the Dulmage-Mendelsohn Decomposition results
in knowledge of what subsets of variables X’, faults F’ and equations EQ’ that
are present in the overdetermined part of the system. Given that this describes
the maximum subset of the model that can be used for diagnosis, the maximum
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detectability is obviously given by F’. In order to achieve isolability, decoupling
is necessary, see Section 2.1.1. Given the following assumption from [8]

Each fault is present in only one equation (2.13)

, all sets that are containing a minimal amount of equations while remaining
overdetermined are of great interest, as they achieve the full decoupling potential.
A set that fulfils this property is known as a Minimal set of Overdetermined
equations (MSO). An example of an MSO is the set of equation (2.6) and equation
(2.7).

2.3 Residuals

The role of residuals has been discussed throughout this thesis. Before the pro-
cess of residual generation that was used in this thesis is described however, a
thorough background on the residual-subject must be given. This includes the
theoretical definition as well as properties of residuals that are worth considering
when constructing a diagnostic system. One certain preconditions that must be
met when constructing residuals is that the included equations must compose an
overdetermined system, which follows from the definition of redundancy given
next.

Definition 3. [18] There exist analytical redundancy if there exist two or more different
ways to determine a variable x by only using observations z, that is x = f1(z) and x = f2(z),
where f1(z) . f2(z).

By using the definition of analytical redundancy from Definition 3, the follow-
ing general expression of a residual can be formed;

r = f1(z) − f2(z) (2.14)

From equation (2.14) it follows that r , 0 provides an observation that is different
from the observation when the system is in a faultfree mode. This enables isola-
tion from the mode according to Definition 1. This specific isolability is identical
to detectability.

The analytical redundancy can occur both as static redundancy and temporal
redundancy. Static redundancy corresponds to f1 and f2 not containing any dif-
ferential operators, that is, no numerical integration or differentiation of the ele-
ments in z are necessary. Temporal redundancy means the opposite; that at least
one numerical integration or derivation is necessary of the known quantities in
order to achieve the residual. Whether a redundancy is temporal or static is of
great importance as it effects the properties of the computed residual. One of
these properties is causality which is covered in Section 2.3.1.

2.3.1 Sequential residuals

As previously stated in this thesis, only overdetermined set of equations can be
used for generation of residuals. This follows from the definition of redundancy,
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Definition 3. In an underdetermined or exactly determined system, there is only
one way (at the most) to describe each unknown quantity. This means that there
is no redundancy, and therefore no residual can be generated. Sets that does
not contain any underdetermined or exactly determined parts are therefore of
great interest, these sets are known as Proper Sets of Overdetermined Equations
(PSOs).

If the system S is overdetermined however, then there are multiple subsystems
S ′ that are exactly determined and contains all unknowns of S. This means that
every unknown variable in S ′ can be expressed using S ′ alone. By substituting
the unknown variables in S\S ′ with these expressions, the redundancy of Defini-
tion 3 is achieved.

If the redundancy is temporal, then numerical integration, differentiation or a
combination of these must be applied to the known quantities of S in order to
achieve a residual. This corresponds to the residual having integral , derivative
or mixed causality. Selecting S ′ therefore effects the causality of the resulting
residual, given that the redundancy is temporal. If the redundancy is static how-
ever, no differentiation or integration of the known quantities is necessary. Given
that only algebraic substitutions are sufficient for residual generation in this case,
the causality is called algebraic. For more information regarding the definition
of causality, see [8].

2.3.2 Observer based residuals

While the implementation of sequential residuals is straight-forward, it is also
sensitive to measurement noise. One way to suppress this noise is by following
the methodology described in Section 2.4 assuming that an overdetermined sys-
tem with non-algebraic causality is available. This system can be written in the
form of equation (2.17), from which the residual can be computed as the estima-
tion error.

2.4 Observers

When estimating a certain quantity in a system that is modelled, there are two
sources of information in the general case. The first source is the model itself.
By initiating the model with an estimation of the current state of the system,
certain prediction of the systems behaviour can be achieved by simulating the
model. Relying on this source alone however, results in high demands, both on
the accuracy of the model and the ability to estimate the initial state of the system.
Given that the initial state can be regarded as an unknown quantity, this results
in a situation where the estimation method only can provide accurate estimates
if certain accurate estimates are already given. This situation is resolved by using
the second source of information, which consists of the measurements provided
by the sensors of the modelled system. The combination of these sources results
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in an estimator with maintained predictive ability and less dependency of the
initial state estimate. This combination is achieved by an observer. Consider the
following linear state space model

ẋ = Ax + Bu

y = Cx (2.15)

where x denotes the state, u denotes the input and y denotes the measurements.
The coefficients A, B and C are matrices that describes how the previous denoted
quantities are connected. Let x̂ denote the estimated state. By utilizing the model
from equation (2.15) and using proportional feedback from the difference be-
tween measured y and estimated measurements Cx̂, also known as the estimation
error, correction of the estimated state can be achieved. The gain of the propor-
tional feedback; K , is known as the observer gain. Based upon this information
the observer can be defined as the following;

˙̂x = Ax̂ + Bu + K(y − Cx̂) (2.16)

The resulting observer of equation (2.16) is clearly depending on the model of the
system, the provided measurements and the observer gain K . The details of de-
termining K is not treated in this thesis, but is referred to other implementations,
such as the continuous variance-minimizing Kalman filter [2].

2.4.1 Observers of Non-Linear Systems

Unfortunately, far from all systems are linear and on state-space form such as
the system in (2.15). Now consider the following non-linear differential algebraic
model

ẋ1 = f (x1, x2, z, t)

0 = h(x1, x2, z, t) (2.17)

where the unknown variables x has been split up into the state variables x1 and
the algebraic variables x2. The known signals, such as measurements and inputs
are described by z.

In order to achieve an observer with desired behaviour the nonlinearities must
be handled in some fashion. The easiest method would include simplification of
the model by expressing x2 as a function of x1, t and z followed by a linearization
of the model. Then the Kalman filter can be applied to these linearized models,
which results in the Extended Kalman filter described in [10, Chapter 7].

Before discussing the observer implementations used in this thesis, a background
on Differential Algebraic Equations (DAEs) and more specifically their index is
needed. An example of a DAE is seen in equation (2.17), however, as stated in
[14] the equations must not necessarily have the derivatives expressed explicitly
as in equation (2.17). The index of the DAE corresponds to the number of differ-
entiations needed in order to achieve that expressibility according to [14]. Based
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on these definitions of DAEs and index, the observer implementation can be spec-
ified.

This thesis uses the observer implementation described in [12], see equation
(2.18). This is motivated by the fact that the current implementation of observers
in the FDT only supports low-index problems (index=1), which is complemented
by the index-reduction capabilities of the method described in equation (2.18).

Background on Method for Non-Linear Observers

Similar to the regular observer in equation (2.16), the method presented in this
section uses feedback from the estimation error r in order to minimize the differ-
ence between the estimated and measured state. The difference from many sim-
pler applications, such as those described in Section 2.4 is that this method uses
a feedback based on the estimation error r with both proportional and derivative
terms. Based on the model seen in (2.17), this results in the following system

˙̂x1 = f (x̂1, x̂2, z, t) + F(t)ṙ + G(t)r

0 = h(x̂1, x̂2, z, t, r) (2.18)

where the coefficients G(t) and F(t) provide proportional and differential feed-
back in the constructed observer, and the specific presence of r in h is left as
choice of design. In this thesis, the method presented in [12] is used to determine
the coefficient F(t). As seen in equation (2.18) this method utilizes the informa-
tion from the estimation error by using feedback provided from a PD-controller.
By selecting the coefficients of the controller according to Theorem 1 and Theo-
rem 2 in [12], low-index and asymptotic stability can be guaranteed. In this thesis
however, only theorem 1 will be used. Before the theorem is given, let hx denote
the gradient of h with respect to x and N (A) denote the right null space, that is
{x : Ax = ~0}.

Theorem 1 Given a model in the form of equation (2.17) a low-index observer
on the form of equation (2.18) can be guaranteed if the following criterions are
met.

1. hx have full row rank for all x.

2. hx2
must have full column rang for all x2.

The first criterion corresponds to no rows in the gradient of h being linearly de-
pendent. The second criterion corresponds to the requirement that every com-
ponent of h, must have derivatives based on elements from x2 such that these
derivatives results in columns that are linearly independent of each other. Or, in
less mathematical terms, that it is possible to solve for x2 in the algebraic part of
equation (2.17).

The criterions mentioned so far are prerequisites and doesn’t reveal any informa-
tion regarding the specific design of F(t). This is described by the third criterion,
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stated below. Let N denote the null space. Also, let V and W be defined in the
following manner

V = { x1 : ∃x2 : (x1, x2) ∈ N (hx) } (2.19)

W = { x1 : x1 < V } (2.20)

If the previous requisites are fulfilled and= F(t) = W (the Image of F(t) = W),
then the resulting observer is low-index which concludes Theorem 1 from [12].
The proof of this theorem is found in [12].

2.5 The Optimal Control Problem

Similar to the chess player planning their next move, the field of optimal control
seeks the optimal sequence of actions. Expressing these actions or controls as
functions of the current state or current position of the pieces on a chessboard if
you wish, is known as expressing a policy. Finding an expression for the optimal
policy is the main goal in the field of optimal control. It must however be spec-
ified in what way a certain policy is optimal. This information is found in the
formulation of the optimal control problem

min .
u(.)

φ(x(tf )) +

tf∫
ti

f0(t, x(t), u(t))dt subject to


ẋ = f (x(t), u(t))
u(t) ∈ U ∗
x(t) ∈ X∗

(2.21)

which in the content of this thesis got a predetermined initial time ti and end time
tf . While the problem described by equation (2.21) looks very complex at first
sight it is basically a consideration between the penalty of effort, measured by
the integral-part of the objective function and the penalty of final performance,
which is measured by φ. For the chess-player for example, ending in the state of
having the opponent in checkmate, is a very successful state to achieve. Therefore
it should correspond to a very low value of φ. With similar reasoning, ending up
being checkmated by the opponent should correspond to a high value of φ. Sim-
ilar to chess, the state and control signal cannot change in an arbitrary fashion,
there are a set of constraints or rules regulating what states and control signals
that are valid. These constraints are mathematically described by X∗ and U ∗ and
corresponds to the chess player not being allowed to have pieces outside of the
board or move diagonally with the knight for example.

When solving the problem described in equation (2.21) the field of optimal con-
trol provide two general analytical methods that are applicable to the given prob-
lem. The Hamilton-Jacobi-Bellman equation (HJBE), which provides sufficient
and necessary conditions for optimality and the Pontryagin’s Minimum Principle
(PMP), which only provides necessary conditions for optimality [25]. In this the-
sis only PMP has been used, and therefore the focus will remain on this method
from this point on.
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2.5.1 Pontryagin’s Minimum Principle

The mathematical process of optimization is often simple, given the context of the
upper secondary school. A typical approach is differentiation of the non-linear
objective function and comparing all values of the objective function that arises
from the zeros of this derivative. However, when optimizing with constraints, as
in equation (2.21), the complexity of the problem suddenly rises above the level
of upper secondary school.

When the constraints consists of an state space model, Pontryagin’s Minimum
Principle (PMP) enables calculation of candidates for an optimum in a similar
fashion to the derivative-solution above. The clearest similarity is that PMP also
provides necessary (but not sufficient) requirements for optimums. It is therefore
only used to compute candidates which must be compared manually in order to
verify the optimum.

Hamiltonian and Equations

The computation of the optimum of equation (2.21) must somehow take both the
goal-function and the constraints into account. PMP solves this matter by com-
bining the f0(t, x(t), u(t)) with the differential constraint of the state f (x(t), u(t))
with the help of the adjoint variable known as λ. This combination is described
by the Hamiltonian;

H(x(t), u(t), λ, t) = f0(t, x(t), u(t)) + λ · f (x(t), u(t)) (2.22)

Given that λ has been introduced, additional equations must be added in order
to achieve a solvable equation system. The resulting equation system is

Constant = min .
u(.)

