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Abstract

In recent years, rules and regulations regarding fuel consumption of vehicles and
the amount of emissions produced by them are becoming stricter. This has led
the automotive industry to develop more advanced solutions to propel vehicles to
meet the legal requirements. The Hybrid Electric Vehicle is one of the solutions
that is becoming more popular in the automotive industry. It consists of an elec-
trical driveline combined with a conventional powertrain, propelled by either a
diesel or petrol engine. Two power sources create the possibility to choose when
and how to use the power sources to propel the vehicle. The strategy that decides
how this is done is referred to as an energy management strategy. Today most
energy management strategies only try to reduce fuel consumption using models
that describe the steady state behaviour of the engine. In other words, no reduc-
tion of emissions is achieved and all transient behaviour is considered negligible.

In this thesis, an energy management strategy incorporating engine dynamics
to reduce fuel consumption and nitrogen oxide emissions have been designed.
First, the models that describe how fuel consumption and nitrogen oxide emis-
sions behave during transient engine operation are developed. Then, an energy
management strategy is developed consisting of a model predictive controller
that combines the equivalent consumption minimization strategy and convex op-
timization. Results indicate that by considering engine dynamics in the energy
management strategy, both fuel consumption and nitrogen oxide emissions can
be reduced. Furthermore, it is also shown that the major reduction in fuel con-
sumption and nitrogen oxide emissions is achieved for short prediction horizons.
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1
Introduction

1.1 Background

In the last decade, human actions have led to dramatic environmental changes
that have devastating consequences on the environment. A rapid increase of
green house gases have caused higher temperatures, more extreme weather con-
ditions, rising ocean levels and an increase in air pollution and will continue to
do so if no arrangements are made to prevent this. The global population have be-
come more aware of this issue and in response to this awareness, legislation is be-
ing passed across the world to ensure these consequences are not irreversible. A
major part of this legislation has affected the automotive industry and forced it to
adapt and to primarily reduce vehicle emissions and fuel consumption. Recently
it has also become clear that the drive cycles used for certifying this legislation
does not capture real driving conditions. This has enabled the car industry to op-
timize their vehicles to pass these simplified drive cycles while not performing as
well during real driving conditions. Therefore, tougher driving cycles that cap-
ture real driving conditions, both steady-state and transient driving behaviour,
are being designed and implemented.

1.2 Problem Description

A popular solution to meet the legislation passed is the Hybrid Electric Vehicle
(HEV). One kind of HEV is a car that has an Internal Combustion Engine (ICE)
and an Electric Machine (EM). Since the power can be provided from two dif-
ferent actuators it creates the possibility to optimize how and when to engage
them, often to ensure low fuel consumption as well as low emissions. To pass
the new tests, more complex aftertreatment systems are being designed to ver-
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2 1 Introduction

ify legislation concerning emissions. On the other hand, hybridization enables
minimization of both emissions and fuel consumption at the same time if good
control systems are available. Recent studies, see [1–3], has also shown that en-
capsulating the dominating dynamics of the powertrain in the powertrain model
could result in even lower fuel consumption and emissions. The HEV is increas-
ingly becoming popular because it does not only pass the tougher driving cycles,
it also performs better in real life.

To be able to utilize the full potential of HEVs, it is necessary to look at the Energy
Management Strategy (EMS). The EMS developed in this thesis determines how
the torque required by the driver should be split between the two energy sources
in order to ensure low fuel consumption and low emissions while maximizing
power utilization. The EMS can be formulated in very different ways depending
on the requirements of a specific application [4].

In this master thesis, an optimal energy management strategy will be constructed
for a mild parallel HEV that is charge sustaining. Charge sustaining means that
the battery level should be the same at the end of the drive cycle as it was at the
beginning. The long term goal of the method developed in this thesis is to be
implemented as a real time optimal controller. A real time optimization method
optimizes the given problem in real time which therefore, puts constraints on the
complexity of the problem as well as the computational time of the optimization
technique. A common strategy to meet these requirements is to view the problem
as a series of stationary operating points. However, this does neglect the transi-
tion cost from one operating point to another. Therefore, models accounting for
actuator dynamics will be designed and implemented. Then, an optimization
strategy with low computational complexity and short term prediction horizon
will be designed to minimize the fuel consumption as well as the amount of nitro-
gen oxides, NOx, emissions before the after treatment system. The final EMS will
be implemented and compared to optimization strategies using only static mod-
els. The length of the prediction horizon will be analyzed to see how it affects the
results.

The studied vehicle is a mild parallel hybrid which is based on an ICE that runs
on diesel with an additional electric path. In parallel hybrids, both the combus-
tion engine and the electric machine can supply the desired power, alone or in
combination, which makes it possible to optimize the EMS between the two par-
allel paths [5]. Figure 1.1 illustrates the studied parallel HEV powertrain config-
uration. The Integrated Starter Generator (ISG) acts as an electric machine.
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FD TCGB

ISG BATT

ICE FT

Figure 1.1: An illustration of a parallel HEV which contains the components
final drive (FD), a gearbox (GB), a torque coupler (TC), an internal combus-
tion engine (ICE), a fuel tank (FT), an integrated starter generator (ISG), and
a battery (BATT). The darker rectangles represents the wheels of the vehicle.
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1.3 Literature Review

This section presents a short review of recent research studies on the topic of this
thesis.

1.3.1 Optimization strategies

There are several different optimization-based EMS and a common goal for all
of them is to minimize some predefined state variables and the most common
one is fuel consumption. This is done by minimizing an objective function that
depend on these variables. The main control optimization based strategies are
represented in Figure 1.2. Rule-based control strategies are used for controlling
fundamental control schemes, and optimization-based control strategies mini-
mize an objective function [4]. The optimization-based control techniques can be
further divided in to real-time and global optimization methods.

Figure 1.2: Overview of HEV control strategies.

The global optimization strategies have the advantage of finding the global opti-
mum by optimizing the complete powertrain system, given complete knowledge
of a drive cycle. Two common techniques that are used for this purpose are lin-
ear programming and dynamic programming. The reader is referred to [4] for
more details about these two techniques. The downside with these techniques
are that they are computationally heavy and are not suitable for real-time appli-
cations. However, they are useful for validating real-time optimization strategies.

Real-time optimization methods reduce the size of the optimization problem by
introducing an instantaneous objective function that depend only on the present
state variables. Then, a local optimum is calculated instantaneously at each time
step during a driving mission. Most of the real-time optimization strategies and
the local optimum calculations do not necessarily give a global optimum but
they often give a solution close to the global optimum. Some of the common
techniques that have been used in literature are Pontryagin’s Minimum Principle
(PMP) [6, 7], Equivalent Consumption Minimization Strategy (ECMS) [8, 9], and
Model Predictive Control (MPC) [3]. In both [8, 9], an ECMS has been applied
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on a parallel hybrid and the results show that both fuel and NOx emissions are
reduced compared to other strategies. The results in [6, 7] show that PMP is a
good candidate for solving a real-time optimization problem.

