
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2017

Parsing and Validation of
Modelica Models Utilising
Fault Diagnosis

Karin Lockowandt

Master of Science Thesis in Electrical Engineering

Parsing and Validation of Modelica Models Utilising Fault Diagnosis

Karin Lockowandt

LiTH-ISY-EX--17/5032--SE

Supervisor: Viktor Leek
isy, Linköpings universitet

Ylva Nilsson
Saab Aeronautics

Examiner: Erik Frisk
isy, Linköpings universitet

Division of Vehicular Systems
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2017 Karin Lockowandt

Abstract

Models have become an indispensable tool within most industrial sectors and are
used to reduce costs, enhance the performance of a system etc. The computer sup-
port within modelling is extensive, whereof the programming language Modelica
is eminent, especially for multi-domain models. Dymola, a commercial program,
is built on Modelica and is foremost used for simulation purposes, but many ap-
plications for which models are useful are not supported by Dymola. Instead
other tools, e.g. Matlab, could be used to exploit the full potential of a model,
which means that it first would be needed to be translated. This master’s thesis
examines one of the possible ways to accomplish this. Specifically the possibility
to translate Modelica-models via an xml file, generated by Dymola, is examined.
The structure and content of this file is explored, and based thereupon a software
is implemented in Python, which successfully translates the models constituting
the base for this thesis. Specifically the method was developed on a model of a
sub-system of Saab 39 Gripen air-plane.

Besides porting models between different languages, it is of great interest to
determine how well a model describes the system on which it is based. Hence
a new method for model validation is developed using the Matlab Fault Diag-
nosis Toolbox, which also determines the Matlab syntax of the Modelica trans-
lation. The novelty with the developed method, compared to traditional model
validation methods, is that it is equation based. It is meant to point out specifi-
cally which equations are poorly fitted to validation data. On a simple example
model the method was successfully used to isolate a poorly fitted equation. This
is accomplished by introducing faults to the equations and generating residuals,
based on sets of over-determined equations. As a measure of the modelling er-
ror the estimation error of the simulated residuals is used, which are weighted
together depending on the fault properties of the residuals.

iii

Acknowledgments

Firstly I would like to show my gratitude to all my colleagues at Saab. A special
thanks goes to my supervisor Ylva Nilsson and Ingela Lind for your guidance.

I would also like to extend my thanks to my examiner Erik Frisk and super-
visor Viktor Leek at Linköping university for all the help and encouragement
during this time. I would like to thank Dag Brück for taking the time to answer
my questions concerning Dymola, and for taking interest in my work.

Furthermore I would like to extend my thanks to my family and friends. Es-
pecially Sandy, since without your support, I would never have made it this far.
Lastly I would like to thank you Olle, for supporting me in all my endeavours
and for your unconditional love.

Linköping, April 2017
Karin Lockowandt

v

Contents

Notation ix

1 Introduction 1
1.1 Objectives and Limitations . 1
1.2 Contributions . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Model of the Secondary Environmental Control System 4

2.1.1 Model Description . 4

3 Theoretical Background on Fault Diagnosis 7
3.1 Structural Analysis and Fault Diagnosis 7

3.1.1 Dulmage-Mendelsohn Decomposition 8
3.1.2 Minimally Structural Overdetermined Sets 9
3.1.3 Detectability and Isolability 9
3.1.4 Residual Generation and Selection 9
3.1.5 Fault Sensitivity Matrix . 10

3.2 Matlab Fault Diagnosis Toolbox . 11

4 Introduction to Modelica 13
4.1 Modelica Environments . 13
4.2 Reusage of Code . 14

4.2.1 Connectors . 14
4.2.2 Inheritance . 14

4.3 Extracting Models from Dymola . 14
4.4 Why XML? . 15

4.4.1 XML and ModelicaXML . 15

5 Parsing of Modelica Models 17
5.1 XML to Matlab Parser . 17

5.1.1 Limitations . 17
5.1.2 Structure and Content of Dymola-based ModelicaXML . . 18

vii

viii Contents

5.1.3 Symbols . 19
5.1.4 Equations . 20
5.1.5 Expressions . 23

5.2 Conclusion and Discussion . 24

6 Model Validation Method 27
6.1 Introduction of an Example . 27

6.1.1 High Fidelity Model . 27
6.1.2 Low Fidelity Model . 29

6.2 Introducing Faults . 29
6.3 Residual Generation and Selection 31

6.3.1 Diagnostic Properties . 31
6.3.2 Set of MSOs . 31

6.4 Model Validation Measures . 33
6.5 Model Validation Results of Example Model 33

6.5.1 Estimation Phase . 33
6.5.2 Validation Phase . 35

6.6 Conclusion And Discussion . 37

7 Properties of the SECS Model 39
7.1 Model Information . 39
7.2 Structural Information . 40
7.3 Fault Diagnostic Properties . 43

8 Summary and Future Work 45
8.1 Future Work . 45

8.1.1 Parsing of Modelica Models 45
8.1.2 Model Validation . 45

Bibliography 47

Notation

Fault Diagnosis Notation

Abbreviation Meaning

X The set of all unknown variables
Z The set of all known variables
F The set of all fault variables
so Set of Overdetermined Equations
mso Minimal Set of Overdetermined Equations
fdt Fault Diagnosis Toolbox
ode Ordinary Differential Equation
dae Differential Algebraic Equation
fsm Fault Sensitivity Matrix

Model Notation

Abbreviation Meaning

ecs Environmental Control System
secs Secondary Environmental Control System
pecs Primary Environmental Control System
ll Liquid Loop
hfm High Fidelity Model
lfm Low Fidelity Model

Parsing Notation

Abbreviation Meaning

xml eXtensible Markup Language
xsd XML Schema Definition
xmp XML to Matlab Parser

ix

1
Introduction

Modelling has become an essential tool in most industrial sectors. Possible appli-
cations are many and they are mostly used to evaluate not yet built systems or
already existing ones. A well fitted model can predict how a system will react
under certain premisses without having to perform experiments on the system
itself. Simulations in a computer environment is much more cost effective and
decreases the risk to influence man and environment negatively.

Models can be used for many purposes besides simulation, one being model
based diagnosis, which is the field within which this thesis is conducted. The
idea behind model based diagnosis is to use the model as well as measurements to
monitor processes in a system. In this thesis the theories and methods originating
from this field are used in a new method for model validation. This is achieved
by introducing faults to the model equations. Thereafter residuals are generated
based on structural properties of the model. These are simulated and evaluated
according to the developed method.

There are many tools available for modelling, suited for different applications.
Regarding multi-domain modelling, the language Modelica is especially useful
since it supports a wide range of domains, for example electrical, mechanics, ther-
mal etc. However, programs built on the Modelica language are mainly used for
simulation. By translating models from Modelica to other languages suitable
for analysis and calculations, e.g. Matlab, the benefits of both languages can be
exploited. The aspect of extracting and translating, or parsing models from Mod-
elica to Matlab is explored in this thesis.

1.1 Objectives and Limitations

The first question this thesis aims to answer is how the parsing from Modelica
to Matlab can be done. In the method investigated the model is first translated

1

2 1 Introduction

to xml by Dymola. Therefore one of the questions that has to be answered is
how different structures in Modelica are portrayed in the xml translation. The
second question is how different constructions in Modelica are to be interpreted
in Matlab. The implementation is based on a set of sample models, and the con-
structions appearing in those state the limitations of this thesis. This thesis is
not meant to cover the entire Modelica language, but serves as a proof of con-
cept and provides a foundation for further development. The third question is if
it is possible to determine which parts of a model that have inadequate fidelity,
utilising structural methods and fault diagnosis. More specifically how isolation
and weighting of the residuals can be achieved and to which extend this can be
used as a model validation method. Since the fdt used in Matlab only handles
low-index problems this thesis will be limited to only handling those as well.

1.2 Contributions

There is a need to translate models from Modelica to other languages. Previously,
automatic extraction of model variables and equations was not possible. This
thesis offers an approach on how the model can be extracted automatically on an
equation based format. It also contributes with documentation on how Modelica
is translated to the xml file used. Furthermore, a novel method on model vali-
dation is presented, enabling the user to isolate which equations, describing the
model, that are more or less accurate in comparison to measurement data.