H(x∗(t), u∗(t), λ, t) (2.23)

λ̇ = −Hx (2.24)

λ(ti) ⊥ x∗(ti) (2.25)

λ(tf ) − ∇φ(x∗(tf )) ⊥ x∗(tf ) (2.26)

For more information see [9]. In this thesis, only the pointwise minimization
from equation (2.23) and the adjoint equation from equation (2.24) will be used.
Given that equation (2.25) and equation (2.26) only provides information regard-
ing the specific initial and termination values of x and λ the loss from excluding
these equations are considered minimal.

2.6 Summarized Roadmap of Background Research

The investigation of the issues in Section 1.2 is dependent on access to relevant
and suitable scientific sources. This section gives a general summary of the the-
ory used in the project and also points to adequate sources on the respective field.
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As stated in Chapter 1 model based diagnosis refers to modelling a system and
to build the diagnostic system based on that model [18]. This typically results in
a number of equations that capture the main behaviour of the modelled system
[14]. When applying structural methods however, as described in Chapter 1 and
[13], only the model structure is relevant.

Of the equations describing the system, only certain equations can be used for
diagnosis, the equations that form overdetermined equation systems. One way
to compute this equation set is to use the Dulmage-Mendelsohn composition,
which is described in [8]. However [8] also states that there can be smaller overde-
termined subsets of this set known as minimal sets of overdetermined equations,
MSOs. As these sets are minimal, it follows that they contain exactly 1 more
equation than unknown variables. The paper [11] shows examples of algorithms
which find these sets and compares them with respect to complexity.

While knowing the information provided by the MSOs is sufficient for generating
all possible residuals of a system, additional information is needed in order to ac-
tually generate residuals. The paper [4] shows an implementation on this topic.
The application in [4] resulted in residuals with mixed causality. The causality
of residuals is described according to [8] by what type of calculations; differenti-
ation, integration, that are necessary for achieving the residual. As stated earlier
all MSOs consists of 1 more equation than the number of unknowns, removal of
one equation, ei from the set will result in an exactly determined equation sys-
tem. This means that all of the unknown variables in the MSO are computable
and thus computing them and substituting the unknown variables in ei results in
a residual-equation. However this substitution may result in demands for numer-
ical integration, derivation or a combination of these, which results in integral,
derivative or mixed causality. In the event that none of these options are required
for the substitution, the causality is called algebraic.

The computation may include solving of Diffential Algebraic equations (DAEs),
which is described in [14] as general equations involving variables and their
derivatives. [14] also describes the index of a DAE as the number of times the
DAE must be differentiated in order to achieve state space form. High-index
DAEs are typically harder to solve according to [6, 22], although [22] described
an algorithm for computing the largest low-index subpart of a high-index DAE.
There are also examples of algorithms that converts high-index DAEs to low index
directly, see [21]. If the problem is low-index then according to [6] an observer
based residual can be constructed in the current observer-implementation. Con-
struction of observer based residuals based on a non-linear differential equation
is described in [12].

While causality and index describes the mathematics required to compute a diag-
nostic system, it doesn’t describe the properties of the achieved diagnostic system
itself. One such property is isolability, which according to [18], describes the abil-
ity to exclude other faults when in presence of a specific fault. More details on
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isolability can be found in [16, 20], while [19] contained an algorithm for evaluat-
ing the property.

The resulting properties, such as the isolability of the diagnostic system, are de-
pendent on the tests chosen to be included in the diagnostic system. There are
certain limitations on test selection in order to satisfy demands for isolability,
this topic is treated in [3, 17]. The paper [3] covered an efficient way of reducing
the search-space by taking the realizability properties into account. According
to [3] the method was also applied successfully to an industrial sized automotive
engine system. The paper [17] on the other hand describes an algorithm for deriv-
ing MSOs. The article states that the algorithm has polynomial complexity and
therefore is more suitable for industrial examples than other algorithms.

A necessary condition for having any isolability or detectability, i.e isolability
from not having any fault; is redundancy. According to [18] redundancy means
having more equations than unknowns, which basically is resulting in the overde-
termined equation system discussed earlier. One way to affect the number of
equations is placement of certain sensors, this topic was covered in [7]. In [7]
it was also stated that adding new sensors enables transition of equations from
the exactly determined part of the Dulmage-Mendelsohn decomposition to the
overdetermined part. Furthermore, based on the model structure, minimal sets
of sensor placements for full detectability can be computed and similar algorithm
is also applicable for isolability according to [7].

When adding sensors however, it’s important to consider the Signal-to-Noise-
Ratio (SNR) itself as well as its size relative to the precision of the equations of the
model. The topic of extracting as much information as possible from a set of sen-
sors when in presence of noise is called sensor fusion. In sensor fusion one of the
fundamental algorithms, Weighted Least Squares, provides a way to value
the received information with respect to its certainty. This algorithm is described
in [10].
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Background

The background of the thesis is presented in this section. As stated in Chapter
1, the key concept of the diagnostic system computation is translation/parsing
of Dymola Models into Matlab. In order to achieve this, an understanding of
the Dymola language Modelica is needed, this is provided in Section 3.1. The
translation process involves the XML-format, which is briefly covered in Section
3.2, and a translation program (parser), which is covered in Section 3.3. The
parser was developed during the thesis but is founded on the work in [15]. The
parser is applied to the CPC model, which is introduced in Section 3.4.1, the two
tank model in Section 3.5.1 and the SECS model presented in Section 3.6. Given
a correct translation of these models, the FDT can be applied in order to compute
a diagnostic system, the FDT is covered in Section 3.7.

3.1 Modelica

The language used in Dymola is called Modelica. Modelica is a equation-oriented
programming language, where basically a list of equation describes the behaviour
of the model based on given parameters and variables, see Figure 3.1. Similar to
many other languages, the left part of the declaration declares the type while the
rest specifies the name. Also note that all variables and parameters must be de-
clared before they are used [14]. The equations using these parameters and vari-
ables are specified under the line ’equation’. When adding variables, equations
or parameters, the line must be terminated by a semicolon. Suggested initial val-
ues of variables can also be added in the declaration by adding (start = value)
to the declaration, where value is the suggested value. Any declarations of pa-
rameters/variables and definitions of the equations must all be within the limits
of the model, which is marked by ’model model-name’ and ’end model-name’. For
clarification see the example in Figure 3.1.

19
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model Rocket
parameter Real losses=0.1;

Real velocity(start=0);

Modelica.Blocks.Interfaces.RealInput thrust;

equation
der(velocity) = thrust*(1-losses);

end Rocket;

Figure 3.1: Modelica code example that explains variables, parameters and
equations

3.1.1 Re-usage of Code

According to [14] Modelica also includes model-libraries which enables the us-
age of model-objects as a sub-model of new models. By defining and saving the
definition of modelx as in Section 3.1, the addition of the line modelx modelx_1;
will add an modelx object with the name modelx_1. See the example in Figure 3.2
where Rocket objects called Rocket_1 and Rocket_2 are added. The partial prefix
of the model indicates that the model can be expanded using inheritance, see
Figure 3.3. Defining model-objects in this manner, having model-objects inside

partial model Rocket_fleet
Rocket Rocket_1;
Rocket Rocket_2;
end Rocket_fleet;

Figure 3.2: Modelica code example that explains re-usage of models

other models, results in a hierarchical model. The hierarchy in the hierarchal
model is refering to the fact that the variable x from inside the modelx object
is different the variable x being on the same level as the modelx object. These
levels are here refereed to as the hierarchy and are also exemplified in the given
example, as the Rocket_fleet model contains Rocket objects.

Connectors

One of the greater benefits of Modelica is the possibility to reuse older models
in different applications. This is achieved by defining objects of different models
and connecting them. In order to transfer data between model objects, an ele-
ment called connector must be used. Connectors enables connection of different
models by specifying an interface, which then can be used in connect-statements,
see the example in Figure 3.3.
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Inheritance

Modelica also includes the possibility of inheritance. By defining a model as a
partial model and using the command extend, all the source-code from inside
the limits of the model in Section 3.1 is pasted at the location of extend model-
name;. Both connectors and inheritance is treated in the example of Figure 3.3.

model complete_fleet
extend Rocket_fleet;

Modelica.Blocks.Interfaces.RealOutput order_1=1;
Modelica.Blocks.Interfaces.RealOutput order_2=-1;

equation
connect(Rocket_1.thrust,order_1);
connect(Rocket_2.thrust,order_2);

end complete_fleet;

Figure 3.3: Modelica code example that explains re-usage of models using
inheritance and connectors

3.1.2 Algorithms

As mentioned earlier, models are described by equations, where the left hand
side of the equality sign is equal to the right hand side of the equality sign. The
order of operands doesn’t matter given that equality is a symmetric relation, a =
b ⇐⇒ b = a. That symmetry can be avoided by using the assignment operator,
:=, instead. This and similar operations, where the purpose is to specify what
computations to be done, rather than declaring a model, is written in a section
called algorithm. Algorithms typically also contains traditional loops such as for
and while.

3.2 eXtensible Markup Language, XML

An XML document simply stores information marked up in a text by using tags.
Tags are defined by < name > where the name-part of the tag is describing the in-
formation content in the XML-element, which is defined by < name > content <
/name >. Below this section an clarifying example XML document is given. The
first two lines of the file only states that the given file is an XML file and provides
a given parser with validation file called ’persons.dtd’. The rest of lines describes
the content, which was the main focus of this project.
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<?xml version="1.0"?>
<!DOCTYPE persons SYSTEM "persons.dtd">
<persons>
<person job="programmer">
<name> John Doe </name>
<email>
grigore@none.ro
</email>
</person>
...
<person job="manager">
<comment>Classified<\comment>
</person>
</persons>

Similarly to the example above, other types of information can be stored in
the XML format. One type is model information from a Modelica model which
can be extracted from Dymola in XML. Information-content from the model is
stored in an XML-tree, which can be translated into any programming language
using a designated parser.

3.2.1 Hierarchy

When processing data from an XML-file, it’s important to consider where in the
structure the data has been found. This information of location of data is called
Hierarchy in this thesis, as it follows from the similarity to hierarchial models in
section 3.1. In this example the importance of hierarchy is clearly shown, as the
information stored in email is useless unless you also got access to the informa-
tion of who the email belongs too, which is stored in the hierarchy leading to the
specific email element.

3.2.2 XML-generation in Dymola

A Dymola model can be generated as a file with the format XML [5]. For example,
the commando Advanced.OutputNestedExpandedModelAsXML: enables
generation of XML-file where the hierarchy of the model is maintained. Please
note, that according to the developer of Dymola, Dassault, the XML-generation of
Dymola is under development and might change in future releases. The Dymola
version used in this thesis is 2018 alpha, see Table 1.1.

3.3 Parser

A basic parser was implemented by K. Lockowandt see [15]. The parser enabled
conversion of models from the XML-format to .mat-format, which is fundamen-
tal to the method of this thesis, see Item 1 in Section 4. More specifically, the file
formed in the .mat-format defines a Diagnosis Model object, which the FDT can
be applied to, see Section 3.7.

The parser was developed further during this thesis, which enables handling of
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matrix-variables, if-equations and for-loops, as well as handling of the case of
having the same fault in multiple equations. For more information on the parser,
see Appendix A or [15, chapter 5, p 17].

3.4 Cabin Pressure Control

Given that an air-plane such as Gripen cannot operate without a ’functioning’ pi-
lot, certain systems must be operable in order to ensure that the pilot remains
in this state. One of these systems is Cabin Pressure Control (CPC), shown in
Figure 3.4. The CPC controls the cabin pressure and consists of a Cabin Pressure
Controller which is connected to two discharge valves [23]. The discharge valves
controls the mass flow rate between the cabin and the ambient pressure by chang-
ing its position. The desired position is achieved by comparing a provided servo
pressure with the cabin pressure, this comparison enables the discharge valves to
change their position and therefore realize the shift in cabin pressure. The Cabin
Pressure Controller provides the servo pressure to the valves and therefore con-
trols the shifting of cabin pressure, which explains the name of the component.
It is worth noticing that the connection between the controller and the discharge
valves is mechanical [24], see the discharge valves in Figure 3.4.