MPC is a suitable method for controlling dynamic models. By taking future time
into account, MPC optimizes the current timeslot [4]. In [3] an MPC that consid-
ers the effects of the diesel-engine transient characteristics is evaluated. These
characteristics become more obvious in HEV applications as there are frequent
transient operations. Since MPC takes future driving characteristics into account,
it could potentially decrease fuel consumption and emissions by incorporating
this when calculating the optimal control signals. Therefore, an MPC could have
a greater impact when it is applied on a drive cycle with more transient driving
behaviour such as rapid accelerations, etc.

Another strategy that has become increasingly popular for optimization of power-
trains in HEVs is convex optimization. This is due to its computational efficiency
as well as the guarantee of finding a global optimum for a given problem. But, the
optimization problem sometimes has discrete decision variables which cannot be
optimized by convex optimization. Therefore, a good approach is to use Deter-
ministic Dynamic Programming (DDP) for the discrete variables (engine on/off
and gearshifts) and convex optimization to determine the optimal power split.
By adding costs for switching the engine off/on and for gearshifts, it prevents the
engine from doing unacceptably frequent starts and gear shifts [10]. When this
method was compared to a basic DP algorithm, the method resulted in a reduc-
tion of evaluation time and a higher precision because the convex optimization
does not require a discretization of the state variables and the continuous control.
Another downside with convex optimization is that it requires convex models
which is not always possible.

1.3.2 Modeling

Research presented in [2, 3, 11–13] has shown that the main difference between
steady-state engine operation and transient operation, with respect to emissions
and fuel consumption is caused by dynamics in the air system. Since most diesel
engines are equipped with a turbo system, it is the inertia of the compressor,
turbine, and turbine shaft that cause the dynamic behaviour. Therefore, it is
important to consider them when implementing an EMS that considers transient
behaviour [12]. Results show that the optimal trajectories differ substantially and
that neglecting the turbocharger dynamics can underestimate the consumption
by over 60 %. Also the required energy needed to go to the optimal operation
points differs from the case in which the dynamics are neglected [11].

If Variable-Geometry Turbocharger (VGT) and Exhaust Gas Recirculation (EGR)
are parts to be considered, the EMS model will probably be easily modeled in two
parts. The first part calculates the injected fuel, setpoints for boost pressure, oxy-
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gen fraction in the intake manifold, and injection timing. Then, the second part
considers the VGT and EGR. This is an approach that was used before with good
results, see [14]. According to [14], by using an offline based transient EMS on a
diesel engine, reduction of fuel consumption and the emission peaks compared
to steady-state EMS are achieved for the New European Driving Cycle (NEDC).

NOx is strongly correlated to high temperatures in the cylinder which in turn de-
pends on oxygen concentration and combustion duration. A change of load leads
to increased fuelling which in turn makes the control system starve the EGR. Con-
secutively, this leads to increased NOx emissions as the engine is moving toward
the desired working point [13].

Static NOx and fuel models can be acquired from static engine measurements
where engine speed and torque are changed in a systematic order [13]. NOx
emissions are however very correlated to transient effects. This is because they
are very dependent on the temperature in the cylinder which in turn depend on
oxygen concentration. During a transient operation, either the engine speed or
the torque is changed which results in disturbances in the combustion chamber
and air entrapment until steady-state is attained. This behaviour should prefer-
ably be captured by the transient models and could be well-described by mod-
elling the turbocharger lag which greatly affects the intake manifold pressure.
Therefore, a dynamic model of the intake manifold pressure could be enough
to encapsulate turbocharger dynamics. A possible transient NOx model is pre-
sented in [2] where the transient part of the model is modeled as a step in engine
effect multiplied with a correction factor that depend on the relative cumulative
emission mass flow errors. Results indicate that significantly lower emissions are
achieved when using the model described with Equation 2 in [2].

The fuel flow can be modeled from the wheel speed and is approximated in [5]
as a function of engine friction pressure, engine speed, torque, cylinder volume,
lower heating value, Willans efficiency, and time.
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1.4 Approach

The work consists of three major parts:

1. Modelling

2. Optimization

3. Analysis

In the modelling part, the models that describe the fuel consumption and the
amount of NOx emissions are designed. Two sets of models are developed, static
and dynamic. The static models capture only steady-state driving behaviour and
the dynamic models capture both the behaviour during steady-state and tran-
sient driving conditions. The models are designed based on data used in [13].

In the optimization part, one convex optimization tool is chosen. When a convex
optimization strategy is used, it requires the models to be convex. If the designed
models are not convex they have to be approximated as convex functions. Other
possible optimization strategies are for example non-convex optimization meth-
ods and linearization around each working point. These methods have not been
investigated in this thesis, instead convex optimization is used because of its ad-
vantages mentioned in section 1.3. Further explanation about convex optimiza-
tion is found in chapter 3.

Finally, global optimization based EMS and real-time optimization based EMS
are designed based on the models created. The real-time optimization is vali-
dated against the global optimization, with and without the dynamic models and
the results are analyzed. To be able to compare the results for the different meth-
ods on an even scale of performance the energy management strategies developed
are charge sustaining.
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1.5 Risks and Delimitations

One of the goals for this thesis is to investigate the impact of the length of a short
time prediction horizon on the optimal torque split and thus the fuel consump-
tion and the NOx emissions. To do so, a given driving cycle will be used which
means that the velocity profile of the car will be known and therefore, no pre-
diction is actually made. But, this is still a fair delimitation since the goal is to
investigate if a potential velocity prediction could yield a better optimization. If
the optimization is not improved, trying to predict the velocity to use in an MPC
is meaningless.

The developed models are based on data from engine test rigs. How this data
was produced is crucial since engine tests are done to produce data that fits a
certain application. The data that is used in this thesis was developed for another
application with a similar goal, though with a different approach, where a tran-
sient NOx model was developed, see [13]. The transient behaviour of this model
depend on several variables that were adjusted during the tests. However, the
model in this thesis does not depend on these variables and therefore, it might be
difficult to extract sufficient information from the given data.

1.6 Thesis goals

This thesis aims to evaluate the impact of engine dynamics on the NOx emissions
and fuel consumption. Steady-state models as well as dynamics models for these
variables of interest will be designed. Then, they will be integrated with an HEV
model and a global EMS as well as a real-time EMS will be developed with the
goal to minimize fuel consumption and NOx emissions.

The following questions should be answered:

• Is it possible to save fuel and reduce NOx emissions by considering dynamic
actuator behaviour when developing an optimal EMS for a charge sustain-
ing HEV?

• By using a prediction horizon, is it possible to save fuel and reduce NOx
emissions, and how does the length of the prediction horizon affect the
emissions and fuel consumption?
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1.7 Outline

The rest of the report is organized in the following chapters.