1.3 Thesis Outline

In Chapter 2, the background to the thesis is described, including a description
of the model, which is part of the set of sample models. The following chap-
ter includes theory on structural analysis, fault diagnosis and a Matlab toolbox
based thereon, relevant for the methods elaborated in Chapter 5 and 6. A short
introduction to the modelling language Modelica is given in Chapter 4. Chapter
5 describes the conducted analysis, and method developed to extract and trans-
late models from Modelica to Matlab. The foundation of the software described
in this chapter was developed by the author, whereas contributions were made
by Petter Lannerhed, in the framework of an adjacent master’s thesis[12]. His
contributions were:

• the handling of array variables and parameters.

• handling faults appearing in more than one equation.

• interpreting For-loops.

An elaboration of the developed method for model validation is presented in
Chapter 6, including an evaluation of the method. Chapter 7 depicts the struc-
tural properties of the model presented in Chapter 2. Lastly the master’s thesis
is summarised in Chapter 8, where propositions of future work is given as well.

2
Background

There is a great need for translating models between different programming lan-
guages to exploit the features present in various programs. When it comes to
modelling multi-domain physical systems, Modelica is one of the more versatile
languages[3], but from an analytical point of view Modelica has its limitations.
Matlab on the contrary, is a widely used language and tool for analysis within
engineering, but is inferior to Modelica for some types of modelling. Therefore
it is advantageous to model in Modelica and thereafter or during the modelling
process use Matlab for analysis. The Matlab Fault Diagnosis Toolbox (fdt) is espe-
cially useful for structural analysis and fault diagnostics. To exploit this method
the model has to be translated from Modelica to the fdt. This can be done either
manually, which might prove to be very time consuming, or automatically. The
automatic way is preferred for two reasons: speed and robustness. Speed is im-
proved since everything is handled by the computer, and robustness is improved
since the influence of the human factor is removed. Although the languages share
similarities[3], Modelica specialises in modelling and simulation, and Matlab in
numerical calculations. Thus the languages completely differ in some areas, mak-
ing it a non-trivial task to translate models.

When drawing analytical conclusions about properties of a system from a
model it is important that the model is well fitted to the system. If the model
inaccurately reflects the actual system any conclusions drawn from the model
might be void. Therefore an essential part of modelling is model validation[9].
Traditionally, one way of doing this is by comparing how well the output of a sim-
ulation fits the measurements from a real life experiment. This gives an indica-
tion of how well the model performs in its entirety, but conveys little information
of which parts of the model are well-fitted. A novel method, developed using the
fdt, is presented in this thesis.

3

4 2 Background

2.1 Model of the Secondary Environmental Control
System

To model the air supply and cooling system, i.e the Environmental Control Sys-
tem (ecs) of the air-plane Saab 39 Gripen, Saab uses the modelling language
Modelica. The ecs can be divided into a Primary (pecs) system, a Secondary
(secs) system and a Liquid Loop (ll), allowing each sub-system to be modelled
separately. For different purposes more or less detailed models of the system is
necessary. Therefore a detailed high fidelity (hfm) and a reduced low fidelity
model (lfm) was developed. The hfm is used mainly for testing performance
requirements, while the lfm is mostly used in simulators. This thesis focuses
mainly on the lfm secsmodel.

2.1.1 Model Description

In Figure 2.1 the main part of the secs-model is depicted. Hot and pressurised
air is taken from the engine and cooled down. The cold air is used to cool down
the liquid in the ll, which in turn is used to cool equipment, not depicted in the
schematics. Three types of sensors are used to monitor the system, namely ten
temperature sensors, four pressure sensors, and one accelerometer. The high
amount of sensors monitoring the system makes the model useful for model-
based fault diagnosis.

2.1 Model of the Secondary Environmental Control System 5

Figure 2.1: Schematic of the Secondary Environmental Control System.

3
Theoretical Background on Fault

Diagnosis

Model based diagnosis is used to detect faults appearing in a system[13]. A fault
refers to a deviation of the expected output of a system. To be able to perform
fault diagnosis the system needs to be measured or observed. Besides using the
observations as a basis for fault detection, knowledge of the system can be used to
enhance diagnostic properties. This can be done by modelling the system and use
the information obtained in that model combined with observations to generate
a diagnostic statement.

3.1 Structural Analysis and Fault Diagnosis

The structural model of an equation-based model describes which variables are
contained in which equation and can be represented by an incidence matrix[5].
E.g. for a model, that contains the variables x1, x2, x3, y1 and y2, and is described
by the equations

e1 : y1 = x1 (3.1)

e2 : y2 = x2 (3.2)

e3 : x1 = 2x3, (3.3)

the structural information is depicted by Table 3.1.
It is notable that the structural information only considers which variables are

contained in the different equations and not in which manner these appear, e.g.
the value 2 in 3.3 is not regarded. This means that from a structural perspective
the equation y1 = x1, would yield the same result as e.g. y1 = ex1 . Structural
analysis is based on manipulating and analysing the structural information con-
tained in the models. The information obtained can be used to determine how a
diagnosis system can be designed.

7

8 3 Theoretical Background on Fault Diagnosis

Table 3.1: Structural information of the example given by equation 3.1-3.3.

x1 x2 x3 y1 y2
e1 x x
e2 x x
e3 x x

X− X0 X+

M−

M0

M+

Figure 3.1: An illustration of a Dulmage-Mendelsohn decomposition, where
M− represents the under-determined part, M0 the exactly determined, and
M+ the over-determined. Source: [11].

3.1.1 Dulmage-Mendelsohn Decomposition

The Dulmage-Mendelsohn Decomposition[2], visualised in Figure 3.1, is obtained
by reordering the equations in the structural model. The decomposition consists
of three parts, an under-determined part M−, an exactly determined part M0, and
lastly an over-determined part M+[6][11]. The associated sets of unknown vari-
ables are denoted with X. A sub-set becomes over-determined when the subset
contains redundancy, which arises if there exists more than one way to determine
a variable using only observations[13, pages 26-27]. For example, if a model con-
sists of a variable x1, a parameter k, the observations y1 and y2, which are defined
by

e1 : y1 = x1

e2 : y2 = kx1,

the variable x1 can be determined both with e1 and e2, i.e. the model contains
redundancy. From a diagnostic point of view the over-determined part is the
most valuable since it can be monitored.

3.1 Structural Analysis and Fault Diagnosis 9

3.1.2 Minimally Structural Overdetermined Sets

If a set of equations has more equations than unknowns, it is a Structural Over-
determined (so) set. Furthermore, a set is Minimally Structural Over-determined
(mso), if there are no proper subsets that are SO sets[10]. mso sets are subsets
of the model which are testable, i.e. they can be used as a basis for creating
residuals.

Since the number ofmso sets, and thereby also the computational complexity,
increase exponentially with the increase of redundancy in the model, it is not
applicable for models with high redundancy[5].

3.1.3 Detectability and Isolability

Whether a fault is structurally detectable and/or isolable can be determined from
the structural information. If a fault is present, and the system behaviour is dis-
tinguishable from the fault free case, the fault is detectable. This implies that it is
isolable from the fault free case. For a fault to be isolable from other faults, firstly
it has to be detectable. A fault fi is isolable from another fault fj if fi , but not fj
is part of an over-determined set. Definition 2 and 3 in [7, page 4] gives a more
formal approach.

3.1.4 Residual Generation and Selection

There are many ways to design and generate residuals. Residuals describe the
differences between measurements and estimates, calculated from model equa-
tions, which in a fault free case should be close to zero. In the faulty case the
measurements and estimates should differ, leading to residuals that diverge from
zero. In this thesis two approaches are used: the sequential residual generation
and differential-algebraic observers. These are well suited for automatic code
generation[5], which reduces the time spent on residual design.