Figure 3.4: A system overview of the Cabin Pressure Control

3.4.1 Cabin Pressure Control model

A physical model of the CPC in Gripen E/F has been developed by Saab and im-
plemented in Dymola using components from “Modelica Standard Library” [24].
The model of the discharge valve describes the mass flow rate from the cabin to
the ambient as a function of the pressure difference, the valve loss characteristics,
and the opening area. The opening area is determined by a balance of the forces
acting on a rolling diaphragm. By dividing a part of the internal volume into two
chambers, P1 and P2, which are connected to this diaphragm using pistons, vari-
ation of the position/lift of the valve can be achieved by the pressure provided to
P1 and P2. Both P1 and P2 produces forces that effects the position of the valve.
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These forces also opposes each other, which means the resulting position of the
valve is related to the relation of the pressures of both chambers. By connecting
P1 to the servo pressure, and P2 to the cabin pressure, the position of the valve
can be controlled in a desired manner [24]. An overview of the entire CPC model
is seen in figure 3.5.

Figure 3.5: Overview of the CPC model

In Figure 3.5 the cabin is represented as the volume in the lefthand side of
the model. The pressure of this volume is then regulated with respect to the pres-
sure in the ambient volume in the opposite side of the model by the connection
through the discharge valves. In order to achieve a valid representation of the
discharge valves, the diaphragm is modelled as a spring and damper in parallel.
This is connected to a mass with movement restrictions adapted to the possible
displacement of the real valve.

3.5 Two Tank System

A simple model is necessary in order to enable testing of the developed algo-
rithms as well as providing additional support for any conclusions made regard-
ing diagnostic system generation. For these purposes, the two tank system, illus-
trated in Figure 3.6 is introduced. The system includes two tanks with orifices at
the bottom of each tank, a pump, and sensors that measures the water levels of
the tanks; x1 and x2.
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Figure 3.6: Schematics of the coupled two-tank system. Source [15]

In addition to the sensors measuring x1 and x2, there are also flow measuring
sensors, see Table 3.1.

Table 3.1: Initial sensors in the two-tank system.

y1 Water level in tank 1.
y2 Water level in tank 2.
y3 Water flow between tank 1 and 2.
y4 Water flow out of tank 2.

3.5.1 Two Tank Model

The model of the Two Tank System is computed by using the physical relation
known as Bernoulli’s principle, which relates the outflow from an orifice at the
bottom of a tank to the current water level. Assuming that the cross section area
of the tank is contant, Bernoulli’s principle states the following

v(t) =
√

2gh(t), (3.1)

where the water level is denoted by h, the water flow speed by v and the
gravity is described by g. Furthermore the relation between the outflow from the
tank q(t) and the water flow speed is given by
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q(t) = av(t), (3.2)

where a denotes the area of the orifice through which the water flows out of
the tank. From the assumption regarding constant base area, it is clear that the
volume of the water contained in the tank is described by Ah(t) where A is the
cross sectional area of the tank. The rate of which the volume changes over time,
i.e the time derivative, is

Aḣ(t) = u(t) − q(t), (3.3)

i.e the flow into the tank (u(t)) subtracted by the flow out of the tank. Equa-
tion (3.1)-(3.3) gives an explicit expression of the water level in the tank:

ḣ(t) =
1
A
u(t) −

a
√

2g
A

√
h(t). (3.4)

Given that there are two water levels to monitor in the given system, one state
for each water level is introduced. These are denoted x1 and x2 for simplicity.
From the previous calculation, the derivatives of these states can be explicitly
expressed and therefore the computation of the state space model is complete.
The complete state space model is

ẋ1(t) =
1
A1
u(t) −

a1
√

2g
A1

√
x1(t) (3.5)

ẋ2(t) =
a1
√

2g
A1

√
x1(t) −

a2
√

2g
A2

√
x2(t). (3.6)

y1 = x1 (3.7)

y2 = x2 (3.8)

y3 = a1
√

2gx1(t) (3.9)

y4 = a2
√

2gx2(t) (3.10)

where equation (3.5) and (3.6) describes the dynamics of the entire system, while
the measurements are described by equation (3.7) to (3.10).

The model description from equation (3.5) to (3.10) can now be expanded by
introducing fault signals, i.e. variables that represents physical faults, such as
blockage or leakage for instance. In this application the faults described in Table
3.2 are introduced.
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Table 3.2: Faults introduced in the two-tank system.

fClogging1 Blockage between Tank 1 and Tank 2.
fActuator Discrepancy in the Pump.
fLeakage2 Leakage between the water-flow sensor of Tank 1 and Tank 2.
fWaterLevel2 Measurement error in the water-level sensor of Tank 2.
fFlow1 Measurement error in the water-flow sensor of Tank 1.
fLeakage3 Leakage between Tank 2 and the water-flow sensor of Tank 2.

By introducing the faults of Table 3.2 in the model described by equation (3.5)
to (3.10), the complete model is achieved;

ẋ1(t) =
1
A1
u(t) + fActuator −

a1
√

2g
A1

(1 − fClogging1)
√
x1(t) (3.11)

ẋ2(t) =
a1
√

2g
A1

(1 − fClogging1)(1 − fLeakage2)
√
x1(t) −

a2
√

2g
A2

√
x2(t) (3.12)

y1 = x1 (3.13)

y2 = x2 + fWaterLevel2 (3.14)

y3 = a1
√

2gx1(t)(1 − fClogging1) + fFlow1 (3.15)

y4 = a2
√

2gx2(t)(1 − fLeakage3) (3.16)

Given that fClogging1 exists in multiple equations, the assumption from 2.13 is
not fulfilled. There are however, tricks to bypass this problem, which is covered
in Section 3.7.

3.6 Secondary Enviromental Control System

The Secondary Enviromental Control System (secs) in Saab 39 Gripen fulfills
the function of supplying electronics and radar with cooling air. Hot air from the
engine is processed in the system, consisting of two coolers in series with a turbo
element that connects the two coolers, see Figure 3.7. This model was also used
in a parallel thesis, see [15], and the description of the model from that thesis is
given in the next section for simplicity.

3.6.1 Model of the Secondary Environmental Control System

To model the air supply and cooling system, i.e the Environmental Control Sys-
tem (ecs) of the air-plane Saab 39 Gripen, Saab uses the modelling language
Modelica. The ecs can be divided into a Primary (pecs) system, a Secondary
(secs) system and a Liquid Loop (ll), allowing each sub-system to be modelled
separately. For different purposes more or less detailed models of the system is
necessary. Therefore a detailed high fidelity (hfm) and a reduced low fidelity
model (lfm) was developed. The hfm is used mainly for testing performance
requirements, while the lfm is mostly used in simulators. This thesis focuses
mainly on the secs lfm.
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Model Description

In Figure 3.7 the main part of the secs-model is depicted. Hot and pressurised
air is taken from the engine and cooled down. The cold air is used to cool down
the liquid in the ll, which in turn is used to cool equipment, not depicted in the
schematics. Three types of sensors are used to monitor the system, namely ten
temperature sensors, four pressure sensors, and one accelerometer. The high
amount of sensors monitoring the system makes the model useful for model-
based fault diagnosis.

Figure 3.7: Schematic of the Secondary Environmental Control System.
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3.6.2 Addition of Monitored Faults

Based on a request from Saab the faults of Table 3.3 are implemented into the
model in order to achieve a hint of the current diagnosis potential in the system.

Table 3.3: Faults introduced in the SECS

fmFlowEjector Deviating mass-flow through the ejector
fmFlowP recooler Deviating mass-flow through the precooler
fetaP reCooler Deviating degree of efficiency in the precooler.
fmFlowP ack Deviating mass-flow through the cooling pack
fetaT urb Deviating degree of efficiency in the turbine

The faults presented in Table 3.3 are marked in Figure 3.8, as the model is con-
fidential, a more detailed explanation of what specific equations that are effected
of the fault cannot be given.

Figure 3.8: The SECS model with faults of Table 3.3 implemented
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3.7 Fault Diagnosis Toolbox

The Fault Diagnosis Toolbox (FDT) is implemented in Matlab and enables compu-
tation of a diagnostic system based on a model of the diagnosed system. The FDT
uses structural analysis to decide which equations that should be used in each
residual. In the current version (2016-12-22) each fault must exist in only one
equation as addressed in [6]. Given that the model description of the Two Tank
System (3.11) - (3.16) does not fulfill this, either the chosen model or the chosen
methodology (FDT) must be modified. In this thesis, the trick from 2.13 is used,
which means that each of the faults that are present in many equations are sub-
stituted with a new unknown variable. This would result in a loss of redundancy
if it was not for the fact that an additional equation also is introduced for each of
these faults. These equations state that the substitute-variables are equal to the
faults that they substitute. For the Two Tank System the adequate change can be
achieved by adding the following equation

fClogging1 = f ault0 (3.17)

where f ault0 is the new fault signal, and fClogging1 is just a conveniently named
variable.

By adding specifications that are redundant from a mathematical point of view,
but necessary from a structural viewpoint; namely ẋi(t) = dxi (t)

dt , the model of the
Two Tank System can be written in FDT compatible form. Having the model in
this form

ẋ1(t) =
1
A1
u(t) + fActuator −

a1
√

2g
A1

(1 − fClogging1)
√
x1(t) (3.18)

ẋ2(t) =
a1
√

2g
A1

(1 − fClogging1)(1 − fLeakage2)
√
x1(t) −

a2
√

2g
A2

√
x2(t) (3.19)

y1 = x1 (3.20)

y2 = x2 + fWaterLevel2 (3.21)

y3 = a1
√

2gx1(t)(1 − fClogging1) + fFlow1 (3.22)

y4 = a2
√

2gx2(t)(1 − fLeakage3) (3.23)

fClogging1 = f ault0 (3.24)

ẋ1(t) =
dx1(t)
dt

(3.25)

ẋ2(t) =
dx2(t)
dt

(3.26)

enables clarification regarding syntax and functions of the FDT, which will aid
the explanation of the implemented algorithms.

A model-object for the model described by (3.18) to (3.26) will now be specified
in Matlab using the FDT. The FDT must have access to the information whether
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a variable is part of the unknown variables, known variables, or fault variables,
which corresponds to the variable being part of X, Z, F respectively. For this
model, this specification corresponds to the Matlab code provided in Figure 3.9,
assuming that the prefix d is used to indicate a derivative.

modelDef.x={dx1,x1,dx2,x2,f_{Clogging1}};
modelDef.f={fault_0,f_{Actuator},f_{Leakage2},f_{WaterLevel2},...
f_{Flow1},f_{Leakage3}};
modelDef.z={u,y_1,y_2,y_3,y_4};

Figure 3.9: Short example of definitions used for the FDT

The parameters and model equations are entered in a similar manner, see [6].
The FDT supports two kind of models, symbolic and structural, where a symbolic
model contains a complete model, while a structural model only contains the
structure of a model. Given that the entire Two Tank System model is available,
both structural and symbolic model objects can be created for this model using
the FDT. For more information regarding the methods available for the created
object see [6, p. 4] or the matlab commando methods DiagnosisModel.





4
Method

This section treats the methodology used in the project. In order to distinguish
between the methods that were pre-existent to the thesis, and those that were
invented during the project, any method mentioned is considered invented unless
stated otherwise. The general methodology can be concluded in the following
points, see the following subsections for further information.

1. Convert the model from Dymola to Matlab.

2. Analyze the model using the FDT.
What can be said about the model index, MSOs, causality properties?

3. Extract the desired parts, that is the MSOs that will result in a diagnostic
system that has sufficient detectability and isolability.

4. Analyze which type of residual, that results in desired behaviour for the
current application; observer, sequential or other type.

5. Generate residuals based on the selected MSO-sets.

6. Convert residuals from Matlab to Dymola and compare the results of the
residuals.

4.1 Processing of Model using Fault Diagnosis
Toolbox

The idea is to convert the model from .mo to .mat format by using a parser devel-
oped in Python. Once the model is converted into matlab, the FDT can be used
to compute the MSOs. These MSOs are analyzed and sorted such that the cho-
sen subset of the MSOs results in residuals with sufficient isolability and as high

33
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causality as possible. High causality refers to algebraic being prefered before In-
tegral which in turn is prefered before mixed causality. Derivative causality is
considered the lowest based on the experience that differentiating of noisy sig-
nals often results in poor accuracy, and therefore should be avioded.