2. The Hybrid Electric Vehicle - Facts about the HEV and its basic theory

3. Optimization Strategy - What strategies is used and theories behind them

4. Method - How the models, static and dynamic, are developed as well as
how the optimization problem is defined

5. Validation - Explanation of how the result is developed

6. Result - Presentation of the obtained result

7. Analyses - Contains analyses of result

8. Conclusions and Future Work - Conclusions are given with a discussion
and some suggestions about Future Work





2
The Hybrid Electric Vehicle

To improve performance, lower both fuel consumption and emitted emissions,
the Hybrid Electric Vehicle (HEV) is a good alternative to the common combus-
tion engine. The advantages of the HEV are the possibility to downsize the en-
gine, recover some energy during deceleration, optimize the power distribution,
eliminate the idle fuel consumption by turning off the combustion engine, and
eliminate the clutch losses.

HEVs have two or more prime movers and power sources. In general, an HEV
includes an combustion engine as a fuel converter or irreversible prime mover.

An HEV can have different architecture designs; series, parallel, or combined hy-
brid, where the most common one is the parallel hybrid with a gasoline engine.
This thesis will consider a parallel hybrid with a diesel engine, where both prime
movers operate on the same drive shaft. Thus, they can power the vehicle indi-
vidually or simultaneously.

11



12 2 The Hybrid Electric Vehicle

2.1 Series Hybrid

The series hybrid can be seen as an electric vehicle with an additional ICE-based
energy path since it is the electric machine that is coupled to the drive shaft. The
combustion engine output is converted into electricity that can either directly
feed the electric machine or charge the battery and the link between the com-
bustion engine path and the battery is electrical. How the power is distributed
through the driveline is determined by the power link which is regulated by the
power split controller. Figure 2.1 illustrates the design of a series hybrid.

The advantage of a series hybrid is that the ICE is decoupled from the drive shaft
and can be operated with optimal efficiency. There is also no need of a compli-
cated multi-speed transmission or clutch because the engine is decoupled and
that the EM does not need them. The disadvantage is that it requires three ma-
chines which add some weight and cost to the vehicle. The overall efficiency of
using a series hybrid will approximately be the same as for vehicles with modern
ICEs.[5]

FD PLEM

BATT

FT

GEN ICE

Figure 2.1: A configuration of a series HEV, which contains the parts final
drive (FD), an electric machine (EM), a power link (PL), an internal combus-
tion engine (ICE), a fuel tank (FT), a generator (GEN), and a battery (BATT).
The darker rectangles represents the wheels of the vehicle.
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2.2 Parallel hybrid

The parallel hybrid may be considered as a conventional vehicle with an addi-
tional electric path. In the parallel hybrid, both prime movers operate on the
same drive shaft which make it possible to use the electric and the fuel power
individually or simultaneously. This makes it possible to turn the engine on/off
and the electric machine can be used to assist during accelerations. The torque
coupler distributes the power flow between the actuators and is regulated in an
optimal manner by a regulator.

Since only two components are needed, there are weight and cost advantages
compared to series hybrids. However there is need for a transmission due to the
fact that the ICE is mechanically coupled to the drive shaft, which adds losses to
the configuration. Figure 2.2 illustrate the components and schematic picture of
the power train of a parallel HEV [5].

There are different ways of positioning the electric machine with respect to the
traditional drive train; micro hybrids, pre-transmission parallel hybrid, single-
shaft hybrid, post-transmission parallel hybrid, double-shaft parallel hybrid, trough-
the-road parallel hybrid, and double-drive parallel hybrid. For more information
about these, see [5].

The overall efficiency of a parallel hybrid vehicle will be better than that of a
modern ICE based vehicle because of brake energy recuperation and low load
electrical operation.

FD TCGB

EM BATT

ICE FT

Figure 2.2: An illustration of a parallel HEV which contains the components
final drive (FD), a gearbox (GB), a torque coupler (TC), an internal combus-
tion engine (ICE), a fuel tank (FT), an electric machine (EM), and a battery
(BATT). The darker rectangles represents the wheels of the vehicle.
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2.3 Combined Hybrid

The combined hybrid is most often a parallel hybrid which contains some fea-
tures from the series hybrid. It uses both a mechanical and an electric link be-
tween the engine path and the electric path and has two electric machines in
addition to the combustion engine. One of the electric machines is used as a
prime mover or for regenerative braking similar to a parallel HEV. The other elec-
tric machine acts like a generator, as for the series hybrid, and is used to charge
the battery via the engine or for the stop-start operation [5]. Figure 2.3 shows the
design of a combined HEV.

FD PSDGB

BATTEM

GEN

ICE FT

Figure 2.3: The combined HEV contains the parts final drive (FD), a gearbox
(GB), a power split device (PSD), an electric machine (EM), a battery (BATT),
a generator (GEN), an combustion engine (ICE), and a fuel tank (FT). The
darker rectangles represents the wheels of the vehicle.



3
Optimization

For every HEV, a good EMS which decides how and when the two actuators (the
ICE and the EM) should be engaged is necessary to achieve good fuel economy.
A good way of doing this is by using optimization techniques. Depending on
the application, that is if the EMS is to be implemented in a real-time controller
or not, the requirements and available information differ from an EMS utilizing
global optimization.

As for all optimization methods, it is important to define the optimization prob-
lem correct. The optimization problem will consist of an objective function, J(x),
which states what is to be maximized or minimized. A set of constraints are also
defined that confines the problem, see Equation 3.1

min
arg x

J(x)

g(x) ≤ 0
(3.1)

For an optimization problem there exist a dual problem and a primal problem,
an illustration is made in Equation 3.2. If the primal problem is formulated as a
minimization problem; then the dual problem is formulated as a maximization
problem. [15] The optimization variables in the primal problem are referred to
as primal variables (x) and for the dual problem as dual variables (y).

Primal: Dual:

minimize z = cT x maximize v = bT y

subject to Ax ≥ b subject to AT y ≤ c
x ≥ 0 y ≤ 0

(3.2)

15
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The concept of duality is an important theory in optimization. By using this the-
ory one can guarantee optimality when the solution to the primal problem equals
the solution of the dual problem and that the solution satisfies all the constraints.
For Equation 3.2, it means that optimality is achieved when z = v and x and y
fulfill the constraints.

Another important concept derived from duality is Lagrangian duality. Lagrangian
duality states that the optimization problem can be reformulated as in Equa-
tion 3.3. In the new formulation, a certain constraint can be removed if the
objective function is reformulated with the Lagrangian function L(λ, x). It can
be thought of as introducing the constraint in the objective function with a cost,
λ, called the Lagrangian multiplier. By choosing the variable λ properly, this
penalty in the objective function can result in a very similar behaviour as if the
constraint had been present. The Lagrangian multiplier for a certain constraint
can be calculated by examining the dual variable for that constraint.