Sequential Residual Generation

A sequential residual is based on an so set, for example an mso set. The set is
split up into two parts, the first being an exactly determined set of equations g1

i
with regards to the unknown variables x, and the other, g ri acts as the residual
equation

g1
i (x, z, f) = 0, i = 1, ..., n1

g ri (x, z, f) = 0, i = 1, ..., nr .

The exactly determined part g1
i is used to calculate the estimate x̂, which is used

in the residual itself:

r = g1
i (x̂, z, f) = 0.

10 3 Theoretical Background on Fault Diagnosis

If the set studied has dynamics in it, these have to be handled either by integra-
tion or derivation, which leads to larger computational uncertainties than if no
dynamic is present. In those cases an observer can result in smaller estimation
errors.

Observer Based Residual Generation

A residual implemented as an observer estimates all unknown variables and com-
putes the residual. If the unknown variables are divided into x1, containing the
states, and x2, containing the algebraic variables, the model can be described by

gi(dx1, x1, z, f) = 0, i = 1, ..., n

dx1 =
d
dt

x1, i = 1, ..., m.

Accordingly, the observer can be described by

˙̂x1 = g1(x̂1, x̂2, z) + K(x̂, z)gr (x̂1, x̂2, z)

0 = g2(x̂1, x̂2, z)

r = gr (x̂1, x̂2, z),

where K is the feedback gain. If the observer is on dae-form an ode solver can
be used in Matlab. It should be noted that the ode solver only handles low-
index problems, i.e. when the model equations only have to be differentiated
once to obtain the dae-form. Therefore only low-index problems are studied in
this thesis.

One of the big disadvantages with observers is that K has to be determined,
which seldom is a straight forward task. A proposal on how K can be determined,
for model validation purposes, is given in Chapter 6.

3.1.5 Fault Sensitivity Matrix

A set of equations is sensitive to a fault fi , if it is present in one, or more, of the
equations of the set. A residual, based on a given set of equations, will have the
same fault sensitivity properties as the set itself. This information is useful for
isolation purposes, and can be expressed as a fault sensitivity matrix (fsm). E.g.
if the fault variables f1, f2 and f3 are added to the equations 3.1-3.3 the following
model is obtained:

e1 : y1 = x1 + f1 (3.4)

e2 : y2 = x2 + f2 (3.5)

e3 : x1 = 2x3 + f3. (3.6)

If the set {e1,e3} is used to form a residual r1, and a residual r2 is based on e2, the
fault sensitivity is described by Table 3.2, and the fsm is given by:

3.2 Matlab Fault Diagnosis Toolbox 11

Table 3.2: Fault sensitivity of the example given by equation 3.4-3.6.

f1 f2 f3
r1 x x
r2 x

fsm =
[
1 0 1
0 1 0

]
.

3.2 Matlab Fault Diagnosis Toolbox

The development of a Matlab toolbox, called Fault Diagnosis Toolbox (fdt)[5],
based on the theories in this section, is an ongoing process, taking place at Linköping
university. This toolbox is very useful when performing structural analysis and
fault diagnosis on a system, as demonstrated in Chapter 6 and 7. When using the
fdt, the system to be analysed has to be defined as a model object according to a
given syntax. E.g. can the model described by equation 3.4-3.6, in Section 3.1.5,
be defined as:

modelDef.type = 'Symbolic';
modelDef.x = {'x1','x2','x3'};
modelDef.f = {'f1','f2','f3'};
modelDef.z = {'y1','y2'};

syms(modelDef.x{:});
syms(modelDef.f{:});
syms(modelDef.z{:});

modelDef.rels = {y1==x1, y2==x2, x1==2*x3};

model = DiagnosisModel(modelDef);

The syntax is described in detail in [5].

4
Introduction to Modelica

Modelica is an object-oriented equation-based programming language used to
model and simulate natural or artificial systems[8]. It is a-causal, meaning that
the user defines the physical characteristics of a system with equations. These are
sorted by the compiler, making the model solvable, which in turn means that it
can be simulated. The code generation is to a great extent done automatically and
the modelling effort is thereby heavily reduced[4]. The basic idea behind Model-
ica is that a model consists of components, which can be modelled separately and
connected to form a model of the entire system. Models, as well as components,
functions etc., are declared as classes.

4.1 Modelica Environments

Models can be represented visually as combined icons in the diagram view, or
as Modelica code in the text view. Although the diagram is a helpful tool for
the programmer, the Modelica text view is of greater interest for this thesis since
it reveals the equations and variables of the model. An example model named
Example in Modelica code can be defined as:

model Example
Real x;
Real y;
parameter Real k=1;
equation
x=sqrt(4)*k;
y=2*x+4;
end Example;

All variables, constants and parameters must be declared. In the example case
these are named x and k and are of type Real. The body, which defines the model,

13

14 4 Introduction to Modelica

can contain equations, algorithms and initial equations, which are declared in the
respective section. In the example above an equation is demonstrated. Usually
most equations are contained in this section, but equations that are only valid
at initialisation are declared under initial equation. In the algorithm
section the assignment statements are imperative, which means that the assign-
ments change the program’s states. This can be compared to the declarative
statements in the equation section, which corresponds to mathematical logic.
Instead of an equality sign an assignment sign (:=) is used in the algorithm
section. Like many other programming languages Modelica supports the use of
if, for, while etc. and a variety of different functions. All statements must be
terminated with a semicolon, as shown in the example.

4.2 Reusage of Code

Dymola includes Modelica-libraries, which enables the usage of pre-defined com-
ponents in the modelling process. This enables the reuse of code which saves the
user a lot of time and effort. New components are easily created to fit the need
of the programmer, by adding and connecting already existing ones. Modelica
invites to design models with a nested structure, i.e. using components within
components, which leads to models with a hierarchical structure.

4.2.1 Connectors

To connect components Modelica uses connectors. Variables that are specified as
inputs/outputs from a component can be connected if the types, e.g. Real or
Boolean, match. In the Modelica text view the command

equation
connect(a,b);

is used, which corresponds to a = b.

4.2.2 Inheritance

Modelica offers the possibility of inheritance, by defining a model as a partial
model. The model inheriting the properties of another model is declared with

model child
extends parent;
end child;

4.3 Extracting Models from Dymola

To be able to translate the model from Modelica to Matlab, it has to be extracted
from the Dymola environment first. To facilitate the extraction, the source code

4.4 Why XML? 15

of the Modelica-model can be represented by ModelicaXML[14]. In this thesis
the ModelicaXML refers to the eXtensible Markup Language (xml) standard of
Dymola 2017 FD01.

4.4 Why XML?

After the model has been extracted to an xml-file it can be used to translate
the model into other languages. The software program introduced in Chapter
5 enables this. One of the main advantages with this method is that the entire
model is summarised in one file, including possible inheritances. The output of
the parser is an m-file describing the model according to the fdt-standard in
section 3.2 on which diagnosis can be performed. This work flow is depicted in
Figure 4.1.

XML-translation
from Dymola

XML to Matlab
Parser

Diagnosis in
Matlab

Figure 4.1: Work flow of the implemented method, where the second step is
described in Chapter 5 and the third step in Chapter 6.

4.4.1 XML and ModelicaXML

xml is a standardised way for handling data. One of the main characteristics of
xml is that it distinguishes between the context and structure of the data. The
structure is defined by token elements, which appear as <x> content </x>,
where x is the name of the tag and content the content contained in the to-
ken element. An empty element tag, or a token element without content, may
be written <x/> and can contain attributes, which are incorporated by writing
<x attribute="value"/>. For example, the equation y = x + 1 would be
expressed as:

<SimpleEquation>
<LHS>
<ComponentReference>

<Reference
instanceName="y"/>

</ComponentReference>
</LHS>
<RHS>
<Binary Operator="+">

<Left>
<ComponentReference>

<Reference
instanceName="x"/>

</ComponentReference>
</Left>
<Right>

16 4 Introduction to Modelica

<Literal Value="1"/>
</Right>

</Binary>
</RHS>

</SimpleEquation>

in ModelicaXML. The token names appearing in this example are elaborated in
Chapter 5.