The MSOs chosen by the algorithm are automatically converted into sequential
residuals. By allowing the FDT to do its test selection on a sorted subset of the
MSOs, the isolability and causality of the generated residuals can be guaranteed
simultaneously. The figure 4.1 below describes the general algorithm for gener-
ation of a diagnostic system based on a FDT-model object, a set of MSOs, and
a desired isolability. Apart from the node Generate tests, which corresponds to
the FDT method TestSelection, the nodes of Figure 4.1 represent algorithms
implemented in this thesis. The MSO-computation is described in Section 4.1.1,
the sorting of the MSOs is described in Section 4.1.2, and the residual generation
is described by Section 4.1.3. The resulting residuals generated by this algorithm
are then converted into .mo-format, which enables simulation in Dymola.

Figure 4.1: General view of the diagnostic system generation

4.1.1 MSO-computation

Once the description of the model has been converted into Matlab, the FDT can
be used to compute a suitable diagnostic system. As mentioned earlier, only the
overdetermined part of the model can be used to make residuals. This section
describes the computation of minimal overdetermined sets of equations, (MSOs).

The FDT supports computation of all MSOs by using the member-function MSO,
see [6]. However, as stated in [6, 17] the complexity of MSO-computation is often
exponential with regards to the degree of redundancy in the model. Therefore, a
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new algorithm that computes a reduced number of MSOs was developed during
the thesis.

The algorithm used the method Minimal Test Equation Support, MTES,
from the FDT to extract overdetermined subsystems of the original system. Addi-
tionally, sensors that did not contribute to the potential detectability or isolability
according to the FDT were removed, which together with extraction resulted in
reduced redundancy. By applying the MSO-method on these subsystems, a sub-
set of the MSOs, which results in the same potential isolability and detectability
as the sets generated by the MSO-method, can be computed with a lower time
complexity.

4.1.2 MSO-sorting

As motivated in the introduction to Section 4.1 desirable properties of the gener-
ated residuals are high causality as well as sufficient resulting isolability. Based
upon this a sorting algorithm was developed. This sorting algorithm works in two
steps. First it divides the MSOs into subsets based on the best achievable causal-
ity in each MSO. Then it checks whether the subset of MSOs with best causality
alone will result in sufficient isolability. If that is the case then the current sub-
set is selected, if not then the subset is expanded by the subset with second best
causality and the process is repeated until either sufficient isolability is achieved
or all MSOs are included. The included MSOs are used for residual generation
which is covered in the following sections.

4.1.3 Sequential residuals

Sequential residuals are generated using the method seqresgen from the FDT.
By removing one equation from the MSO, the number of independent equations
and unknowns are identical in the remaining set, which is a necessary but not
sufficient condition for the equation system to be solvable. As it is not sufficient,
the validity of the result generated by the solver is tested in the algorithm. It
is also worth noticing that the residuals created by the FDTs seqresgen method
assumes that the derivatives are constant between its state estimates [6], similar
to the Euler-forward method.

Removal of MSOs

As stated earlier, the number of independent equations and unknowns being
equal is not a sufficient condition for the system to be (uniquely) solvable. There-
fore the algorithm is developed in such a way that if Matlabs solver solve (which
is used in the seqresgen method) fails to find a solution to the equation system,
the MSO that was used as input to the method is discarded. In the event that this
results in the remaining set of MSOs being empty, the algorithm has failed, else
the sorting and generating process is repeated, see figure 4.1.
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4.1.4 Observer based residuals

Given that the method ObserverResGen from the FDT can only generate ob-
servers based on low index problems, another method must be used for problems
of high index. As stated in Section 2.4.1 the method described by (2.18), for com-
putation of the D-coefficient (F(t)) in the feedback used in the observer, see first
subsection of this section. The P-coefficient (G(t)) is computed by using Lanner-
hed’s theorem, that will be presented in Section 5.1, in combination with PMP.
A summary on the computation of the P-coefficient is provided in the second
subsection of this section.

Computation of F

From Theorem 1 given in Section 2.4.1, a basic algorithm for computing F(t) has
been implemented. The algorithm rewrites the set of equations of an MSO to
the form described in (2.18). Once this step is complete, the symbolic toolbox in
Matlab enables calculation of the null space of the gradient of h by solving the
following equation;

hx(x1i , x2) ·
[
x1i
x2

]
= ~0 , x1i , 0 (4.1)

where x1 represent the states, x1i represents a specific state, and x2 represent the
algebraic variables. Based on equation (4.1) it can be determined what states x1i
that are part of the null space;

A = { i : equation (4.1) fulfilled for x1i }
V = ∪x1i ∀i ∈ A
W = x1 \ V .

Theorem 1 now states that any F(t) := F(t) = W results in a low-index observer,
which completed the computation of the necessary demands on F(t). Note that
these demands only resulted in limitation regarding the dimension of the coeffi-
cient. For simplicity, only ones and zeros were used as elements in F(t) in this
thesis. The flow chart of the algorithm is concluded below.

Figure 4.2: Flow chart, computation of F(t)

The algorithm in Figure 4.2 has similar limitations as the FDT seqresgen
method, given that the Matlab methods solve and jacobian is used in the
computation of V , see (4.1).
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Computation of G

When Calculating G a different approach is taken. The equations of the chosen
MSO are complemented with measurement error r which provides an exactly
determined equation system which is solvable in Dymola. However, as G is con-
sidered to be unknown at this point, at least one additional equation per state
must be added in order to achieve solvability. Instead of calculating G through
linearization of 2.18 as in [12], an approach based on Pontryagin’s Minimum Prin-
ciple (PMP) [9], was used in this thesis.

PMP is used to compute Gi , where i represents the index of each observed state.
By utilizing the theory described in Section 5.1, it is shown that the following
equation

Gi =
−2fi(x̂1, x̂2, z, t) − Fi(t)ṙ

r
(4.2)

describes the Gi that results in the integral of (F(t)ṙ +G(t)r)2 being minimal over
the chosen simulation interval. The details of the computation of Gi is found
in Section 5.1.1, while Section 5.1.2 covers the same application with a slightly
modified objective function.

4.1.5 High-index residual implementations

When generating observer based residuals, there is currently no support for high-
index MSOs in the FDT according to [6] . However, given that the equations are
written in the semi-explicit form as in (2.17), the method described in [12] can be
used to attempt index reduction. The methodology in Section 4.1.4 can therefore
be used to provide observer solutions to high-index problems. The FDT method
seqresgen is not limited to low-index problems in the same way, and therefore
there is no need to adapt the generation method of sequential residuals to high-
index problems.

Given that the sequential residuals can be generated for both high and low in-
dex MSOs, these are ideal to use when comparing the performance of the current
Matlab methods of the FDT and the new Dymola methods. This is therefore of
great importance to the investigation of Research Question 5.

4.2 Conversion from Matlab to Dymola

Once residuals with desired properties have been generated the last step in the
new method is to convert the corresponding MSOs back to Dymola. This section
covers this translation in more detail than previous sections. For clarity, the re-
sulting Modelica code of a residual based on (3.21) and (3.23) from the two tank
system, hereby referred to as the Dymola example, is included below.
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model sequent ia l_2
// Parameters
parameter Real twoTank_withfaults__a2 = 3 .0000e−02 , twoTank_withfaults__g = 9 .8100e+00;
// Var iables
Real twoTank_withfaults__x2 ( s t a r t =6 ) ;
// Measured s i g n a l s
M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t twoTank_withfaults__y2 , twoTank_withfaults__y4 ;
// output
Mo del i ca .B loc ks . I n ter fac es .R ea lO utp ut r ;
// Equations
equation
twoTank_withfaults__y4 = 2^ ( 1/2 ) * twoTank_withfaults__a2 * ( twoTank_withfaults__g * twoTank_withfaults__x2 )^( 1/2 ) ;
twoTank_withfaults__y2 = twoTank_withfaults__x2+r ;
end sequent ia l_2 ;

The variables and the parameters are handled in the following fashion; the
equations of the chosen MSO is searched for members of the models unknowns,
X as well as its parameters. If one of these members are found in the MSO, a corre-
sponding variable or parameter are declared as a Real parameter or Real variable.
In the Dymola example, the parameters correspond to RealtwoT ank_withf aults__a2
and twoT ank_withf aults__g, while twoT ank_withf aults__x2 represent the only
variable of the system.

Given that Dymola could not handle overdetermined systems, an additional un-
known variable was added in order to avoid singularity. This was achieved by
declaring a new Real output named r and adding this into the existing equation
system. By letting r affect only one equation in an additive manner, great simi-
larities with the FDT seqresgen method is achieved, as this equation then cor-
responds to the resEq-argument of the method, see [6]. The introduction of the
residual variable r therefore fulfilled two purposes. It enabled the achievement
of an exactly determined system, which is mathematically necessary, but it also
captured the information whether the equations of the MSO were fulfilled or not.
As stated in Section 2.14 certain observations z must be provided in order to com-
pute the value of the residual. These are declared as inputs in the model object,
see twoT ank_withf aults__y2 and twoT ank_withf aults__y4 of the Dymola ex-
ample.

By gathering the translated and modified MSO into a new Dymola model, with
input z and output r, a representation of the residual in Dymola was achieved.
In order to realize the system, known z must be provided to the model. This is
accomplished by using tables that contains these values and are connected to the
created model, see Figure 4.3. It is possible to connect the measurements of a sim-
ulation directly into the residual object. However, this is not treated in this thesis
as the adaptive step-length in Dymola (see Table 1.1) would bias the comparison
between the results in Matlab and Dymola, see Research Question 5.

The construction described in Figure 4.3 enables evaluation of multiple residuals
at once, and has access to derivative-approximations of the provided measure-
ments, which are provided by the combiTimeTables (see [5]). The combiTimeta-
bles are then connected to the translated residuals, which will have the form of
the Dymola example and are represented by the blue boxes to the right in Fig-
ure 4.3. In this thesis, the measurements in the combiTimeTables are generated
through a simulation of the provided model, although real measurements can be
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inserted and used in the method in an identical manner.

Figure 4.3: Residual Evaluation in Dymola for Two Tank System

4.3 Method Discussion

The current choice of method is a trade-off between applying general algorithms
and being finished within the time-limit of the project. General algorithms en-
ables testing of the variety of cases that appears when using multiple models, but
it also typically consumes more working hours than more model-specific solu-
tions. In order to verify that the algorithm works for the general case and not just
a specific model, a variety of models of different complexity are used during the
testing of the algorithm. Applications on simpler models also added certainty to
the results regarding the more general research questions, such as the comparison
between the current FDT implementations (Matlab) and the implementations in
Dymola, see Research Question 5. If only one model would be tested, the risk of
the results being biased would be much higher. Also, by testing the implementa-
tions on multiple models the robustness of the implemented algorithms could be
secured. This section will evaluate the advantages and disadvantages of a few of
the design-choices that were made during the thesis.

4.3.1 Structural Methods

While structural methods enables diagnostic analysis without unreasonable com-
plexity there is one serious drawback when using these methods. This drawback
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lies in the fact that the unknown variable x being present in equation ei is a neces-
sary but not sufficient requirement for computing and extracting x from ei . The
result of this being that what is viewed as an exactly determined system from
a structural viewpoint might not be uniquely solvable from a symbolic point of
view as mentioned in Section 4.1.3. For example, this situation occurs for all gen-
eral linear systems Ax = b where b is a column vector of length n and A is a n
times n matrix with linearly dependent rows. The implemented method however
means that potential information is lost, as sets of equations are discarded. This
clearly presents a conflict between accuracy and complexity, as evaluating if x
really is extractable from ei increases the complexity, and therefore inhibits the
main purpose of using structural methods in the first place.

4.3.2 Causality Sorting

The Causality sorting algorithm is based on the assumption that numerical dif-
ferentiation of noisy signals often results in poor accuracy, lower Signal-to-Noise
Ratio (SNR) and typically requires lowpass-filtering of the signal. By minimiz-
ing the number of numerical differentiations needed in the implementation, the
accuracy-loss is avoided.