Primal: Lagrangian relaxation:

minimize J(x) minimize L(λ, x) =J(x) +
m∑
i=1

λigi(x)

subject to gi(x) ≤ 0 i = 1, ..., m

x ∈ X
(3.3)

3.1 Global Optimization

Global optimization techniques have the advantage of finding the global opti-
mum since they use complete knowledge of the problem. The downside is that
they usually are computationally heavy. When minimizing fuel consumption
and NOx emissions, the objective function can be formulated as in Equation 3.4,
in which the constraints can be set for the complete drive cycle. In Equation 3.4
λNOx represents a fuel equivalent factor which converts the amount of NOx emis-
sions to equivalent fuel consumption. For a more detailed explanation of the
equivalence factor see Section 3.2 or [5, 16].

min
arg x

ṁf (x) + λNOx · ṁNOx(x)

xmin ≤ x ≤ xmax
(3.4)
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3.2 Real-time optimization

Real-time optimization techniques have the requirement of being computation-
ally efficient. This puts constraints on the complexity of the problem which often
results in having to simplify the optimization problem. The ECMS method is a
popular method when implementing a real-time optimal control energy manage-
ment strategy and is derived from PMP. [17]

PMP provides necessary conditions for the optimal control of a dynamical system.
When PMP is applied on the energy management problem for an HEV, the state
constraints are neglected and a Hamiltonian is defined that has to be minimized,
see Equation 3.5.

H(x(t), u(t), µ(t), t) = g(u(t), t) + µ(t) · f (x(t), u(t), t) (3.5)

In Equation 3.5, x(t) represents the state variables, u(t) the control signals and
µ(t) an adjoint state, often used in optimal control theory. Under the assumption
that the internal resistance and the open circuit voltage of the battery does not
depend on the state of charge, the adjoint state can be considered constant along
the optimal trajectory. By introducing the costate, λ,

λ = −µ ·
QLHV
UOCQ0

(3.6)

where QLHV represents the lower heating value of the fuel, UOC , the open circuit
voltage of the battery, and Q0, the battery’s nominal capacity, the Hamiltonian
can be rewritten as follows. [5]

H(t, u(t), λ) = Pf (w(t), u(t)) + λ · Pech(w(t), u(t)) (3.7)

In Equation 3.7, Pf represents the fuel power and Pech the electrochemical power
in the battery. The costate λ acts as an equivalence factor since the fuel power
and electrochemical power are not directly comparable. If λ is given a low value,
then electrochemical power will be "cheaper" than fuel power resulting in deple-
tion of the battery and vice verse. For a specific value of λ, the solution that
minimizes the Hamiltonian will represent a charge sustaining trajectory for the
state of charge. This is desirable when comparing different solutions.

When NOx emissions are introduced in the Hamiltonian, there will be need for
a second equivalence factor. This equivalence factor will express the NOx emis-
sions as an equivalent fuel consumption, just as λ did with the electrochemical
power in the Hamiltonian stated above. [16]
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3.3 Convex Optimization

One approach of implementing either a global or real time energy management
strategy could be by using convex optimization. A convex optimization problem
can be considered as a generalization of linear programming. The convex opti-
mization problem has the advantage of always finding the global optimum and is
often computationally efficient. It can be described for a minimization problem
on the following form,

minimize f0(x)

subject to fi(x) ≤ bi , i = 1, . . . , m.
(3.8)

where the functions f0,. . . ,fm:Rn → R need to be convex. x = (x1, . . . , xm) is a
vector with the optimization variables, the function f0 is the objective function,
and the functions fi : Rn → R, i = 1, . . . , m are the constraint functions with the
constant limits b1, . . . , bm. An optimal solution is obtained when the x vector has
the smallest objective value among all vectors that satisfy the constraints.

In addition, in a convex optimization formulation, the constraints need to be
convex or affine functions because it ensures that no local minimum exists, and
the problem has only one global minimum [18].

3.3.1 Definition of convexity

The definition of a convex function is as follows. A function f : Rn → R, where
Rn is a generic finite-dimensional vector-space and n is its dimension, is convex
if its domain f is a convex set and for all x, y ∈ domainf , and θ with 0 ≤ θ ≤ 1,
the following conditions hold.

f (θx + (1 − θ)y) ≤ θf (x) + (1 + θ)f (y). (3.9)

For a first order condition, it means that if f is differentiable, meaning that 5f
exists at each value in f , then the function f is convex if and only if the domain
of f is convex and

f (y) ≤ f (x) + 5f (x)T (y − x) (3.10)

holds for all x, y ∈ domainf .

If f is a second order system and is twice differentiable, the function is convex if
and only if the domain f is convex and its Hessian is positive semidefinite:

52f � 0

Where � denote a generalized inequality. For vectors, it represents component-
wise inequality and for symmetric matrices, it represents matrix inequality [18].
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3.3.2 Embedded Conic Solver

One software package that can be used for solving convex problems is Embedded
Conic Solver (ECOS), see [19]. ECOS is an interior-point solver for second-order
cone programming (SOCP) designed for embedded systems. The standard form
for the problem in ECOS is defined in Equation 3.11.

minimize cT x

subject to Ax = b

Gx + s ≺K h
(3.11)

The matrix G and the vector h represents the inequality constraints, where the
symbol ≺K represent a generalized inequality with respect to the cone K as fol-
lows.

Gx ≺K h⇔ s = h − Gx ∈ K

and the matrix A with the vector b represents the equality constraints. The vec-
tor s represents slack variables and K the cone. x is a vector with the primal
variables and c is a vector that determines and weights which variables are to be
minimized.

To avoid numerical problems, it is a good idea to scale all the primal variables to
values within the same short range, for example the range [-1,1]. ECOS requires
the matrices A and G to be sparse matrices. Meaning that they have to be con-
verted from full matrices into sparse form. This saves memory and is done in
MATLAB with the commando sparse. A function call to ECOS is made with the
following command:

[] = ecos(c’,G,h,dims,Aeq,beq,opts)

where dims determines how many constraints exist, opts tells ECOS what op-
tions to use when solving the problem, and the rest are the matrices/vectors ex-
plained above. For more information about ECOS the reader is referred to [19].
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3.3.3 Second-order cone programming

SOCP can cast problems like Matrix-fractional and Quadratically constrained
quadratic programming. A brief explanation of SOCP is that it is a problem class
that lies between linear or quadratic and semidefinite programming and it can
be solved very efficiently by using primal-dual interior-points methods [20]. An
example of a quadratic constraint is given in Equation 3.12. The second equation
is written as a second-order cone and is equivalent to the first constraint equation.

xTATAx + bT x + c ≤ 0∥∥∥∥∥(1 + bT + c)/2
Ax

∥∥∥∥∥
2
≤ (1 − bT − c)/2

(3.12)

3.4 Model Predictive Control

The basic idea of a Model Predict Control (MPC) is to formulate the problem as
an optimization problem and solve the problem on-line at each time when new
measurement signals are obtained. An on-line optimization requires fast calcula-
tion time, and therefore an MPC can be a good technique.

An MPC predicts the future trajectories by using measurements from current
time and control signal during each prediction horizon. If the goal is to solve a
minimization problem, the objective function should be minimized while all the
constraints should be satisfied. After the MPC implements the first step of the
control sequence it moves the prediction horizon one step forward and repeats
the optimization procedure. This is repeated for the whole drive cycle [21].