Depending on the application the syntax varies, but regardless two structural
requirements must be maintained. Firstly every document must have a root ele-
ment and secondly all tags must be properly nested. The requirements results in
a tree structure, which means that the model structure in Modelica is kept after
the transformation to ModelicaXML, which is written in xml. For the interested
reader, more information on how the ModelicaXML-file is created can be found
in [15]. The content and structure that an XML-file can have is defined by the
respective xml Schema Definition (xsd), which can also be used to visualise the
structure that may appear in a certain xml-file.

5
Parsing of Modelica Models

There are advantages of extracting models from Dymola to other platforms, such
as Matlab. Instead of manually translating a model from Modelica to Matlab,
which depending on the size of the model might be a tremendous task, it could
be translated automatically. This thesis will explore one option on how the auto-
matic translation can be achieved.

5.1 XML to Matlab Parser

In order to extract and translate the information contained in the ModelicaXML
file software had to be developed. Therefore a program called xml to Matlab
Parser (xmp) was implemented. The choice of programming language fell upon
Python, which is suitable for a number of reasons. Python is foremost easy to
use and a widely used language. The availability of the open-source XML-parser
xml.etree.ElementTree (ET)[1] contributed as well, since it simplified the
coding significantly. The xmp uses the ET to extract the tree structure as a Python
object, on which operations is performed, to extract the information contained
within each element.

5.1.1 Limitations

In the scope of this thesis only models which are translatable to valid ModelicaXML-
code were considered. ModelicaXML-formatting is not standardised within the
Modelica community and different programs built upon the Modelica language
will have different standards. Therefore the structure will differ between differ-
ent software applications of Modelica and for some might not be accessible at all.
That is, only models translated by Dymola were taken into consideration. Since
the time was limited not all cases that might occur in the Dymola-specific Mod-

17

18 5 Parsing of Modelica Models

Properties

UnitDefinitions

Composition

Annotation

ClassCurrentClass

DefaultExperiment

VendorAnnotations

ClassDescription

Figure 5.1: The root element of ModelicaXML.

elicaXML standard were taken into consideration. Instead the xmp was based
on the secs-model as an initial guideline and further elaborated with a model of
the cabin control pressure in Saab 39 Gripen. The limitations of the xmp will be
mentioned throughout this chapter.

5.1.2 Structure and Content of Dymola-based ModelicaXML

The ET-parser creates a Python object called ElementTree. The tree consists of
elements and can be visualised, as in Figure 5.1, utilising the xsd file described
in Section 4.4.1. An element is depicted as a rectangle containing its tag. An op-
tional element, i.e an element not necessarily needed to fulfil the ModelicaXML-
standard, is visualised as a rectangle with a dashed line. A plus sign inside a
square attached to the element means that the tree can be expanded further, i.e
that the element can have child-elements. Throughout this chapter the element
tag is written in bold and optional text strings and attributes shown in italic.

In Figure 5.1 the root element, called ClassDescription, is depicted. Most of
the information extracted by the xmp is contained in Composition which along
with its children is depicted in Figure 5.2. Declaration contains all symbols
and components declared in the current component, i.e the Class element cur-
rently regarded, as shown in the bottom part of Figure 5.3. In each of these
sub-components the structure of the Class element is repeated, recreating the
same nested structure as Modelica. As for the equations declared in the current
component they are found in the element Body.

When defining models in the fdt the tree-structure is completely flattened,
but the component hierarchy is kept in the names of variables to ensure unique
variable-names and to enable the conversion from Matlab back to Modelica. This
is achieved by always keeping track of which components have been entered and
storing their names in a list, which is flattened before printing.

5.1 XML to Matlab Parser 19

Declaration

Body

LexicalComment

0..∞

Composition

Figure 5.2: The element Composition with its two child elements.

5.1.3 Symbols

In ModelicaXML variables, parameters and constants are all declared with Vari-
able as seen in Figure 5.3. What Dymola regards as variables will be referred to
as symbols to avoid confusion. Parameters, constants, continuous and discrete
variables are the type of symbols that may appear in a ModelicaXML file.

Variables, Parameters and Constants

To distinguish between parameters and variables, the variable key variability is
used. This key is not present if the variable is continuous. For parameters the
key equals parameter, for discrete variables discrete and for constants constant.
However the latter is ignored since constants are inserted into the equations be-
fore the translation to ModelicaXML takes place. If the symbol is a parameter
it will have an assigned expression which is found in BindingEquation and/or
StartExpression. If the symbol is non-scalar the dimension is to be found in Di-
mension. Variables, independent of their causality are considered unknown and
will be added to the set of unknown variables X, unless they already are present
in the set of known variables Z.

Known Variables

In the field of fault diagnosis it is important to know, or to decide, which variables
are considered known. Typically these are sensor measurements or states which
are potentially measurable, and inputs. Which the known variables are has to be
determined manually, but is often a straight forward task. These are contained
in the set of known variables Z.

Fault Variables

Fault variables need to be distinguished from known and unknown variables. If
faults are implemented in the Modelica model, this can be achieved by using a
name convention. If no name convention is used, or if it is inconsistently used,
the faults can be sorted out from the rest manually afterwards and placed in the
set of fault variables F. If no faults are implemented in Modelica or if the user
chooses to add more faults this has to be done manually.

The fdt requires that a fault variable only occurs in one equation, this based
on the assumptions made in [7, page 5]. If faults are added manually, after the

20 5 Parsing of Modelica Models

parsing step, the user has to take this into consideration. But if fault variables
are introduced directly into the model in Modelica, the xmp will handle this by
considering the original fault forg as an unknown variable. To avoid information
loss a new equation forg = fnew is added, where fnew will be added to the set of
fault variables instead.

5.1.4 Equations

Equations are contained in the element Body, containing the attribute bodykind,
which states if the children are of type equation, initial or algorithm. In Model-
ica these are declared under the equation, initial equation or algorithm section
respectively. In the fdt no differentiation is made between equations and algo-
rithms and therefore both will be referred to as equations. In the case of initial
equations these are valid only at the initialisation stage, and do not hold true at
other time instances. Therefore the initial equations are disregarded, otherwise
they might add false information. The element Body can contain different types
of equations, which are displayed in Figure 5.4. All body types are implemented
except While. However the type MultiReturningFunction has been deemed ir-
relevant, for the current application of the xmp and is disregarded. The reason
is that they do not contribute with any structural information. In the models
regarded only assert statements are contained in MultiReturningFunctions,
which are used to verify that the specified conditions are met at the simulation
stage. These are typically used to ensure that a model operates within its limits of
validity, e.g. that an absolute pressure never assumes negative values. Common
equations are contained in a SimpleEquation element and consist of a left hand
and right hand side marked with LHS and RHS respectively, as seen in Figure
5.4. Each side can contain any ExpressionType elaborated below in Section 5.1.5.
Although often the left hand side only contains one variable, i.e a ComponentRe-
ference.

5.1 XML to Matlab Parser 21

TypeDefinitions

ClassClassDeclaration

Extends

Real

Integer

Boolean

String

Enumeration

DirectDependency

Dimension

0..∞

BindingEquation

StartExpression

Conditional

Variable

ClassPath

Class

Dimension

0..∞

BindingEquation

Modifier

Conditional

Component

Comment

0..∞

Declaration

Body

LexicalComment

Figure 5.3: The element Declaration and its children with the child elements
Variable and Component expanded.

22 5 Parsing of Modelica Models

LHS

RHS

SimpleEquation

MultiReturningFunction

IfEquation

Indices

1..�

Body

For

Condition

Body

0..�

Branch

1..�

When

While

Break

Return

Comment

0..�

BodyType

Figure 5.4: All Body types that can be present in ModelicaXML.

5.1 XML to Matlab Parser 23

5.1.5 Expressions

Expressions appear when parameters are assigned values and in equations. The
expression types

• Literal

• ComponentReference

• Unary

• Binary

• IfThenElse

• Range

• FunctionCall

• ForExpression

are the types that can occur in ModelicaXML, which are all handled by the xmp.