4.3.3 Observer Generation

The method chosen for generation of F enables potential index reduction for high-
index problems, if the problems are formulated in the semi-explicit form. How-
ever, given that PMP is used to calculated the propertional term G, and PMP only
provides necessary and not sufficient conditions for optimality, there are poten-
tial flaws in the algorithm regarding if a found optimum is global. However one
of the benefits of the PMP implementation is that it is less dependent on a cho-
sen operating point compared to other methods, such as the method described in
[12] and the method that is currently implemented in FDT, see the FDT method
ObserverResGen in [6]. By formulating an optimal control problem, the chosen
G is a result of the combination of multiple operating points, which are selected
by Dymolas solver (Dassl) based upon the available measurement data. If an im-
plementation requires desired behaviour such as stability in multiple operating
points, the PMP method provides a way to allow each operating point to con-
tribute in a more even manner compared to linearization, which only takes one
operating point into account.

Another benefit of the PMP apporach used in this thesis is the properties that
follows from one of the chosen objective functions

∫ tf
ti

(F(t)ṙ + G(t)r)2dt. These
properties follows from the fact that this objective function reaches its minimum
value at (F(t)ṙ + G(t)r)2 = 0 ↔ F(t)ṙ + G(t)r = 0, which means that the chosen
observer will regulate r in the following manner,

Fi(t) = 0 =⇒ r → 0 (4.3)

Fi(t) , 0 =⇒ Fi(t)ṙ + Gi(t)r → 0 (4.4)
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where Fi(t) is assumed being a predetermined value.

Equation (4.3) describes the typical desired property of an observer based resid-
ual, namely that the residual variable will be pushed towards zero. The proper-
ties that follow from equation (4.4) on the other hand states that the behaviour
of r will be pushed towards the behaviour of the linear system described by
Fi(t)ṙ + Gi(t)r = 0. Given that Fi(t) can be set arbitrary (zero excluded), this
means that the pole of the linear system can be placed arbitrary as well.

4.3.4 Conversion to Dymola

By converting equations to Dymola, high-index DAE problems can be solved [5].
According to [5] Dymola enables the usage of a variety of numerical integration
methods. Although as mentioned in Table 1.1, only the standard Dassl-solver was
investigated in this thesis. By looking up the constant eps in the Modelica con-
stant library (Dymola 2018 Alpha) and the corresponding coefficient in Matlab
(Matlab R2016b) the results in Table 4.1 was found.

Table 4.1: Comparison of machine epsilons Matab/Dymola.

Language Value of eps
Matlab 2.2204 · 10−16

Dymola 1 · 10−15





5
Results

This section presents the achieved results of the thesis. The thesis has treated
several models, including the Two Tank Model from Section 3.5.1, the Cabin
Pressure Control (CPC) from Section 3.4.1, and the Secondary Enviromental Con-
trol System (SECS) from Section 3.5.1. These models were used in different ways
throughout the thesis, the SECS and Two Tank Model were converted successfully
to Matlab and therefore used to answer the questions that required application
of the FDT. The CPC was only used to investigate whether the parser method had
the potential of being applicable to Dymola models in general.

During the project a few theoretical achievements were also made, as optimal
control theory was used to determine the observer gain in a observer based resid-
ual. This result is summarized in Section 5.1.

5.1 Theory

The theoretical results of this thesis is an addition of the results of E. Frisk and
J. Åslund in [12]. A summary is given here for convenience. The theory treats
computation of observers based on a model of semi-explicit form;

ẋ1 = f (x1, x2, z, t)

0 = h(x1, x2, z, t) (5.1)

where x1 represents states, x2 represents other algebraic variables, while z repre-
sents known signals and time is represented by t. By letting the estimation error
r affect the state-estimation x̂1 in the following manner

˙̂x1 = f (x̂1, x̂2, z, t) + F(t)ṙ + G(t)r

0 = h(x̂1, x̂2, z, t, r) (5.2)
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both low-index and asymptotic stability can be guaranteed under certain condi-
tions according to [12].

The conditions for achieving low-index is provided by Theorem 1 in Section2.4.1.
In short that theorem states which conclusions that can be drawn based on the
design of the parameter F(t) given that f (x̂1, x̂2, z, t) and h(x̂1, x̂2, z, t, r) fulfills cer-
tain requirements. If these requirements are fulfilled, the problem described in
equation (5.2) (see also Example 5.2) can be guaranteed to have low index given
that the coefficient F(t) fulfills the demand that its image covers the span of W.
Where W is defined by the states x1i that under no circumstance is part of the
null space of the gradient of h; hx, see equation (2.20).

Theorem 5.1 (Lannerhed’s theorem). Let E be an MSO set of equations in the
form 5.1 that has the sub-sets X’ and Z’ in the set of unknowns X and in the set
of known signals Z respectively. Furthermore X’ and Z’ fulfill

X′ = {x ∈ X : x exists in E }
Z′ = {z ∈ Z : z exists in E }

Let ek represent the state equation ẋ1k = fk(. . .). Then if the following prerequi-
sites are fulfilled

1. ∃i : x1i ∈ W and the equations E\{ei} describes an injective mapping
X′ → Z′ .

2. Based on E an observer has been designed that

is based on the model in Equation 5.2 and

fulfills Theorem 1.

then the set of equations describing the observer can be expressed as a state space
model.

Proof: From equation (2.20) it is clear that the image of W is the set of the states
that are not part of the nullspace of hx. Given that it is only these states that have
derivatives that are effected by ṙ, the fact is that those corresponding states x1i
can be computed using a different equation than the one containing ṙ. This fact
follows from hx1i

, 0 ∀x2 and Prerequisite 1. With no demands regarding result-
ing causality, this means that x1i and its derivative can be considered known in
the equation which contains the time-derivative of x1i , ei . Given that this equa-
tion must have Fi , 0 according to prerequisite 2 it follows that ṙ can be explicitly
expressed by this equation. The expression can then be used to gauss-eliminate
all other cases of Fj , 0 : j , i, and the problem can therefore be rewritten in
state-space form. �

Lannerheds Theorem will now be clarified by an application on an MSO in
the form of equation (5.1), see Example 5.2.
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Example 5.2
Let

ẋ11
= x12

(5.3)

ẋ12
= g(x11

) (5.4)

0 = x12
− y2 (5.5)

be an example system in the form of (5.1). For this system it is clear that

x1 =
[
x11
x12

]
x2 = ∅

h = x12
− y2

Now, let an observer of the system in the form of equation (5.2) be expressed as

˙̂x11
= x̂12

+ F1 ṙ + G1r (5.6)
˙̂x12

= g(x̂11
) + F2 ṙ + G2r (5.7)

0 = x̂12
− y2 + r (5.8)

Given that x12
and not x11

is present in the algebraic constraint h, it is clear that

hx = hx1
=
[
0 1

]
→ V = {x11

}, W = {x12
}

As the linear span (spa) of W can be expressed as

W = spa(
[
0
1

]
)

it is clear that letting F =
[
F1
F2

]
∝
[
0
1

]
results in compliance with Theorem 1, and as

the observer is designed according to equation (5.2) the second prerequisite is ful-
filled. Now, as the removal of the second state equation (5.4) (The equation that
has Fi , 0) still results in expressibility of the unknown variables, the injectivity
can be verified. This is easily seen in this example as x̂12

is part of a linear func-
tion in equation (5.8) and an uniquely defined x̂12

results in an uniquely defined
x̂11

in equation (5.6), given that an initial state estimate is provided. Therefore,
under this mild assumption, the first prerequisite is fulfilled. Lannerhed’s Theo-
rem now states that the model of equation (5.6),(5.7), and (5.8) can be expressed

in state-space form. Insertion of F =
[
0
1

]
results in

˙̂x11
= x̂12

+ G1r (5.9)
˙̂x12

= g(x̂11
) + ṙ + G2r (5.10)

0 = x̂12
− y2 + r (5.11)

(5.11) =⇒ x̂12
= y2 − r (5.12)
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By using equation (5.12) x̂12
can be eliminated, which results in

˙̂x11
= y2 + (G1 − 1)r (5.13)

ṙ =
ẏ2 − g(x̂11

) − G2r

2
(5.14)

The equations (5.13) and (5.14) expresses a state space model, which means that
Lannerhed’s Theorem has been verified for this example. It is worth noticing that
equation (5.14) could be used for gauss-elimination of other cases of ṙ, although
this is not necessary in this example.

With the model written in state space form, an optimal control problem can
be formulated in order to compute the observer gain G(t).

Corollary 5.3. Assume that a set of observer equations fulfils Theorem 5.1 and
that a Hamiltonian that is convex with respect to observer gainG has been formed.
Then the optimal G can be computed using Pontryagins Minimum Principle.

Proof: The evidence of PMP providing necessary requirements for an optimum is
given in [9]. The fact that the Hamiltonian is convex with respect to the observer
gain G results in the local minimum being global according to the fundamental
properties of a convex function. �

5.1.1 Application of Theory: Optimization towards Stability

While Corollary 5.3 provides the theory needed for observer design, it leaves up
to the designer to choose among all the possible objective functions that leads
to a convex Hamiltonian. In this specific case, the square of the addition made
to the differential equation by the measurement error is used as f0, see equation
(2.21). The optimal control problem can therefore be formulated in the following
way;

min .
G(t)

tf∫
ti

(F(t)ṙ + G(t)r)2dt subject to

{
˙̂x1 = f (x̂1, x̂2, z, t) + F(t)ṙ + G(t)r
0 = h(x̂1, x̂2, z, t, r)

(5.15)

The initial/end time of the integral and specific placement of r in h are design-
parameters as well as the specific choice of F(t), although the dimension-requirement
of Theorem 1 must be fulfilled in order to guarantee low index. These require-
ments in combination with Theorem 5.1 and Corollary 5.3 enables the applica-
tion of PMP to the problem. The pointwise minimization of the Hamiltonian, H,
based on G(t) provides the last necessary equation. In order to clarify the differ-
ence between description of the quantities and the restriction that must be true
in the optimum, ∗ is used for notation of the optimum. The resulting equation
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system is

A = F(t)ṙ + G(t)r (5.16)

(2.22) (5.16) =⇒ H(λ, x̂1, x̂2, r, G(t)) = A2 + λ(f (x̂1, x̂2, z, t) + A) (5.17)

(2.23) =⇒ H ∗ = const (5.18)

∂H
∂G

(G(t)∗) = 0 (5.19)

Based on equation (5.19) it follows that;

∂H
∂G

= 2r(F(t)ṙ + G(t)∗r) + λr = 0 ⇐⇒ G(t)∗ =
−λ2 − F(t)ṙ

r
, r , 0 (5.20)

The fact that nothing can be said about G when r = 0 does not constrain the
solution, as it is clear from equation (5.16) that G only has effect if r , 0. It is
also logical that this case is ignored, as r = 0 is equivalent to all the equations in
the chosen MSO are fulfilled, which means that there is no measurement error to
generate a feedback from. Having r in the denominator can cause problems dur-
ing the simulation, therefore simplification of equation (5.16) with the result of
equation (5.20) might be necessary in order to cancel out r from the denominator
of G(t)∗. Based upon this, it is easy to confirm that the optimization problem is
convex through ∂2H

∂G2 = 2r2 > 0, r , 0 which confirms that any found candidate is
a global minimum.

It has been shown that the control G(t)∗ is optimal to the given optimal control
problem, and G(t)∗ has been expressed as a function of λ. Computation of λ
through (5.18) provides the resulting optimal control;

(5.18) ⇐⇒
/
(5.16), (5.20) ⇐⇒ A∗ = −λ

2

/
⇐⇒ (5.21)

⇐⇒ H = (−λ
2

)2 + λ(f (x̂1, x̂2, z, t) −
λ
2

) = const ⇐⇒ (5.22)

⇐⇒
d(λf (x̂1, x̂2, z, t) − λ2

4 )
dt

= 0 ⇐⇒ λf (x̂1, x̂2, z, t) −
λ2

4
= C ⇐⇒ (5.23)

⇐⇒ (λ − 2f (x̂1, x̂2, z, t))
2 − 4(f (x̂1, x̂2, z, t))

2 + 4C = 0⇐ (5.24)

⇐ C = 0, λ1 = 0, λ2 = 4f (x̂1, x̂2, z, t) (5.25)

The candidates in equation (5.25) are generated based on the assumption of the
constant C being equal to zero. This assumption was motivated by the fact that
C , 0 results in a square expression in the denominator of λ̇, which with high
certainty would disqualify the candidate as the adjoint equations would become
much harder to fulfil for the general f , see equation (2.24).