The prediction horizon is set to a specific length before running the optimization
problem. A common way of choosing the length of the prediction horizon is to
cover a typical settling time of the desired closed system. [22].
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In this chapter a detailed explanation is given on how the powertrain is modeled
with extra focus on the fuel and NOx models. In addition, an explanation about
how the optimization problem is set up using the developed models is provided.
As mentioned earlier, the aim of the optimization problem defined in this thesis
is to minimize NOx emissions and fuel consumption while maximizing power
utilization.

4.1 Motivation

Since the requirements for a real-time EMS include both high accuracy and low
computational time, it is desirable to use convex optimization techniques. Investi-
gation of the static NOx and fuel maps obtained from steady-state measurements
of the studied diesel engine shows a close-to-convex behaviour. Since the dy-
namic models will be an extension of the static maps, it seems reasonable to use
convex optimization. However, if the convex models does not prove to be accu-
rate enough, a different method will be used to be able to answer the questions
stated in section 1.6.

4.2 Drive Cycle

To compare the performance of different vehicles, for example the amount of
emissions and fuel consumption, and to ensure that legislation is enforced, stan-
dard test cycles are used. All newly-manufactured vehicles has to meet the legal
requirements, and for different selling markets, there are different drive cycles
that are used. The WLTC was developed to represent typical driving conditions

21



22 4 Method

around the world. It is based on driving data collected around the world (EU,
India, Japan, Korea, USA) combined with suitable weight factors, see [23]. The
velocity profile for the WLTC drive cycle is represented in Figure A.1. One drive
cycle that is used in the EPA Federal Test Procedure is the FTP-75 cycle, which
was developed to measure tailpipe emissions and fuel economy of passenger cars
and mimic city driving. In this thesis, both of these diving cycles are used to
evaluate and compare the NOx emissions and fuel consumption. The velocity
profile for the FTP75 drive cycle is presented in the appendix and is represented
in Figure A.2. In addition to the WLTC and FTP75 drive cycles a random drive
cycle that encapsulates city driving, in this report referred to as City drive cycle,
is investigated and is presented in the appendix, see Figure A.3.

When applying global optimization techniques on the drive cycles mentioned in
the paragraph above with a time step small enough to capture the engine dynam-
ics, the computers available ran out of physical memory. Therefore segments of
about 1000 seconds are evaluated for each drive cycle.

4.3 Models

In order to be able to optimize how a vehicle should use its actuators, the power
request at the torque coupler should be calculated. For this purpose, a model of
the powertrain, the vehicle and the speed profile is needed. In this thesis, no vehi-
cle model is developed, instead data is collected using VSim. VSim is an in-house
Simulink-based simulation tool used at Volvo Cars Corporation for analysis of
the vehicles fuel economy and performance. In VSim, a mild parallel hybrid car
with correct components is chosen along with a drive cycle. A simulation is made
and relevant data is extracted. The data that are needed for simulation are the
engine speed, weng , power request at the torque coupler, Preq,pt , the engine on/off
status, engon, and the time, t.

The optimization outputs the optimal power split ratio for the torque coupler
that is needed to meet the speed request from the driver/drive cycle. This power
needs to be delivered by the actuators. Therefore, models for the ISG, the ICE
and the battery, see Figure 2.2, need to be developed in order to set up the opti-
mization problem.

For these components, static models are developed that only capture the steady-
state behaviour. The static models for NOx emissions and fuel consumption are
then expanded in order to capture the transient behaviour when going from one
stationary working point to another. Since the applied optimization method is
convex optimization, all of these models have to be convex.

In the remaining parts of this chapter, first the procedure of developing the mod-
els for each component that are going to be optimized is presented. Second, the
dynamic fuel and NOx models are presented in detail. Finally, there is a detailed
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explanation on how the convex models were developed.

4.3.1 Battery Model

The battery used in a hybrid powertrain consists of a large number of cells that
are connected in series and/or in parallel. This leads to a complex electrochem-
ical model based on partial differential equations [24], and is not suitable to be
used in an energy management context. Therefore, a Thevenin equation circuit
is used, see [25], which is visualized in Figure 4.1. By using this model, only the
State of Charge (SoC) state is dynamic. Below, SoC is represented by ξ and is the
ratio between the capacity of the battery (Q) and its nominal capacity (Q0), see
Equation 4.1.

Figure 4.1: Thevenin equivalent circuit model of a battery were Uoc is the
open-circuit voltage, Ri is the internal resistant, Ibatt the battery current,
and Ubatt the battery voltage.

ξ(t) =
Q(t)
Q0

(4.1)

SoC is defined in the range ξ ∈ [0, 1]. To prohibit battery damage, which occurs
when the battery is discharged or charged to its limits, SoC is limited by an upper
bound and a lower bound. The battery open circuit voltage and inner resistance
depend on the SoC. This dependency is small but still present and for the inves-
tigated battery, it has a linear behavior in the range ξ ∈ [SoCmin, SoCmax], see
Figure 4.2. Therefore, the SoC is limited to the range ξ ∈ [SoCmin, SoCmax].
By combining the definition of power and Ohms law the following equations are
obtained, see Equation 4.2:

Pech = Uoc · IBAT T
PBAT T = UBAT T · IBAT T

PBAT T ,loss = URi · I2
BAT T

(4.2)

From these equations the power loss for the battery can be expressed as in Equa-
tion 4.3.
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y

x

SoCmin SoCmax

Figure 4.2: An illustration of how the allowed values for SoC is chosen. The
y-axis represent the open circuit voltage of the battery and the x-axis repre-
sent the SoC.

PBAT T ,loss =
Ri
U2
oc
P 2
ech (4.3)

The inner resistance and open circuit voltage can be modeled as constants or as
functions of the SoC. In this thesis Equation 4.4 is used to model both dependen-
cies with one model, where the SoC is limited to ξ ∈ [SoCmin, SoCmax].

1
a · ξ + b

P 2
ech ≈

Ri
U2
oc
P 2
ech (4.4)

4.3.2 Integrated Starter Generator

For the ISG, a static power-loss map has been developed that expresses the power-
loss of the component as a function of output power and rotational speed, see
Equation 4.5. The static map only covers a set of stationary data points for a
certain range in rotational speed and ISG output power. For values between these
stationary points, linear interpolation is used and for values outside the range
linear extrapolation is used based on the inclination between the last two data
points in the data set. The constant γ is the ratio between engine speed and the
speed of the electric machine.

PISG,loss = f (PISG, ωICE · γ) (4.5)

The dynamics of the ISG is assumed to be small enough to be neglected.

4.3.3 Internal Combustion Engine

For the combustion engine, a static and a dynamic model for NOx emissions and
fuel consumption were developed. The static models capture only the steady-
state behaviour whereas the dynamic models also capture the transient behaviour.
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Static Models

The static models used for both the fuel mass flow and NOx mass flow are static
maps based on steady-state measurements done on the engine. These maps were
developed in [13].

Fuel
The static fuel model gives a steady-state relationship between engine speed, en-
gine output power and fuel mass flow, see Equation 4.6.