Operators

An operator is referred to as Binary or Unary. The operands, or operand if it is a
unary, are below the operator in hierarchy and can be any of the above mentioned
expressions.

Function

Functions are tagged with FunctionCall and are handled differently depending
on the function. The name of the function is to be found in the ClassName at-
tribute of the child-element FunctionPath. The input arguments are contained
in the element Arguments which has one or more children named Argument
containing the expression.

Functions that are called in the same manner in Modelica as Matlab, e.g.
trigonometric functions, are extracted as they are. Other functions, that do not
appear in the same manner in Matlab, must be treated differently. Derivatives
holds a special position amongst these since they are regarded as separate vari-
ables in the structural analysis. If a variable is differentiated in an equation the
derivative is added to the list of variables and a new equation is added in the
printing process. Other functions that do not have a Matlab equal are regarded
as external functions and have to be defined in a separate m-file. An example is
the spliceFunction, which performs a spline interpolation of two functions.
This has to be done manually, but the functions found in the standard library
are often well-documented within Dymola. Some Modelica-functions, for exam-
ple smooth or noEvent do not describe the model but are used to facilitate the
modelling process and are disregarded by the xmp.

24 5 Parsing of Modelica Models

If- and When-Statements

Besides functions if- and when-statements are also defined by external functions.
If-statements are tagged with IfThenElse. They consist of a condition, a then-
branch and an else-branch. If the condition is true, the if-branch is executed,
otherwise the else-branch is executed. If-statements are predefined by a shell
function in Matlab which takes the condition and the then- and else-branches as
arguments. Note that the ExpressionType described here should not be confused
with the ifEquation from Figure 5.4. Although they serve more or less the same
purpose they are expressed differently in ModelicaXML.

When-statements have the tag When and are of the type Body. They are
therefore extracted in another fashion than if-statements, but are implemented in
Matlab in a similar manner and will therefore be mentioned in this section. Each
when-statement is declared with its own condition and only one branch which is
executed if the conditions holds. Currently only when-statements where a single
variable is assigned inside the statement is supported. The when-statements are
bundled together as ifelse-statements without an else-statement in Matlab. The
condition of each when-statement constitute the condition of a ifelse-statement
except the first which is translated to the if-statement in the ifelse block. The
branches inside the when-statements are translated to the branches of the ifelse-
statement of the respective conditions.

References to Symbols

Symbols are declared inside ComponentReference which in turn contains one
or more Reference instances depending on if the symbol is declared locally or
outside the current component. As mentioned before the hierarchy is kept track
of and is compared to the references to avoid printing component names twice
or printing a false hierarchy in the final symbol string. The latter can occur if a
symbol is referenced to inside a component but declared outside of it. Compo-
nents, which are referenced to deeper down in the hierarchy, can be defined as
inner/outer. They are declared both at the higher level as inner, and at the lower
level as outer. An example for when the component typically is declared as in-
ner/outer is a component that contributes with information of the environmental
temperature and pressure of a system, or a component describing physical fields,
e.g. an electrical field. If this is the case the symbols contained in these types of
components will have different hierarchical structures depending on where they
are declared, but they all refer to the same component. Such types of components
do not have an attribute labelling them as inner/outer and the user therefore has
to specify if such components are present to achieve the correct hierarchy.

5.2 Conclusion and Discussion

One of the main questions this thesis aims to answer is how Modelica models are
portrayed in ModelicaXML. In this chapter the structure and content of Modeli-
caXML is presented. Implementation-wise the extraction has been solved mainly

5.2 Conclusion and Discussion 25

with for-loops iterating over the tree-structure. Since the structure is repeated
within components, recursive methods are used as well. Regarding the question
on how Modelica should be translated to Matlab, the required syntax of the fdt
is used as a base. Most equations in Modelica can be translated as is, since the
languages resemble each other, but some paraphrases where made to fit the fdt,
e.g. are derivatives handled differently.

Overall the xmp covers much of the Modelica language, but is not complete.
To translate some of the remaining features, for example while-loops and univer-
sal when-statements, primarily more time is required. Some other parts of Mod-
elica may offer greater challenges, e.g. translating all external functions, that can
appear in Modelica, into Matlab. Depending on the desired level of autonomy,
the implementation increases or decreases in complexity. Some limits of automa-
tion have already been detected, as the user for example has to define known
variables, and inner/outer components. It is likely that more cases may appear.
Furthermore, some solutions might work for the models regarded but perhaps
not for other models, which were not explored. Additionally, the Modelica As-
sociation, responsible for setting standards in the Modelica community, needs to
standardise the ModelicaXML-format, in order for further development to be jus-
tified. Still, the work presented in this thesis shows that it is indeed possible to
extract and translate Modelica models into other languages.

6
Model Validation Method

One of the main aims of this master’s thesis is to see if it is possible to validate
models against data originating either from another model, or from physical sen-
sors, utilising fault diagnosis methods. Model validation as such is not a novel
subject, however a new method to accomplish this is presented here. Compared
to more traditional model validation methods, the main aim of this method is
to determine specifically for which equations the estimation error is big. For a
model to be suitable for this method it has to be equation based.

6.1 Introduction of an Example

For the sake of understanding, the theory will be illustrated using an example,
namely a coupled two-tank system illustrated in Figure 6.1. To illustrate model
inaccuracies two models of the system are presented. The first, more detailed
model, which hereafter will be referred to as the hfm, is considered to more
accurately describe the real two tank system than a reduced lfm.

6.1.1 High Fidelity Model

The hfm is based on the physical relation of Bernoulli’s principle, which re-
lates the speed of flow of the water flowing out of the tank to the water level.
Bernoulli’s principle states that

v(t) =
√

2gh(t), (6.1)

where h denotes the water level, v the water flow speed and g gravity. Fur-
thermore the relation between the outflow q(t) and the water flow speed is given
by

27

28 6 Model Validation Method

x₁

x₂

Pump

Figure 6.1: Schematics of the coupled two-tank system .

q(t) = av(t), (6.2)

where a denotes the area of the hole through which the water flows out of the
tank. The volume of the water contained in the tank is expressed by Ah(t) where
A is the cross sectional area of the tank. The rate of which the volume changes
over time, i.e the time derivative, is

Aḣ(t) = u(t) − q(t), (6.3)

i.e the flow into the tank (u(t)) subtracted by the flow out of the tank. Equa-
tion 6.1-6.4 gives an explicit expression of the water level in the tank:

ḣ(t) =
1
A
u(t) −

a
√

2g
A

√
h(t). (6.4)

To model the two-tank system in Figure 6.1 two states are needed. The water
level of tank one and two are described by x1 and x2 respectively. In turn the
derivative of the states and thereby the model of the entire system is given by

ẋ1(t) =
1
A1

u(t) −
a1
√

2g
A1

√
x1(t) (6.5)

ẋ2(t) =
a1
√

2g
A1

√
x1(t) −

a2
√

2g
A2

√
x2(t). (6.6)

Equation 6.5 and 6.6 are the sub-models describing the dynamics of tank one
and two respectively. For diagnosis purposes sensors have to be modelled as

6.2 Introducing Faults 29

well. Since the hfm is used to collect data every variable is measurable, but to
imitate a reasonable system, four sensors are chosen. The four sensors measure
the following:

Table 6.1: Initial sensors in the two-tank system.

y1 Water level in tank 1.
y2 Water level in tank 2.
y3 Water flow between tank 1 and 2.
y4 Water flow out of tank 2.

6.1.2 Low Fidelity Model

An implementation in Modelica of the model above will provide data which can
be used for validating the lfm, hence called validation data from here on. In
order to test out the thesis mentioned in the beginning of this chapter a lfm
of the same system is needed. The simplification of the hfm can be done in a
number of ways. As mentioned earlier Equation 6.5 and 6.6 can be regarded as
two sub-models of the system. By replacing one of these, for example Equation
6.6, with a first order linear equation, which is chosen arbitrary, a simplified
model is obtained. The other equations remain the same and Equation 6.6 is
replaced by

ẋ2(t) =
kx1(t) − x2(t)

T
, (6.7)

where k and T are tuning parameters. A simulated step response, depicted in
Figure 6.2, shows that the lfm, with some tuning, is a very good approximation
of the hfm, at least at the given operating point. In Section 6.5, the lfm used is
not as well tuned, since a more pronounced deviation from the hfm is desirable,
for the purpose of simulating model errors.