As both candidates for λ resulted in the Hamiltonian becoming constant, other
properties of the solution was considered in the final selection. λ = λ1 = 0 would
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result in most of the left-hand side of equation (5.17) being ignored. For the
case that the corresponding D-coefficient, Fi is equal to zero this would result in
Gi = 0 being an global minimum. As both G and F being equal to zero would
result in state estimation that completely ignores the measurement error, that
combination of parameter values should be avoided. Therefore that candidate is
discarded and the following conclusion is drawn;

λ = λ2 = 4f (x̂1, x̂2, z, t) (5.26)

Equation (5.26) in combination with equation (5.20) provides the following G

(5.20), (5.26) ⇐⇒ G∗ =
−2f (x̂1, x̂2, z, t) − F(t)ṙ

r
(5.27)

which results in optimal observer properties with respect to the chosen objective
function.

Example of Application

By applying equation (5.27) to the model of Example 5.2, the optimal observer
gain G∗ can be computed.

Example 5.4
Based on Example 5.2 it is clear that

f1(x̂1, x̂1, z, t) = x̂12
(5.28)

f2(x̂1, x̂2, z, t) = g(x̂11
) (5.29)

F1 = 0 (5.30)

F2 = 1 (5.31)

Equation (5.27) now enables the computation of the optimal observer gain with
respect to the objective function of equation (5.15);

G∗1 =
−2x̂12

r
(5.32)

G∗2 =
−2g(x̂11

) − ṙ
r

=
−2g(x̂11

) − (
ẏ2−g(x̂11 )−G∗2r

2 )
r

→ G∗2 =
−3g(x̂11

) − ẏ2

r
(5.33)

5.1.2 Application of Theory: Optimization towards Convergence

This section describes the application of Corollary 5.3 to another objective func-
tion. By selecting the objective function in the following manner

min .
G(t)

tf∫
ti

(F(t)ṙ + G(t)r)2 + Wr r
2dt subject to

{
˙̂x1 = f (x̂1, x̂2, z, t) + F(t)ṙ + G(t)r
0 = h(x̂1, x̂2, z, t, r)

(5.34)
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where W is a non-negative weight-coefficient, the optimization should result in r
converging to zero at a faster rate. It is easily noticed that Wr = 0 corresponds to
the same objective function as in Equation 5.15.

Given that the derivative of the Hamiltonian H with respect to G(t) has not
changed, Equation 5.20 still provides a valid description of G(t)∗. Therefore, by
replacing Equation 5.17 with

H(λ, x̂1, x̂2, r, G(t)) = A2 + Wr r
2 + λ(f (x̂1, x̂2, z, t) + A) (5.35)

the set of equations (5.35), (5.19),(5.18), and (5.16) describes the new system of
equations to be solved. The system is not solved analytically in this thesis.

Example of Application

The necessary demands for the optimal observer gain G∗ is stated in Example ,
however no analytical solution to the equation system is presented in this thesis.

Example 5.5
Based on Example 5.2 it is clear that

f1(x̂1, x̂2, z, t) = x̂12
(5.36)

f2(x̂1, x̂2, z, t) = g(x̂11
) (5.37)

F1 = 0 (5.38)

F2 = 1 (5.39)

Now, as the presence of G(t) in the Hamiltonian H has not changed, the optimal
observer gain G∗ is still expressed by equation (5.20). However, the adjoint vari-
able λ is not computed analytically for this case. The resulting equation system
to be solved is;

˙̂x11
= x̂12

+ G∗1r (5.40)
˙̂x12

= g(x̂11
) + ṙ + G∗2r (5.41)

0 = x̂12
− y2 + r (5.42)

H ∗ =
[
H ∗1
H ∗2

]
=
[

(G∗1r)
2 + Wr r

2 + λ1(x̂12
+ G∗1r)

(ṙ + G∗2r)
2 + Wr r

2 + λ2(g(x̂11
) + ṙ + G∗2r)

]
(5.43)

Ḣ ∗ = ~0 (5.44)

G(t)∗ =
[
G∗1
G∗2

]
=

1
2r

[
−λ1

−λ2 − 2ṙ

]
(5.45)
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5.2 Cabin Pressure Control

By using Dymola an XML-file was successfully generated from the CPC-model.
When applying the Parser from Section 3.2 to this XML-file, it could be stated
that the python parser xml.etree.ElementTree was successfully applied to
the file, see Section A.1. Complete translation of the model information to Matlab
was not achieved during the thesis, however, certain key problems were identified
that are necessary to solve in order to achieve a translation that works for general
Dymola models. One of these problems was the interpretation of advanced if-
statements, see the following example from the CPC-model.

if energyDynamics == Dynamics.SteadyState then
0 = Hb_flow + Qb_flow + Wb_flow;
else
der(U) = Hb_flow + Qb_flow + Wb_flow;
end if;

In the example of code, only one of the two branches/equations above is active at
the same time. Given that these equations contains different set of variables, the
structure of the complete model will differ depending on if the condition is true
or false. One way to bypass this problem is by performing multiple structural
analyses, one for each possible constellation of the conditions being true or false.
However, for the CPC model, which according to the performed investigation has
over 200 if-statements in this form, this would result in over

2200 > 1060 (5.46)

structures to investigate, given that each condition has the values true and false
in its range. Some reduction of the number of if-statements was achieved by
attempting to evaluate the conditions of each if-statement and only select the ac-
tive branch during the translation to Matlab. Only 100 conditions were evaluable
though, so additional methods or modification of the model is necessary, given
that 2100 > 1030 different structures still cannot be investigated within a reason-
able time-limit.

The benefits of only translating the model structure includes that no handling of
all special functions are necessary. For example, the CPC model includes many
thermodynamic descriptions, which of course, are not implemented in Matlab. If
a model would be translated as a symbolic model, see Section 3.7, then a com-
plete Matlab implementation of each of these functions would be necessary in
order to apply the FDT. It can therefore be concluded that while the CPC-model
is translatable to Matlab, there are certain obstacles that must be bypassed in
order to achieve a translation of the model. This concludes the investigation of
Research Question 1.
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5.3 Two Tank Model

This section will present the results of applying the methods in Section 4 on the
Two Tank Model from Section 3.5. Given that the Cabin Pressure Controller is
only treated as a structural model in this thesis according to Section 1.3, other
models must be used to verify the research questions that requires non-structural
implementations of the FDT. The investigation of the difference between imple-
mentations of residuals in Dymola and Matlab is one clear research question with
this requirement. All measurements are based on a simulation of the model with
the initial states being set to 6 meters and the input seen in Figure 5.1. Note that
no noise is used in this test, which means that differences can be linked directly
to the computation methods as there is no stochastic element in the test.
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]

Input of the Two Tank Model Simulation

Figure 5.1: The input used for the simulation of the Two Tank Model

5.3.1 Comparison of Residual Evaluation, Matlab and Dymola

By combining the equations (3.18), (3.21), (3.22) and (3.25) a non-algebraic MSO
is formed which is used for sequential residual generation by using the FDT. The
equation (3.20) is chosen as the redundant part, which results in integral causal-
ity. As stated earlier, the ramp-input of Figure 5.1 is used in order to achieve mea-
surements, which are used to evaluate the residual. Additional information on
the simulation is seen in Table 1.1 and there was no faults or noise implemented
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in the simulation. The data provided in Table 1.1 also provides the step-length of
250
500 = 0.5 seconds, which was used by the FDTs sequential residuals. The result-
ing samples of the measurements were stored and used for evaluation of both the
Matlab and Dymola version of the residual. The result is seen in Figure 5.2.
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10-3 Residual Evaluation, NoFault
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Figure 5.2: Evaluation of a Non-algebraic Residual in Matlab and Dymola

The equations (3.21) and (3.23) are also used to make a residual, where equa-
tion (3.23) is selected as the redundant part. The evaluation of this residual
uses another set of measurements; white noise with a standard deviation of 0.03
and a step-function was added to equation (3.21). The step-function resembled
fWaterLevel2 and is seen in the last subplot of Figure 5.3.
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Figure 5.3: Evaluation of an Algebraic Residual in Matlab and Dymola

There are more than just sequential residuals implemented in this thesis. For
instance, the original FDT observer method ObserverResGen is compared to
the method described in Section 5.1.2. The equations that are used for the ob-
server generation are equation (3.18),(3.19),(3.21),(3.22),(3.25) and (3.26), along
with data from a simulation of the model of the system. The computation of F us-
ing the methods developed in the FDT resulted in Fi = 1 for the state-estimation
that was based on equation (3.19). The value of F was a prerequisite to start the
observer generation in Dymola. The results of the Dymola implementation from
Section 5.1.2 with Wr = 0.05, is seen in the top subplot of Figure 5.4. The result
of the original FDT method is seen in the middle subplot, while the last subplot
shows the result of the original FDT method, but when using the initial state and
gain from the Dymola observer. These two observers are hereby referred to as the
old FDT observer and the new FDT observer.
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Figure 5.4: Result of Observer residuals

Summarized Conclusion

With the achieved results from the residuals implemented in Dymola and Matlab,
the comparison of the two residual implementations can begin, which enables in-
vestigation of Research Question 5. Please notice that this comparison does not
state whether Matlab or Dymola is a better implementation language in general,
but rather what benefits and drawbacks the current methods in the FDT has com-
pared to the new Dymola methods.

The residuals created by the seqresgen method in the FDT clearly results in
poor estimates when the derivatives have a high rate of change, which corre-
sponds to the system being in an excited state. This is seen in the first 20 sec-
onds of Figure 5.2, which coincides with the period where the slope of u deviates
from zero, see Figure 5.1. It is therefore reasonable to assume that the poor result
in Matlab originates from the faulty assumption of the derivatives being constant
between each state estimation, which follows from the Euler forward method that
is used in the FDT, see [6]. This in combination with use of a constant step-length
of 0.5 results in the poor accuracy. The corresponding Dymola result only has a
measurable deviation from zero close to the 20 seconds mark, which corresponds
to the point where the ramp input suddenly decelerates to a flat line. This devi-
ation is however corrected quickly compared to the Matlab version and this in-
dicates that the backward differentiation formulae method (DASSL) that is used
in Dymola is more suited for non-algebraic residual-evaluation if the monitored
system is in an excited state. The DASSL-solver also has a variable step-length,
which contributes to the higher precision of the Dymola method.

The result of the algebraic residuals from Figure 5.3 however, indicates a very
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small difference in performance. This is not unreasonable as differences that fol-
lows from machine epsilon (see Table 4.1) or the Dymola tolerance of 0.0001 is
negligible compared to the effect of the noise in the measurements. One clear
benefit of the Matlab version though, is that the seqresgen method in the FDT
produces residuals that are evaluated sample by sample, which means that the
method is more suited for real-time applications. Atleast when compared to
the current Dymola implementation, that requires all the measurements to be
present in tables, see Figure 4.3. On the other hand, given that the original model
was implemented in Dymola, having the diagnostic system in Dymola as well en-
ables simulation of the entire system; both original model of the system that is
monitored and the diagnostic system. This is a clear benefit as it widens the us-
age of the FDT towards users that rely on Dymola models, which includes Saab,
the client of this project.

The difference between the residual evaluation for the observers in Figure 5.4
can be partly explained by the fact that the initial values are only recommended
values in Dymola [5], while they are final in the Matlab evaluation. This means
that a poorly chosen initial value is easier to correct with sensor-data in Dymola
compared to Matlab.

Apart from the interpretation of initial values it is harder to link the differences
to a special cause, given that the observers are computed in such different ways.
The Dymola observer has the benefit of using the available measurements for
computing the optimal observer gain with respect to the chosen objective func-
tion, see equation (5.34). As the measurements are used for the gain estimate,
there is no need for a predetermined operating point, which widens the usage
of the method. Additionally, the Dymola observer is not limited by index of the
used MSO, which is a great improvement over the old observer method. The
sharpest within a decent time limit was seen in the new FDT observer though,
even if the Dymola Observer reacted even more, but with over 100 seconds af-
ter the fault was implemented. This indicates that the Dymola observer is more
suited for applications where a low risk of false alarms is needed, and timing is
less crucial.