ṁf = f (PICE,act , ωICE) (4.6)

ṁf ·QLHV = PICE,act + PICE,loss (4.7)

PICE,loss = f (PICE,act , ωICE) (4.8)

By using Equation 4.6 and Equation 4.7, a map that describes the power-losses of
the engine that only covers a set of stationary points is obtained, see Equation 4.8.
To extract values between these points linear interpolation/extrapolation is done
as described in subsection 4.3.2.

NOx
The steady-state NOx map relates a certain NOx mass flow for a limited combina-
tions of engine speeds and engine output powers using Equation 4.9. For engine
speeds and engine torques between these stationary points the same interpola-
tion/extrapolation method is used as described in subsection 4.3.2.

ṁNOx = f (TICE,req, ωICE) (4.9)

Dynamic Models

The dynamic models are an extension of the static models. To ensure that the dy-
namic model is convex, a dynamic part is added to the static model. If the static
model and the dynamic part are convex by themselves, the sum of them will also
be convex. The dynamic part is modeled so that it captures the NOx emissions/-
fuel consumption when going from one stationary point to another.
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Fuel
Data from [13] is used to develop the dynamic fuel model. For the positive tran-
sients, that is when going from one stationary working point to another, the dif-
ference between the actual mass flow and the mass flow given by the static fuel
model (∆ṁf ) is plotted as a function of the difference between the requested
torque and the actual torque for different engine speeds, see Equation 4.10. The
study was done for 7 different engine speeds, equally distributed.

ṁf ,meas − ṁf ,stat = f (TICE,req − TICE,act) (4.10)

∆
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Figure 4.3: Illustration of Equation 4.10. Blue crosses represent data points
and the black line the model. Only engine speeds 1, 3 and 7 are illustrated,
of the total 7 studied engine speeds.

The relationship between ∆ṁf and TICE,req − TICE,act can be approximated by a
linear function for a specific engine speed, see Figure 4.3. Therefore, a simple
linear model was developed using the least square method, see Equation 4.11.
The variable ak is the slope of a straight line and is a function of the engine speed
ωICE . ak is obtained for a specific engine speed using interpolation as explained
in subsection 4.3.2.

∆ṁf = ak(ωICE) · (TICE,req − TICE,act)
ṁf ,dyn = ṁf ,stat + ∆ṁf

(4.11)



4.3 Models 27

NOx
The same approach used for the dynamic fuel model was used for the dynamic
NOx model. However the NOx peaks have an offset in time to when the torque
step is made, see Figure 4.4. This offset is not constant and is probably caused
by sensor dynamics and efforts of compensating for this offset. Most likely it
does not represent the actual relationship between a transient engine operation
and the resulting NOx emissions. As explained in [2, 3, 11–13] and Section 1.3.2,
a transient engine operation occurs due to a change in engine speed or engine
load. This in turn causes a disturbance in the combustion chamber and the air
entrapment until steady-state engine operation is attained. Since NOx formation
is highly dependent on the temperature in the engine cylinders which during
an engine transient will increase, it may lead to a NOx peak. Therefore, it is
reasonable to assume that the delay is caused by sensor dynamics and the NOx
peak occurrs at the same time as the torque step.

ṁ
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Figure 4.4: Illustration of the offset in time between a torque step and the
NOx peak.

To find a relationship between the torque step and the additional NOx emissions
resulting from this torque step, several approaches were tested. The approach
closest to have a reasonable relationship was Equation 4.12.

∆NOx = ln
( t=ttrans,end∫
t=ttrans,start

NOxmeas − NOxstat
0.9t

dt
)

= f (TICE,req − TICE,act) (4.12)
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Figure 4.5 shows ∆NOx as a function of Treq − Tact defined in Equation 4.12.
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Figure 4.5: Illustration of Equation 4.12 where the blue crosses represents
data and the black line is the model. Only engine speeds 1,3 and 7 are illus-
trated, out of the 7 studied engine speeds.

When ∆NOx was added to the static model and compared to the measured val-
ues, the dynamic model (static NOx plus ∆NOx) did not behave as the measure-
ments did. Therefore, a different dynamic NOx model had to be found.

Another NOx model that was evaluated was inspired by [2], see following Equa-
tion 4.13.

ṁNOx,dyn = ṁNOx,stat · (1 + c ·
TICE,act(tk) − TICE,act(tk−1)

Ts
)

c =
mNOx ,tot −

∑N
k=1 ṁNOx,stat (tk) · Ts∑N

k=1 ṁNOx ,stat(tk) · Ts ·max( TICE,act(tk )−TICE,act(tk−1)
∆t , 0)

(4.13)

In Equation 4.13, the index tot refers to the cumulative sum of measurements
made for the complete drive cycle that the model is made for, i.e. the model
in [2] is cycle dependent. The index stat represent values interpolated from a
steady-state engine map, and Ts is the sampling time.

However, the model developed in [2] is not convex and would have to be modi-
fied to be used in convex optimization method. This was attempted and evaluated
without obtaining a good model.
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A quadratic NOx model, see Equation 4.14, was also investigated but with no
success. It gives positive NOx mass flows at negative transients, because the con-
stant Bquad,NOx could not be tuned in a way which would compensate for the
positive contribution that is made by the first quadratic term containing the con-
stant Aquad,NOx.

ṁNOx,dyn = ṁNOx,stat + Aquad,NOx ·∆T 2 − Bquad,NOx ·∆T

∆T = TICE,req − TICE,act
(4.14)

The model used in this thesis, see Equation 4.15, is a linear model based on
the characteristics seen in Figure 4.5 as well as it being physically reasonable.
The model is fitted using the cumulative sum of the measurements from [13] by
tuning the constant ANOx. The variable ∆T is the same variable used in Equa-
tion 4.14.

ṁNOx,dyn = ṁNOx,stat + ANOx ·∆T (4.15)

Validation of the models used is found in chapter 5 and chapter 6.

Engine Torque

Since the purpose of this thesis is to evaluate the impact of engine dynamics, a
model that captures the major dynamics of the engine is needed. The dominat-
ing dynamics for the engine is caused by the turbo lag which causes the engine
torque to lag behind the requested torque. By investigating measurement data of
the engine torque obtained from [13], a model is developed and fitted. The torque
behaves like a first order system and is modeled using Equation 4.16 where the
time constant τ need to be determined. This is done by analyzing the characteris-
tics of the torque steps.

TICE,act(t + 1) = TICE,act(t) +
TICE,req(t) − TICE,act(t)

τ
∆t (4.16)

4.3.4 Convex Models

In order to be able to construct a convex optimization problem, the objective
function and the constraints need to be convex or concave, see section 3.3. Note
that since the velocity profile of the car as well as the selected gear is considered
to be known the engine speed can be calculated. Therefore, the models for each
component need only depend on the output power in a convex/concave order,
depending on if something is minimized/maximized.