6.2 Introducing Faults

The faults introduced for model validation purposes do not describe physical
faults that can arise in the system as per usual in fault diagnostics, but rather
form primary candidates for model uncertainty. The faults are implemented as
additive and will describe different kinds of faults that can possibly give rise
to model uncertainties, for example inaccurate parametrisation or badly chosen
model equations. To determine which model equations are inaccurate, faults are
added to some of the equations. They should preferably not be added to every
equation, but should only be added to equations that are suspected of contribut-
ing to model uncertainties. Adding faults to every equation may lead to unneces-
sary calculative complexity and decreased fault isolation properties. In the case
of the lfm it is assumed that equation e1 (6.8) and e2 (6.9) describing the dynam-
ics of the system are more likely to contribute with model uncertainties. Suppose

30 6 Model Validation Method

0 100 200 300 400 500 600 700 800 900 1000
5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

x2 of the LFM
x2 of the HFM

Figure 6.2: The step response of x2 of the hfm depicted in a solid line, and
x2 from the well tuned lfm presented in a dashed line.

that equation e5 (6.13) also is uncertain. With faults added to the mentioned
equations the example model is thus described by

e1 : ẋ1 =
1
A1

u −
a1
√

2g
A1

√
x1 + f1 (6.8)

e2 : ẋ2 =
kx1 − x2

T
+ f2 (6.9)

e3 : y1 = x1 (6.10)

e4 : y2 = x2 (6.11)

e5 : y3 = a1
√

2gx1 + f3 (6.12)

(6.13)

e6 : y4 = a2
√

2gx2 (6.14)

e7 : ẋ1 =
d
dt

x1 (6.15)

e8 : ẋ2 =
d
dt

x2, (6.16)

where the time dependency has been omitted for a shorter notation. Equations
6.15-6.16 might seem redundant, but they are necessary for the fdt to determine
the connection between the derivative and its primitive.

6.3 Residual Generation and Selection 31

x1 x2 dx1 dx2 f1 f2 f3 u y1 y2 y3 y4

e1

e2

e3

e4

e5

e6

e7

e8

DI

DI

Figure 6.3: Structural information of the example model, with unknown
variables to the left, faults in the middle and known variables to the right.

6.3 Residual Generation and Selection

When the model has been defined according to the fdt the model structure, and
diagnostic properties, which will determine how the residuals shall be formed,
can be examined. Based on the structural information mso-sets can be deducted
and used for residual generation.

6.3.1 Diagnostic Properties

The model structure will give a good indication on how the diagnosis system can
be designed. For the example used in this chapter the model structure is depicted
in Figure 6.3.

Besides examining the structural information, the Dulmage-Mendelsohn de-
composition, plotted in Figure 6.4, gives an informative picture of the diagnostic
properties. The whole model is contained in the over-determined part of the de-
composition, which means that all equations can be used as a base for mso-sets.

The fault detection and isolation properties, closer described in Section 3.1.3
are also relevant when designing residuals. All three faults appear in different
mso sets each, making them isolable from one another, which might not always
be the case. To achieve higher isolability the toolbox supports the placements of
new sensors, a subject not examined in this thesis.

6.3.2 Set of MSOs

There are ten possible mso-sets suggested by the fdt, of which three are needed
to achieve full isolability. These three are picked out using the test selection
method of the fdt. The first residual, r1, contains no dynamics but is purely
algebraic and is made up of the set {e3,e5}, where e5 contains the fault variable

32 6 Model Validation Method

dx1 dx2 x1 x2

Variables

e1

e7

e2

e8

e3

e4

e5

e6

E
qu

at
io

ns

Dulmage-Mendelsohn decomposition

D I

D I

D I

D I

f1

f2

f3

Figure 6.4: Dulmage-Mendelsohn decomposition of the example model.

f3. Thus r1 is sensitive to the fault f3. The sequential residual generation method
results in

x̂1 = y1

r1 = y3 − a1
√

2gx̂1,

where the first equation is used to estimate the state x1 and the second is used for
the residual calculation. The two remaining mso-sets have dynamic properties
and the observer method is therefore used. One of these mso-sets is made up of
the equations {e2,e3,e6,e8}, which will be sensitive to f2, and the observer based
thereon is described by

x̂1 = y1 (6.17)

˙̂x2 =
d
dt

x̂2 (6.18)

r2 = y4 − a2
√

2gx̂2 (6.19)

˙̂x2 =
kx̂1 − x̂2

T
+ Kr2, (6.20)

where K is the gain controlling the feedback in the observer. The third residual,
r3, is based on the mso set {e1,e3,e7}, and is sensitive to fault f1. The fault sensi-
tivity of the three residuals is depicted by the following fsm:

fsmlfm =

0 0 1
0 1 0
1 0 0

 .

6.4 Model Validation Measures 33

6.4 Model Validation Measures

The next step is to determine which residuals are significantly larger than zero
and how much larger than zero they are. To isolate which faults give rise to a
deviation from zero in the residuals, the fsmlfm is useful.

To determine which faults are significantly larger than others the magnitude
of the error has to be determined. For this purpose the prediction error, given by

V =
1
N

N∑
n=1

||y − ŷ|| (6.21)

is a good measure[13]. If the residuals are sensitive to one fault each the predic-
tion error of the corresponding residual will provide the measure of the fault, but
if one or more residuals are sensitive to more than one fault the measure has to
be weighted. The solution proposed here is to take the product of all prediction
errors of the residuals sensitive to each fault, i.e

Mfj =
∏

V ∈VFS

Vri , (6.22)

where VFS is the set of prediction error of the residuals with the corresponding
fault sensitivity to fault fj . In practice this can be achieved by multiplying each
row of the fsm, corresponding to the residuals, with the respective prediction
error Vri and then multiplying each non-zero element of each column.

6.5 Model Validation Results of Example Model

When the mso sets have been selected and the residuals created these need to be
evaluated. By evaluating the residuals against data originating from the model
itself the behaviour in the fault-free case can be studied. If the residuals are far
from zero, either the states are hard to estimate, or the model is not translated
well enough. This is referred to as the estimation phase, where the gain K of the
observers should be determined as well. The validation phase follows after the
estimation phase, where the model is validated against another model or a real
life system.

6.5.1 Estimation Phase

To determine how well the residuals perform in the fault free case the model is
validated against simulation data originating from the model itself. In the plots
depicted in Figure 6.5, the noise free data originates from the Modelica-model
of the system, where a step occurring at 20s is used as input. For the observers
the gain is set to K = 0 initially, which means that there is no feedback. This
will reflect the residuals ability to estimate the states blindly, i.e. without the
use of feedback from the measurements. The estimation error Vr1 of the first
residual r1 is very small compared to the others. This follows from the fact that

34 6 Model Validation Method

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5
10-8 r1

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1
10-4 r2

0 100 200 300 400 500 600 700 800 900 1000
-0.02

0

0.02
r3

Figure 6.5: Residuals of the lfm example model validated against data from
the same model, with zero gain in the observers r2 and r3.

r1 is purely algebraic. Therefore the estimation error of r1 is the error originating
from computational errors in Matlab. In the observer-based residuals, especially
in r3, but also noticeable in r2 for a higher value of K , a peak appears at the time
of the step.

In Figure 6.6 the states x1 and x2 are plotted in a solid line and their respective
estimate in a dashed line. The state estimate is taken from the observer described
by Equation 6.17-6.20. As seen in Figure 6.6, the state estimation is very good
and the difference, which displayed in a close-up of the plot in Figure 6.7, is
barely noticeable. The peaks in the residuals arise at the time of the step since x1
becomes harder to estimate due to the fast change, although the estimation error
is small enough that the estimation and measurement seem to overlap perfectly.
This problem can be partly remedied by raising the value of K , making the ob-
server adapt faster to the changes of the states, but is ultimately a limitation to
the precision that can be achieved. It may be noted though, that extreme sudden
changes, like that inflicted by an ideal step, do not occur naturally.