It is clear that the FDT benefits from the Dymola method as the performance of
the observer drastically improves when the Dymola estimates of the initial state
is used, as well as an observer gain that is generated using Lannerhed’s Theorem
and PMP instead of just a random one, see the last subplot of Figure 5.4.

Finally, the optimization done in the Dymola method can easily be compared to
an LQ-regulator, as the integrand of the objective function (F(t)ṙ +G(t)r)2 +Wr r

2

contains a combination of punishment on effort, which corresponds to the first
square, and state, as r can be expressed as a state according to the proof of Lan-
nerhed’s Theorem. This partly explains the benefits of the Dymola observer com-
pared to the old FDT observer seen in Figure 5.4. This concludes the investigation
of Research Question 5.
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5.4 SECS Model

The achieved results based on the SECS Model of low fidelity is presented in
this section. The results consists of theoretical results such as the investigation
of isolability (see Section 5.4.1) and complexity (see Section 5.4.2), but also an
practical implementation of a diagnostic system is included (see Section 5.4.3).

5.4.1 Isolability analysis

The application of the IsolabilityAnalysis method from the FDT provided
the following isolability for the SECS model, given the pretext described in Sec-
tion 3.6. For clarification, the F_x notation is used in this section to describe
system modes that contains the fault f _x.

Figure 5.5: The Isolability potential of a Diagnostic system, given the sensors
provided in SECS and no causality restrictions

From Figure 5.5 it is clear that the faults F_mFlowEjector, F_mFlowP recooler
and F_etaP reCooler could not be isolated from each other with the current setup
of sensors. The faults F_mFlowP ack and F_etaT urb were however fully isolable
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from the rest of the faults. This result appeared to remain consistent despite
causality-restrictions, which was concluded by using the same method with causal-
ity inputs. This result is seen in Figure 5.6.

F_mFlowEjector F_mFlowPrecooler F_etaPreCooler F_mFlowPack F_etaTurb
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F_mFlowPack

F_etaTurb

Isolability matrix (derivative causality)

Figure 5.6: The Isolability potential of a Diagnostic system, given the sensors
provided in SECS and causality restrictions

By applying the method SensorPlacementIsolability of the FDT on the
model it can be established that there are 16 minimal combinations of additional
sensors that would result in full isolablility for the modelled faults. Also, each of
these combination consisted of 2 sensors. One of these combinations consisted
of sensors measuring the massflows through the Ejector and the Precooler. The
resulting isolability analysis after these sensors were added is seen in Figure 5.7.
It is worth mentioning that all these conclusions and results regarding isolability
are based on the SECS low fidelity model. Therefore it cannot be guaranteed
that the same results are applicable to the real system, or even a model of higher
fidelity. With this said, the investigation of Research Question 6 is concluded.
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Figure 5.7: The Isolability potential of a Diagnostic system, after adding ad-
ditional sensors to the sensors provided in SECS and no causality restrictions

5.4.2 MSO computation and Complexity

The isolability analysis only provides the theoretical limits of the generated diag-
nostic system. In order to achieve practical results, residuals must be generated
and evaluated. In this thesis the residual generation was based on MSOs. When
computing MSOs, the method in Section 4.1.1 was used. The method was applied
for sub-models of SECS with degree of redundancy 7 to 10 and the time was mea-
sured for each application. As earlier studies in the field indicated that most
MSO-generating algorithms was of exponential complexity [11] , the following
assumption was made;

T ≈ C1e
C2n (5.47)

where T is the execution time, n is the degree of redundancy and C1,C2 are un-
known coefficients. Based on the measurements it could be stated that;

C1 ≈ 1.61 · 10−4 (5.48)

C2 ≈ 1.52 (5.49)

resulted in the best fit in the least-squares sense to the acquired measurements.
The measurements and the resulting fitted curve from Equation 5.47 is seen in
Figure 5.8.
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Figure 5.8: Resulting Execution time versus Degree of Redundancy

Summarized Conclusion

The result seen in Figure 5.8 indicates that the MSO-generating method of this
thesis is of exponential complexity. The resulting coefficient C2 also supports
this, as the following Maclaurin-series is achieved for Equation 5.47;

C1e
C2n = C1

∞∑
k=0

(C2n)k

k!
(5.50)

from which it is clear that C2 > 1 results in slower decay for the kth-term for
large k compared to C2 < 1. The result of C2 = 1, 52 therefore supports the hy-
pothesis that the complexity is exponential or at least that it is not probable for a
polynomial of limited order to provide as accurate description of the complexity.
The time-complexity of the algorithm is therefore considered being exponential
and this concludes the investigation of Research Question 2.

5.4.3 Diagnostic System Generation

While the MSO-algorithm from Section 4.1.1 was successful in generating MSOs
for the SECS, most of the MSOs could not be used for sequential residual genera-
tion in the FDT. One of these sets, the sensitive MSO, was investigated as it had
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sensitivity for both fmFlowP ack and fetaT urb. Given that the sensitive MSO had
10 if-statements, atleast 9 if-statements had to be part of the equation system to
be solved, which resulted in a problem that could not be handled by the current
FDT implementation. This set of equations is hereby refereed to as the sensitive
MSO.

However, by using the method described in Section 4.2 and convert the sensi-
tive MSO back to Dymola, the resulting equation system could be solved. The
MSO-generation algoritm also found a couple of MSOs that had no sensitivity to
any of the modelled faults. One of these, the non-sensitive MSO, was also chosen
for residual evaluation. It is worth mentioning that the non-sensitive MSO had
equations in common with the sensitive MSO. The result of these residuals based
on a Z provided from a noise-free simulation of the system in faultfree mode is
seen in Figure 5.9.
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Figure 5.9: Residual result of two Algebraic residuals based on SECS with
no faults present

When the fault F_mFlowP ack was present, the sensitive MSO resulted in an
unsolvable system, at a relative fault at 5 percent. The same effect was achieved
when a non-monitored fault (F_nonmon) in the form of a biased temperature
sensor was implemented. The result of the residual based on the non-sensitive
MSO is seen in Figure 5.10.
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Figure 5.10: Non-sensitve Residual response to F_mFlowP ack and
F_nonmon

The resulting reactions of the residuals from the sensitive MSO and the non-
sensitive MSO are summarized in Table 5.1 for all the tested system modes.

sensitive MSO non-sensitive MSO
NF solvable no reaction
F_mFlowP ack unsolvable no reaction
F_nonmon unsolvable reaction

Table 5.1: Resulting observations of residuals under different system condi-
tions

Summarized Conclusion

The observations of the chosen MSOs all differ from each other when the differ-
ent system modes are tested, see Table 5.1. From Definition 1 it follows that the
tested modes are isolable from one another. It can therefore be concluded that
false alarms (See Research Question 7) can be avoided to some degree by utiliz-
ing non-sensitive MSOs similar to the non-sensitive MSO used in this thesis. The
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point regarding the non-sensitive MSO having equations in common with the
sensitive MSO is of great importance however, as the non-sensitive MSO then
provides model-validation of some of the equations used in the generated resid-
ual. This is achieved by checking consistency in its sets of equations, which in-
cludes some equations from the sensitive MSO. By using both of these types of
sets in the method, both diagnostics and model-validation can occur in parallel
which is of great interest as it reduces computation time compared to approach-
ing the fields in series and, as shown here, enables reduction of the risk of false
alarms.

The observant reader might have reacted to the fact that the residual based on
the sensitive MSO is not exactly equal to zero in Figure 5.9. This is due to the
fact that the unit-information is lost in the translation process. In Matlab for ex-
ample, pressure-variables are of the type double while in Dymola the units for
pressure includes Bar, kP a, P a and so on. This in combination with some of the
parameters being hard coded results in trouble during the reconstruction of the
model. For example; the pressure constant 95 results in very different model be-
haviour if it is interpreted as 95 P ascal compared to 95 Bar. Therefore, given that
there is no support for units in the current version of the FDT, great precaution
is necessary when interpreting results from the residuals generated in Dymola.
This conflict is minor however, given that the current FDT implementation could
not generate any residual for the same set of equations, regardless if a fault was
present or not. This contributes to the investigation of Research Question 5.

The Dymola implementation could solve the equation system provided by the
sensitive MSO given that the measurements were taken from a simulation of the
system without any implemented faults. The Matlab solver failed to generate a
solution to the same equation system. Therefore, the results also contributes to
the investigation of Research Question 5.



6
Conclusions and Future Works

This section provides the conclusions (see Section 6.1) of the thesis as well as
suggestions on improvements that could be included in future applications. The
topics of Model Translation (see Section 6.2) and Residual Generation (see Section
6.3) are treated.

6.1 Conclusions

This thesis describes computation of diagnostic systems based on models imple-
mented in Dymola. Dymola is a program that uses the language Modelica. The
Dymola models are translated to Matlab, where an application called Fault Di-
agnosis Toolbox, FDT is applied. The FDT has functionality for pinpointing
minimal overdetermined sets of equations, MSOs. The algorithm for generating
MSOs that was implemented in this thesis has exponential time complexity with
regards to what level the system is overdetermined, also known as the degree of
redundancy. The thesis also included tests of these MSOs through generation of
residuals, which are functions that are equal to zero given that the system is fault-
free. Residual generation in Dymola was added to the original methods of the
FDT and during the thesis the results of the Dymola methods were compared to
the original FDT methods. It could thereby be concluded that adding the Dymola
methods to the FDT resulted in higher accuracy, as well as a new way to compute
observer gain.

By applying the FDT to Saabs model of the Secondary Environmental Control
System, SECS and the simpler Two Tank System, it could be validated that the
computational properties of the developed methods in Dymola and Matlab dif-
fers and that it therefore exists benefits of adding the Dymola implementations
to the current FDT methods. Furthermore, the investigation of the potential isola-
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bility based on the current setup of sensors in SECS showed that full isolability
is achievable by adding 2 mass flow sensors, and that the isolability was not lim-
ited by causality constrictions. One of the found MSOs was solvable in Dymola
when given data from a faultfree simulation. However, when faults were imple-
mented into the simulation, the resulting equation system of the residual became
singular. By utilizing MSOs that had no reaction to any modelled faults, certain
non-monitored faults could be isolated from the monitored ones and thereby re-
duce the risk of false alarms.

Some residuals were generated as observers, and a new method for constructing
observers was found during the thesis by using the deduced Lannerheds theorem
in combination with Pontryagin’s Minimum Priniple. This method enabled evalu-
ation of observer based residuals in Dymola without any selection of a specific op-
erating point, as well as evaluation of observers based on high-index DAEs. The
method also resulted in completely different behaviour of the estimation error
compared to the method that was already implemented in the FDT. For example,
one of the new observer-implementations achieved an estimation error that had
much faster convergence towards zero when no faults were implemented in the
monitored system, as well as having a sharper reaction to implemented faults.

6.2 Model Translation

In order to apply diagnosis to a general Dymola model, the parser from Section
3.3 must be developed. A reasonable first step on this topic is to achieve a trans-
lation of a general models structure. This would enable utilization of FDTs struc-
tural methods without any demands for model-specific functions being defined
in Matlab. As seen in the thesis however, there are downsides of using structural
methods, especially when these are used in combination with selection methods
such as if, see Section 5.2. Therefore, development of the FDT is necessary in or-
der to achieve robustness. This development should include excluding certain
matchings, that is, the ability to perform structural methods, but still taking
whether the variable is expressible from the current equation into account. If a
variable is not expressible, it limits the usage of the equation, given that another
matching must be found for this specific variable.

6.3 Residual Generation

The time-complexity of the MSO-generating algorithm is exponential with re-
spect to the degree of redundancy. This means that methods which reduce the
degree of redundancy, similar to the one implemented in this thesis are neces-
sary in order to keep the time-complexity under control.

It has also been shown in this thesis that overdetermined systems without sensi-
tivity to physical faults can be used for model-validation. In this thesis, a special
case was found for the specific sensitive MSO (see Section 5.4.3) but this must be
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generalized if it is to be applied on a general example. The minimal property of
the MSO is not beneficial in this case, given that the goal of the over-determined
system is not to diagnose, but rather validate as many equations as possible, while
still remaining insensitive to the possible physical faults. Non-minimal PSO sets
can also be of interest if they have fault sensitivity. It could be interesting to in-
vestigate whether the replacement of fault-signals with residual variables would
result in sharper reactions (that is, r deviating more from zero) when in presence
of those specific faults.