The dynamic extension that is added to the static models for NOx emissions and
fuel consumption are convex. However, the static maps for each component ex-
cept for the battery are not convex. The battery losses can be expressed as in
Equation 4.17 which is a convex expression. aSoC represents the inclination and
bSoC the offset for the relationship between the UOC and the SoC.
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PBAT T ,loss =
Ri

Uoc(ξ)2 P
2
ech =

P 2
ech

aSoC · ξ + bSoC
(4.17)

The static maps for the NOx mass flow, the power-losses for the ICE and the
power-losses for the ISG indicate a close to convex behaviour which is one of the
reasons convex optimization was chosen. The procedure of making these static
models convex is done through piecewise linearization.

Piecewice Linearization

Piecewise linearization is illustrated in Figure 4.6 and it is applied on the static
maps listed above. To ease understanding, we consider the power loss model for
the ICE but the concept is exactly the same for the other static maps. For a set of
predefined engine speeds, the power losses are approximated with a number of
straight lines whose slopes are increasing with increasing output power, PICE,act .
By taking the maximum value of all straight lines for a specific output power, a
value close to that of the non convex model is obtained. Considering Figure 4.6,
y and x can represent PICE,loss and PICE,act respectively and this would be for
one specific engine speed. The number of lines for each engine speed is a design
variable and the process is repeated for a predefined number of engine speeds un-
til a sufficiently correct convex map is obtained. In order to extract information
from the map for a engine speed that is not explicitly defined in the convex maps,
the same interpolation/extrapolation method as explained in subsection 4.3.2 is
used.

y

x

Figure 4.6: An illustration of piecewise linearization.
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4.4 Optimization

By using the models developed in section 4.3, the optimization problem is con-
structed. The aim of the optimization is to minimize fuel consumption and NOx
emissions while maximizing power utilization by optimizing the torque split.
The optimization problem will be formulated as a global optimization problem
as well as a real-time optimization problem using MPC and ECMS. These two op-
timization strategies will then be divided into to subsets, one only utilizes convex
static models and the other one uses convex dynamic models, see Figure 4.7. The
optimal torque split for the different optimization methods and the effect that it
has on NOx emissions and fuel consumption will then be evaluated using two
different plants.

The two plants are referred to as Plant 1 and Plant 2. Plant 1 is in this thesis
represented by the convex dynamic models constructed in this thesis. Plant 2 is
represented by the non-convex static maps with the same dynamics used in plant
1, that is the convex dynamic extension for both fuel and NOx. The fuel model
used in plant 2 is described by Equation 4.11 where ṁf ,stat is the non-convex
static fuel map. The NOx model used in plant 2 is represented in Equation 4.15
where ṁNOx,stat refers to the non-convex static NOx map.

By analyzing the results obtained from plant 1, an answer to the questions stated
in section 1.6 is obtained under the assumption that the controller has perfect
models describing the plant. The results obtained when using plant 2 will in-
stead answer the same questions but for the scenario when the controller does
not have perfect models describing the plant.

Since no driver model is constructed, the modelled torque is implemented in
the static optimization where the requested torque represents the driver and the
actual torque are the output from the engine. This is a reasonable simplification
that can answer the questions in section 1.6.

In order to be able to compare the different methods, the solution obtained from
the optimization needs to be charge sustaining. It means that the final value for
the battery SoC has to be the same (within reasonable tolerances) as the start
value of the SoC.

The software package used for setting up the optimization problem is ECOS. To
implement the MPC, ECOS will be used since it is suitable for a real-time con-
troller.

For simplicity of notations, all variables are expressed in terms of power. The
equivalent power of a certain fuel mass flow is calculated by using Equation 4.18
where QLHV is the lower heating value for diesel. The NOx mass flow equivalent
power is calculated the same way but is not a physical quantity and should be
thought of as a scaled up NOx mass flow.
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Figure 4.7: Illustration of the controller, where the different EMS are imple-
mented, and the two plants used in this thesis.

Pf = mf · qLHV
PNOx = mNOx · qLHV

(4.18)

In the next section, a description is given on how the global and real-time (MPC)
optimization problems are constructed followed by an explanation on how they
are implemented in ECOS.
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Convexity

In subsection 4.3.4, the approach that was used when the convex models were
developed is explained. There exist limits on the maximum and minimum power
for the different components which are given as 1 dimensional look up tables.
However, they only are dependent on the rotational speed which is given and
therefore, are a known constant in each time step. Hence, they do not need to
be convex but are still modeled using piecewise linearization and the given 1 di-
mensional look up tables. For the battery, the maximum and minimum limits are
constant values that are independent of time.

Equivalence Factors

There are two equivalence factors that are used in this thesis, λNOx and λech.
λNOx was obtained by one of our supervisors at Volvo Cars Corporation by calcu-
lating the equivalent fuel consumed (using engine measures such as the EGR and
fuel timing) for reducing NOx emissions. It weights one gram of NOx equal to
one gram of fuel. λech is derived using theory briefly explained in chapter 3. It is
obtained by solving the global optimization problem stated below and extracting
the dual variable correlated to the following Equation 4.19.

Pech(t) =
SoC(t) − SoC(t + 1)

dt
·Q0 ·UOC (4.19)

The equivalence factor λech is further explained in subsection 4.4.2.

Convex relaxation

When implementing the convex models that were created with piecewise lin-
earization, a convex relaxation has to be made since the max-function does not
necessarily have a continuous first order derivative. Instead, if using the exam-
ple in section 4.3.4 where the max-function is used in the same way as below, a
convex relaxation is made as in Equation 4.21.

PICE,loss = max(a1 · Pice,act + b1, a2 · Pice,act + b2, . . . , an · Pice,act + bn) (4.20)

In the rest of this section, Equation 4.20 is substituted with the convex relaxation
in Equation 4.21, that can be implemented for convex optimization problems. As
long as PICE,loss or a variable that depend on it is being minimized the model
approximation will be valid.

PICE,loss ≥ a1 · PICE,act + b1

PICE,loss ≥ a2 · PICE,act + b2

...

PICE,loss ≥ an · PICE,act + bn

(4.21)



34 4 Method

In the Equations above, n represents the number of lines used when approximat-
ing a function with a piecewise linear function, and the a:s and b:s represents the
inclinations and offsets of the lines. This relaxation is made for all losses, i.e. for
the battery, the ISG and the ICE as well as for the NOx emissions.

4.4.1 Global Optimization

The global optimization has the objective of determining the optimal torque split
that minimizes fuel consumption and NOx emissions. It uses complete knowl-
edge of the drive cycle and the optimization problem is formulated as below. First,
the static global optimization problem is defined followed by the dynamic global
optimization problem.

Static Optimization

The objective function for the static optimization is defined as in Equation 4.22.

[PICE,act PISG] =argmin J

J =dt · [Pf ,stat(PICE,act)]+

dt ·λNOx · [PNOx,stat(PICE,act)]

(4.22)

In Equation 4.23 and Equation 4.24 the equality and inequality constraints that
define the static optimization problem are represented where Uoc and Q0 repre-
sent the open circuit voltage and the nominal capacity respectively. The constants
a and b for the ICE, NOx and ISG are the slopes and offsets for the straight lines
constructed when creating the convex static maps using piecewise linearization,
see section 4.3.4.