This step is useful for validating the parsing itself if the model is translated
from another language, but also for determining the observer gain K . In this ex-
ample the gain has been set with the goal to level out estimation errors occurring
in the fault free case. The maximum value of the residuals, after a simulation

6.5 Model Validation Results of Example Model 35

0 100 200 300 400 500 600 700 800 900 1000
4.5

5

5.5

6

6.5
x1

measurement
estimate

0 100 200 300 400 500 600 700 800 900 1000
5.6

5.8

6

6.2

6.4
x2

Figure 6.6: The step response of the example model and its estimate in the
fault free case.

with K = 1, is used as a guideline for an appropriate value of the gain. For ex-
ample would the gain in r2 be set lower than that of r3. This process often needs
some tuning and the aim should be to obtain approximately the same order in
the residuals.

6.5.2 Validation Phase

In the validation phase the data which the lfm is validated against is taken from
the hfm. This data may be measurements from a real life system or in this case
simulation data originating from another model. To illustrate the difference from
the estimation phase, the same input is used, i.e a step, which begins at time 20 s
and the gain is set to K = 0. In Figure 6.8 the step response of the hfm is plotted
in a solid line and the step response of the lfm in Matlab, i.e. the estimate is
plotted in a dashed line. The state x1 is estimated correctly which is expected,
since the equation is the same as in the hfm. The estimate of x2 is not well fitted
to the validation data, also as expected.

As a result r2 reacts by increasing approximately with a power of ten, while
the other residuals remain the same, as seen in Figure 6.9, when the gain is set to
the determined value in the estimation phase. By calculating the model valida-

36 6 Model Validation Method

20 30 40 50 60 70 80
4.7

4.8

4.9

5

x1

100 150 200 250 300

5.62

5.64

5.66

5.68

5.7

5.72

x2

measurement
estimate

Figure 6.7: A close-up of the plot in Figure 6.6 around the time of the biggest
estimation errors of each residual.

0 100 200 300 400 500 600 700 800 900 1000
4.5

5

5.5

6

6.5
x1

0 100 200 300 400 500 600 700 800 900 1000
5.5

6

6.5
x2

measurement
estimate

Figure 6.8: The step response of the example model and its estimate when
validating the lfm against the hfm.

6.6 Conclusion And Discussion 37

Table 6.2: Model validation measure Mfi of the validation data presented in
descending order.

Mf2
7.2134e-03

Mf1
3.0166e-05

Mf3
1.7411e-13

tion measure Mfi , according to 6.22, the result presented in Table 6.2 is obtained,
pinpointing f2 as the most probable source of model uncertainty.

6.6 Conclusion And Discussion

The method developed has proven to work for the purposes intended on this
simple example. Although still in its cradle it appears to be a useful tool for
narrowing down which equations might be less trustworthy. There are a few
aspects the method should take into consideration, which it, due to the limited
time available, does not. Different faults may not be as strongly detectable as
others, which will lead to the residual reacting less if a fault is weekly detectable.
Therefore the model validation measure would benefit from a weight depending
on how strongly detectable a fault is, which is not supported by the fdt.

As shown in Section 6.5.1 the residual can react if the state estimation is poor,
even though the model may be well fitted to the estimation data. If the estimate
can be improved, e.g. by choosing a more sophisticated method for state estima-
tion, the result may be more trustworthy. Another aspect to consider is the fact
that a higher gain pushes the estimate towards the real value, meaning that the
estimation error will appear lower than it really is. This is a downside of using
the observer-gain to normalise residuals. Furthermore, sequential residuals are
not incorporated in this method.

38 6 Model Validation Method

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5
10-8 r1

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5
10-3 r2

0 100 200 300 400 500 600 700 800 900 1000
-0.01

0

0.01
r3

Figure 6.9: Residuals of the lfm example model validated against data from
the hfm, with non zero gain in the observers r2 and r3.

7
Properties of the SECS Model

After the secs lfm has been parsed from Modelica to Matlab structural analysis
can be performed on the model. Due to the complexity of the secs model and
the limited time available, no results of the model validation are presented in this
thesis. Although the creation ofmso sets and residuals was successful after limit-
ing the number of known variables, the simulation of these were not. According
to the structural analysis, the residuals are low-index problems, but under cer-
tain circumstances, namely if some equations are non-injective, the daemay not
be solvable by only deriving or integrating once. This thesis is limited to only
examining low-index problems, since the solvers used cannot handle high-index
problems. This problem can be solved by translating the residuals back to Mod-
elica and letting Dymola solve the the dae, which is examined in [12].

7.1 Model Information

The lfm describing the secs system, depicted in 2.1, is implemented in Dymola
and consists of roughly 800 equations and the same amount of unknown vari-
ables. The secs lfm is mainly made up of equations encoded in the text layer of
Modelica, while the hfm is modelled using mostly predefined components, and
consequently contains a lot more equations. It is equipped with 15 sensors, that
from a diagnostic point of view are regarded as known variables. The model equa-
tions describe the flow of air from the engine through the system, specifically the
change of temperature and pressure throughout the system. After parsing the
model from Modelica into Matlab, 22 fault variables were added to equations,
that were regarded as very likely candidates for contributing with model uncer-
tainties.

39

40 7 Properties of the SECS Model

0 100 200 300 400 500 600 700 800

Variables

0

100

200

300

400

500

600

700

800

E
qu

at
io

ns

DI
DI

DI
DI DIDI

DI
DI

DI
DI

DI
DI

DI

DI
DI

DI

DIDI

DI
DI

DI

DI
DI

Figure 7.1: The Dulmage-Mendelsohn decomposition of the secs-model
without any sensors.

7.2 Structural Information

If no sensors are added to the known variables the model is exactly determined
and has no redundancy, which is an indication that the parsing is done correctly.
This follows from the fact that Modelica can only build a model if the model
is exactly determined. The Dulmage-Mendelsohn decomposition of the model,
with the sensor variables placed in X, is depicted in Figure 7.1.

As described in Chapter 2 the secs is equipped with ten temperature sen-
sors, four pressure sensors and one accelerometer. In Figure 7.2 the Dulmage-
Mendelsohn decomposition of the secs-model, with the sensor variables placed
in Z, is depicted. It contains no under-determined parts but an over-determined
part, seen in the bottom right corner, which is a necessity for the fault diagnosis.
The 15 sensors yield a redundancy of 15, as expected.

7.2 Structural Information 41

0 100 200 300 400 500 600 700 800

Variables

0

100

200

300

400

500

600

700

800

E
qu

at
io

ns

DIDIDI
DIDIDIDIDI

DIDIDIDIDIDIDIDIDIDI

DI

DIDI DI

DI

DIDIDI
DIDIDIDIDI

DIDIDIDIDIDIDIDIDIDI

DI

DIDI DI

DI

Figure 7.2: The Dulmage-Mendelsohn decomposition of the secs-model
with sensors. The over-determined part seen in the bottom right corner con-
tains the known variables.

42 7 Properties of the SECS Model

f21 f22 f1 f5 f7 f8 f2 f3 f4 f6 f9 f17 f10 f11 f12 f13 f16 f14 f15 f18 f19 f20

f21

f22

f1

f5

f7

f8

f2

f3

f4

f6

f9

f17

f10

f11

f12

f13

f16

f14

f15

f18

f19

f20

Figure 7.3: The fault isolability matrix of the secs model with the original
set of sensors.

7.3 Fault Diagnostic Properties 43

7.3 Fault Diagnostic Properties

Besides the structural information the fault isolation properties of the model can
be determined without having to simulate residuals. With the 15 original sensors
available, a fairly high isolability can be achieved, which is depicted in Figure
7.3. As Figure 7.3 suggests fault f21 and f22 are not isolable from any other fault.
This is clarified by Figure 7.4, where these two faults are not included in the
over-determined part, making them not isolable from the rest. To achieve higher
isolability more and/or different variables must be measured. It is also noticeable
that faults appearing in a cluster, for example the faults f1,f5,f7 and f8, are not
isolable from another either. The reason for this being that the faults appear
within the same mso set, as depicted in Figure 7.4. All residuals based on the
mso set will be sensitive to all faults appearing in it and hence can not be isolable
from another.