This thesis also provided a new method for observer generation, which could
be improved in future projects. The method currently focuses a lot on stability,
but a quick decay of estimation errors is typically also wanted when constructing
residuals. Therefore, the optimal control problem used to generate G should be
formulated in such a way, that it takes this desired property into account, prefer-
ably while maintaining the convexity of the current problem. The implementa-
tion in Section 5.1.2 has a higher weight on the decay of the estimation error, but
cannot be guaranteed to result in a convex optimal control problem. The optimal
control problem could also optimize with respect to the coefficient F, given that
Theorem 1 only specifies the dimension and not specific values of the elements
in F.

The implementation of residuals in Dymola does not only provide new ways of
constructing observers, but it also opens a couple of possibilities for implemen-
tation of real-time diagnostic systems, as the C-code generated in Dymola can be
applied to an integrated circuit. This enables a wide range of usage of the systems
generated by the FDT and it is there an interesting topic for future projects.
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A
Parsing of Modelica Models

There are advantages of extracting models from Dymola to other platforms, such
as Matlab. Instead of manually translating a model from Modelica to Matlab,
which depending on the size of the model might be a tremendous task, it could
be translated automatically. This thesis will explore one option on how the auto-
matic translation can be achieved.

A.1 XML to Matlab Parser

In order to extract and translate the information contained in the ModelicaXML
file software had to be developed. Therefore a program called xml to Matlab
Parser (xmp) was implemented. The choice of programming language fell upon
Python, which is suitable for a number of reasons. Python is foremost easy to
use and a widely used language. The availability of the open-source XML-parser
xml.etree.ElementTree (ET)[1] contributed as well, since it simplified the
coding significantly. The xmp uses the ET to extract the tree structure as a Python
object, on which operations is performed, to extract the information contained
within each element.

A.1.1 Limitations

In the scope of this thesis only models which are translatable to valid ModelicaXML-
code were considered. ModelicaXML-formatting is not standardised within the
Modelica community and different programs built upon the Modelica language
will have different standards. Therefore the structure will differ between differ-
ent software applications of Modelica and for some might not be accessible at all.
That is, only models translated by Dymola were taken into consideration. Since
the time was limited not all cases that might occur in the Dymola-specific Mod-
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Figure A.1: The root element of ModelicaXML.

elicaXML standard were taken into consideration. Instead the xmp was based
on the secs-model as an initial guideline and further elaborated with a model of
the cabin control pressure in Saab 39 Gripen. The limitations of the xmp will be
mentioned throughout this chapter.

A.1.2 Structure and Content of Dymola-based ModelicaXML

The ET-parser creates a Python object called ElementTree. The tree consists
of elements and can be visualised, as in Figure A.1, utilising the xsd file de-
scribed in Section 4.4.1 in [15]. An element is depicted as a rectangle containing
its tag. An optional element, i.e an element not necessarily needed to fulfil the
ModelicaXML-standard, is visualised as a rectangle with a dashed line. A plus
sign inside a square attached to the element means that the tree can be expanded
further, i.e that the element can have child-elements. Throughout this chapter
the element tag is written in bold and optional text strings and attributes shown
in italic.

In Figure A.1 the root element, called ClassDescription, is depicted. Most of
the information extracted by the xmp is contained in Composition which along
with its children is depicted in Figure A.2. Declaration contains all symbols
and components declared in the current component, i.e the Class element cur-
rently regarded, as shown in the bottom part of Figure A.3. In each of these
sub-components the structure of the Class element is repeated, recreating the
same nested structure as Modelica. As for the equations declared in the current
component they are found in the element Body.

When defining models in the fdt the tree-structure is completely flattened,
but the component hierarchy is kept in the names of variables to ensure unique
variable-names and to enable the conversion from Matlab back to Modelica. This
is achieved by always keeping track of which components have been entered and
storing their names in a list, which is flattened before printing.
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Figure A.2: The element Composition with its two child elements.

A.1.3 Symbols

In ModelicaXML variables, parameters and constants are all declared with Vari-
able as seen in Figure A.3. What Dymola regards as variables will be referred to
as symbols to avoid confusion. Parameters, constants, continuous and discrete
variables are the type of symbols that may appear in a ModelicaXML file.

Variables, Parameters and Constants

To distinguish between parameters and variables, the variable key variability is
used. This key is not present if the variable is continuous. For parameters the
key equals parameter, for discrete variables discrete and for constants constant.
However the latter is ignored since constants are inserted into the equations be-
fore the translation to ModelicaXML takes place. If the symbol is a parameter
it will have an assigned expression which is found in BindingEquation and/or
StartExpression. If the symbol is non-scalar the dimension is to be found in Di-
mension. Variables, independent of their causality are considered unknown and
will be added to the set of unknown variables X, unless they already are present
in the set of known variables Z.

Known Variables

In the field of fault diagnosis it is important to know, or to decide, which variables
are considered known. Typically these are sensor measurements or states which
are potentially measurable, and inputs. Which the known variables are has to be
determined manually, but is often a straight forward task. These are contained
in the set of known variables Z.

Fault Variables

Fault variables need to be distinguished from known and unknown variables. If
faults are implemented in the Modelica model, this can be achieved by using a
name convention. If no name convention is used, or if it is inconsistently used,
the faults can be sorted out from the rest manually afterwards and placed in the
set of fault variables F. If no faults are implemented in Modelica or if the user
chooses to add more faults this has to be done manually.

The fdt requires that a fault variable only occurs in one equation, this based
on the assumptions made in [8, page 5]. If faults are added manually, after the
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parsing step, the user has to take this into consideration. But if fault variables
are introduced directly into the model in Modelica, the xmp will handle this by
considering the original fault forg as an unknown variable. To avoid information
loss a new equation forg = fnew is added, where fnew will be added to the set of
fault variables instead.

A.1.4 Equations

Equations are contained in the element Body, containing the attribute bodykind,
which states if the children are of type equation, initial or algorithm. In Model-
ica these are declared under the equation, initial equation or algorithm section
respectively. In the fdt no differentiation is made between equations and algo-
rithms and therefore both will be referred to as equations. In the case of initial
equations these are valid only at the initialisation stage, and do not hold true at
other time instances. Therefore the initial equations are disregarded, otherwise
they might add false information. The element Body can contain different types
of equations, which are displayed in Figure A.4. All body types are implemented
except While. However the type MultiReturningFunction has been deemed ir-
relevant, for the current application of the xmp and is disregarded. The reason
is that they do not contribute with any structural information. In the models
regarded only assert statements are contained in MultiReturningFunctions,
which are used to verify that the specified conditions are met at the simulation
stage. These are typically used to ensure that a model operates within its limits
of validity, e.g. that an absolute pressure never assumes negative values. Com-
mon equations are contained in a SimpleEquation element and consist of a left
hand and right hand side marked with LHS and RHS respectively, as seen in
Figure A.4. Each side can contain any ExpressionType elaborated below in Sec-
tion A.1.5. Although often the left hand side only contains one variable, i.e a
ComponentReference.
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Figure A.3: The element Declaration and its children with the child ele-
ments Variable and Component expanded.
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Figure A.4: All Body types that can be present in ModelicaXML.
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A.1.5 Expressions

Expressions appear when parameters are assigned values and in equations. The
expression types

• Literal

• ComponentReference

• Unary

• Binary

• IfThenElse

• Range

• FunctionCall

• ForExpression

are the types that can occur in ModelicaXML, which are all handled by the xmp.

Operators

An operator is referred to as Binary or Unary. The operands, or operand if it is a
unary, are below the operator in hierarchy and can be any of the above mentioned
expressions.

Function

Functions are tagged with FunctionCall and are handled differently depending
on the function. The name of the function is to be found in the ClassName at-
tribute of the child-element FunctionPath. The input arguments are contained
in the element Arguments which has one or more children named Argument
containing the expression.

Functions that are called in the same manner in Modelica as Matlab, e.g.
trigonometric functions, are extracted as they are. Other functions, that do not
appear in the same manner in Matlab, must be treated differently. Derivatives
holds a special position amongst these since they are regarded as separate vari-
ables in the structural analysis. If a variable is differentiated in an equation the
derivative is added to the list of variables and a new equation is added in the
printing process. Other functions that do not have a Matlab equal are regarded
as external functions and have to be defined in a separate m-file. An example is
the spliceFunction, which performs a spline interpolation of two functions.
This has to be done manually, but the functions found in the standard library
are often well-documented within Dymola. Some Modelica-functions, for exam-
ple smooth or noEvent do not describe the model but are used to facilitate the
modelling process and are disregarded by the xmp.
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If- and When-Statements

Besides functions if- and when-statements are also defined by external functions.
If-statements are tagged with IfThenElse. They consist of a condition, a then-
branch and an else-branch. If the condition is true, the if-branch is executed,
otherwise the else-branch is executed. If-statements are predefined by a shell
function in Matlab which takes the condition and the then- and else-branches as
arguments. Note that the ExpressionType described here should not be confused
with the ifEquation from Figure A.4. Although they serve more or less the same
purpose they are expressed differently in ModelicaXML.

When-statements have the tag When and are of the type Body. They are
therefore extracted in another fashion than if-statements, but are implemented in
Matlab in a similar manner and will therefore be mentioned in this section. Each
when-statement is declared with its own condition and only one branch which is
executed if the conditions holds. Currently only when-statements where a single
variable is assigned inside the statement is supported. The when-statements are
bundled together as ifelse-statements without an else-statement in Matlab. The
condition of each when-statement constitute the condition of a ifelse-statement
except the first which is translated to the if-statement in the ifelse block. The
branches inside the when-statements are translated to the branches of the ifelse-
statement of the respective conditions.

References to Symbols

Symbols are declared inside ComponentReference which in turn contains one
or more Reference instances depending on if the symbol is declared locally or
outside the current component. As mentioned before the hierarchy is kept track
of and is compared to the references to avoid printing component names twice
or printing a false hierarchy in the final symbol string. The latter can occur if a
symbol is referenced to inside a component but declared outside of it. Compo-
nents, which are referenced to deeper down in the hierarchy, can be defined as
inner/outer. They are declared both at the higher level as inner, and at the lower
level as outer. An example for when the component typically is declared as in-
ner/outer is a component that contributes with information of the environmental
temperature and pressure of a system, or a component describing physical fields,
e.g. an electrical field. If this is the case the symbols contained in these types of
components will have different hierarchical structures depending on where they
are declared, but they all refer to the same component. Such types of components
do not have an attribute labelling them as inner/outer and the user therefore has
to specify if such components are present to achieve the correct hierarchy.

A.2 Conclusion and Discussion

One of the main questions this thesis aims to answer is how Modelica models are
portrayed in ModelicaXML. In this chapter the structure and content of Modeli-
caXML is presented. Implementation-wise the extraction has been solved mainly
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with for-loops iterating over the tree-structure. Since the structure is repeated
within components, recursive methods are used as well. Regarding the question
on how Modelica should be translated to Matlab, the required syntax of the fdt
is used as a base. Most equations in Modelica can be translated as is, since the
languages resemble each other, but some paraphrases where made to fit the fdt,
e.g. are derivatives handled differently.

Overall the xmp covers much of the Modelica language, but is not complete.
To translate some of the remaining features, for example while-loops and univer-
sal when-statements, primarily more time is required. Some other parts of Mod-
elica may offer greater challenges, e.g. translating all external functions, that can
appear in Modelica, into Matlab. Depending on the desired level of autonomy,
the implementation increases or decreases in complexity. Some limits of automa-
tion have already been detected, as the user for example has to define known
variables, and inner/outer components. It is likely that more cases may appear.
Furthermore, some solutions might work for the models regarded but perhaps
not for other models, which were not explored. Additionally, the Modelica As-
sociation, responsible for setting standards in the Modelica community, needs to
standardise the ModelicaXML-format, in order for further development to be jus-
tified. Still, the work presented in this thesis shows that it is indeed possible to
extract and translate Modelica models into other languages.
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