Since the redundancy of the model, with all the sensors included, was to high
for the fdt to be able to producemso sets, the number of known variables has to
be reduced. As a consequence the isolation properties will be deteriorated, but
this problem can be solved by removing and adding sensors in turn, depending
on which faults need to be isolated. E.g. the sensors appearing in the first part of
the secs can be moved from Z to X and analysed first. Thereafter, which sensors
that are to be regarded as known variables can be replaced to achieve different
fault isolation properties.

500 550 600 650 700 750 800 850

Variables

550

600

650

700

750

800

850

E
qu

at
io

ns

DIDIDI
DIDIDI

DI

DIDI DI

DI

DIDIDI
DIDIDI

DI

DIDI DI

DI

f1/f5/f7/f8

f2/f3/f13/f16

f4

f6/f18/f20

f9/f17
f10/f11/f14/f15

f12

f19

f21/f22

Figure 7.4: The over-determined part of the Dulmage-Mendelsohn decom-
position of the secs lfm with faults included.

8
Summary and Future Work

In this master’s thesis the possibility to extract and translate models from Mod-
elica in Dymola to the fdt in Matlab has been examined and successfully imple-
mented. The structure of the Dymola-based ModelicaXML-file was of the great-
est importance and was therefore examined closely. The result of the parsing
was then used as a base for testing the developed model validation method. Al-
though the method developed needs a lot more testing and further development
to be useful in practice, the method has been found to work.

8.1 Future Work

This thesis may have reached its end, but the work on the subjects investigated
have not. Therefore some proposals to possible ways to improve and continue
the progress on the subjects examined are presented in this section.

8.1.1 Parsing of Modelica Models

In this thesis the parsing of Modelica models to Matlab has been shown to be pos-
sible. To develop the xmp further, all cases occurring in the Modelica language
need to be covered and tested on more models. Furthermore, the option to trans-
late the model to other formats and languages than the fdt requires, should be
implemented to widen the area of use.

8.1.2 Model Validation

Introducing more specific faults, e.g. parameter faults, could be used to pinpoint
bad parametrisation. As already mentioned the downfall with introducing more

45

46 8 Summary and Future Work

faults is that it contributes to a rise in complexity and unsatisfactory isolation
properties.

One of the greater obstacles presented is getting an adequate estimate of the
states when dynamic is present in the model. Therefore a more sophisticated
method of estimation could be used to further reduce inaccuracies due to calcu-
lative limitations in Matlab. An extended or unscented Kalman filter could pos-
sibly offer a more accurate state estimation. Another improvement, preferably
used with a more refined state estimation method, is to normalise the residuals
after the estimation phase. This was partly investigated, though not thoroughly
enough to yield usable results in this thesis.

An entirely different take on residual evaluation than the one presented here
could be to use machine learning elements to design a diagnosis system. By using
simulation data from the model itself as correct data to train on, the system could
be taught to recognise when the residuals deviate from zero due to calculative
errors and when an actual fault is present.

Bibliography

[1] Elementtree overview. URL http://effbot.org/zone/
element-index.htm.

[2] Andrew L Dulmage and Nathan S Mendelsohn. Coverings of bipartite
graphs. Canadian Journal of Mathematics, 10(4):516–534, 1958.

[3] H Elmqvist, F Boudaud, J Broenink, D Brück, T Ernst, P Fritzson, A Jeandel,
K Juslin, M Klose, SE Mattsson, et al. Modelicatm-a unified object-oriented
language for physical systems modeling. Tutorial and Rationale, versión, 1,
1999.

[4] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica-a lan-
guage for physical system modeling, visualization and interaction. In Com-
puter Aided Control System Design, 1999. Proceedings of the 1999 IEEE
International Symposium on, pages 630–639. IEEE, 1999.

[5] Erik Frisk. Fault diagnosis toolbox. Department of Electrical Engineering
Linköping University, Sweden, 2016.

[6] Erik Frisk, Mattias Krysander, and Daniel Jung. A toolbox for analysis and
design of model based diagnosis systems for large scale models. Department
of Electrical Engineering, Linköping University, Sweden.

[7] Erik Frisk, Anibal Bregon, Jan Aslund, Mattias Krysander, Belarmino Pulido,
and Gautam Biswas. Diagnosability analysis considering causal interpreta-
tions for differential constraints. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 42(5):1216–1229, 2012.

[8] Peter Fritzson. Principles of object-oriented modeling and simulation with
Modelica 2.1. John Wiley & Sons, 2010.

[9] Torkel Glad and Lennart Ljung. Modellbygge och simulering. Linköping
University. Second edition. Studentlitteratur, 2004.

[10] Mattias Krysander, Jan Åslund, and Mattias Nyberg. An efficient algorithm
for finding minimal overconstrained subsystems for model-based diagnosis.

47

http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm

48 Bibliography

IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 38(1):197–206, 2008.

[11] Mattias Krysander, Jan Åslund, and Erik Frisk. A structural algorithm for
finding testable sub-models and multiple fault isolability analysis. In 21st
International Workshop on Principles of Diagnosis (DX-10), Portland, Ore-
gon, USA, pages 17–18, 2010.

[12] Petter Lannerhed. Structural diagnosis implementation of dymola models
using matlab fault diagnosis toolbox. Master’s thesis, Linköpings universitet,
2017.

[13] Mattias Nyberg and Erik Frisk. Model based diagnosis of technical pro-
cesses. 2008.

[14] Adrian Pop and Peter Fritzson. Modelicaxml: A modelica xml representa-
tion with applications. In 3rd Modelica conference, 2003.

[15] Ulf Reisenbichler, Hansjörg Kapeller, Anton Haumer, Christian Kral, Franz
Pirker, and Gert Pascoli. If we only had used xml. In 5th Modelica confer-
ence, September. Citeseer, 2006.

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Objectives and Limitations
	1.2 Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Model of the Secondary Environmental Control System
	2.1.1 Model Description

	3 Theoretical Background on Fault Diagnosis
	3.1 Structural Analysis and Fault Diagnosis
	3.1.1 Dulmage-Mendelsohn Decomposition
	3.1.2 Minimally Structural Overdetermined Sets
	3.1.3 Detectability and Isolability
	3.1.4 Residual Generation and Selection
	3.1.5 Fault Sensitivity Matrix

	3.2 Matlab Fault Diagnosis Toolbox

	4 Introduction to Modelica
	4.1 Modelica Environments
	4.2 Reusage of Code
	4.2.1 Connectors
	4.2.2 Inheritance

	4.3 Extracting Models from Dymola
	4.4 Why XML?
	4.4.1 XML and ModelicaXML

	5 Parsing of Modelica Models
	5.1 XML to Matlab Parser
	5.1.1 Limitations
	5.1.2 Structure and Content of Dymola-based ModelicaXML
	5.1.3 Symbols
	5.1.4 Equations
	5.1.5 Expressions

	5.2 Conclusion and Discussion

	6 Model Validation Method
	6.1 Introduction of an Example
	6.1.1 High Fidelity Model
	6.1.2 Low Fidelity Model

	6.2 Introducing Faults
	6.3 Residual Generation and Selection
	6.3.1 Diagnostic Properties
	6.3.2 Set of MSOs

	6.4 Model Validation Measures
	6.5 Model Validation Results of Example Model
	6.5.1 Estimation Phase
	6.5.2 Validation Phase

	6.6 Conclusion And Discussion

	7 Properties of the SECS Model
	7.1 Model Information
	7.2 Structural Information
	7.3 Fault Diagnostic Properties

	8 Summary and Future Work
	8.1 Future Work
	8.1.1 Parsing of Modelica Models
	8.1.2 Model Validation

	Bibliography