Note that the sum of the produced torque from the ICE and ISG (PICE , PISG) is
allowed to be greater than the requested torque (Preq). If the optimization is done
correct, this will only occur for negative torques which cannot be supplied by
the two actuators. This means that the driver would need to apply the vehicle
friction brakes in order to achieve the requested torque.
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Equalities:

Pech(t) =
SoC(t) − SoC(t + 1)

dt
·Q0 ·UOC

Pech(t) = PBAT T ,loss + PISG,act + PISG,loss + Paux

PICE(t + 1) = [PICE(t) +
PICE,req(t) − PICE(t)

τ
· dt] ·

ωICE(t + 1)
ωICE(t)

SoC(t = 1) = SoCstart

(4.23)

Inequalities:

ISG equations:

PISG,loss(t) ≥ 0

PISG(t) ≥ PISG,min(t)

PISG(t) ≤ PISG,max(t)

PISG,loss(t) ≥ aISG(ωISG) · PISG(t) + bISG(ωISG)

ICE equations:

PICE,loss(t) ≥ aICE(ωICE) · PICE,act(t) + bICE(ωICE)

PICE,act(t) ≥ PICE,min(t)

PICE,act(t) ≤ PICE,max(t)

Pf (t) ≥ 0

PICE,loss(t) ≥ 0

Pf (t) ≥ PICE,act(t) + PICE,loss(t)

Preq(t) ≤ PICE,act(t) + PISG(t)

NOx equations:

PNOx(t) ≥ aNOx(ωICE) · PICE(t) · qLHV + bNOx(ωICE) · qLHV
PNOx ≥ 0

Battery equations:

PBAT T ,max ≥ PISG(t) + PISG,loss(t) + Paux
PBAT T ,min ≤ PISG(t) + PISG,loss(t) + Paux
SoC(t) ≤ SoCmax
SoC(t) ≥ SoCmin
SoC(t = tend) ≥ SoCstart

PBAT T ,loss ≥
P 2
ech

aSoC · SoC(t) + bSoC
(4.24)
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Dynamic Optimization

The objective function for the dynamic global optimization is defined in Equa-
tion 4.25.

[PICE,req PISG] = argmin J

J = dt · [Pf ,stat(PICE,act) + Pf ,dyn(PICE,act , PICE,req)]

+ dt ·λNOx · [PNOx,stat(PICE,act)

+ PNOx,dyn(PICE,act , PICE,req)]

(4.25)

The indexes req and act refer to the requested power and the actual output power
of the actuator respectively. These powers will be different for the ICE due to the
dynamics, but for the ISG the power will be equal since the dynamics are ne-
glected in the optimization.

Equation 4.26 and Equation 4.27 are added to the static problem defined by Equa-
tion 4.23 and Equation 4.24 to reflect the dynamics of the system. The constraint
on the power of the fuel, Pf , in Equation 4.24 (Pf (t) ≥ PICE,act(t) + PICE,loss(t))
is replaced by: Pf (t) ≥ PICE,act(t) + PICE,loss(t) + PICE,dyn(t), represented in Equa-
tion 4.27.

Equalities:

∆T (t) =
PICE,req(t) − PICE,act(t)

ωICE(t)
(4.26)

Inequalities:

PICE,dyn(t) ≥
ak(ωICE) · (PICE,req(t) − PICE,act(t))

ωICE(t)

PICE,dyn(t) ≥ 0

Pf (t) ≥ PICE,act(t) + PICE,loss(t) + PICE,dyn(t)

PNOx,dyn(t) ≥ ANOx ·∆T (t) · qLHV
PNOx,dyn(t) ≥ 0

(4.27)

The factor τ is the time constant for the torque dynamics of the ICE and ak is
a speed dependent inclination for the linear model capturing the extra fuel con-
sumption due to transient engine operation.
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4.4.2 Real-Time Optimization

The purpose of the real-time optimization strategy is to find the optimal torque
split that minimizes both fuel consumption and NOx emissions. Unlike the
global optimization strategy, the MPC in this thesis does not utilize complete
knowledge of the drive cycle. Instead it has limited look ahead knowledge de-
fined by a predefined prediction horizon. The solutions obtained from the MPC
and the global optimization are set to be charge sustaining in order to to make a
fair comparison between the different methods. The ECMS approach is applied
and a Hamiltonian is introduced and minimized by finding the optimal torque
split. The Hamiltonian is defined in a different way for the static and dynamic
optimization. An illustration of the MPC is represented in Figure 4.8.

Figure 4.8: Flowchart for the MPC. The subproblem M defines the problem
that the MPC solves for each iteration.
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Static Optimization

The Hamiltonian that is to be minimized using the static MPC is defined as fol-
lows.

H =
k∑
i=1

Pf ,stat(P
i
ICE,act) + λNOx · PNOx,stat(P

i
ICE,act) + λech · Pech(P iISG, SoC

i)

(4.28)
where k is the prediction horizon. The optimization problem for the static MPC
is then defined in Equation 4.29.

[PICE,act PISG,act] = argmin dt ·H (4.29)

The same equations stated in Equation 4.23 and Equation 4.24 are used except for
the constraint SoC(t = end) ≥ SoCstart . The equivalence factor λech multiplied
with Pech is instead added to the cost function. By tuning λech correctly, a charge
sustaining trajectory is obtained.

Dynamic Optimization

The Hamiltonian that is to be minimized in the dynamic optimization is repre-
sented in Equation 4.30 and the optimization problem for the dynamic MPC is
defined in Equation 4.31.

H =
k∑
i=1

Pf ,stat(P
i
ICE,act) + Pf ,dyn(P iICE,act , P

i
ICE,req)

+ λNOx · [PNOx,stat(P
i
ICE,act) + PNOx,dyn(P iICE,act , P

i
ICE,req)]

+ λech · Pech(P iISG, SoC
i)

(4.30)

[PICE,req PICE,act] = argmin dt ·H (4.31)

The equalities and inequalities stated in Equation 4.26 and Equation 4.27 are
used for the MPC as well except for the terminal constraint on the SoC, that is
SoC(t = end) ≥ SoCstart . Similar to the static MPC, the term λech · Pech is instead
added to the cost function.

4.4.3 Embedded Conic solver

ECOS uses matrices to solve the optimization problem in which all the constraints
are formulated in matrix form. The optimization is time dependent where differ-
ent equations are needed for different time steps. Therefore, the matrices G and
A are constructed for every time step and then placed in separate higher dimen-
sional matrices. They are placed in the diagonal of the new matrices. This makes
it possible to use previous values in an efficient way by having the smaller matri-
ces for different time steps overlap each other in the higher dimensional matrix
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Figure 4.9: Illustration of how the matrices are placed diagonal after each
other for every time step, in order to create one higher dimensional matrix.
The lighter gray represents zeros and each blue rectangle represents a matrix
for one time step. Here n time steps are assumed. The equality is used
for A and b, see Equation 4.32, and the inequality is used for G and h, see
Equation 4.33.

as illustrated in Figure 4.9. Parameters b, h, and c are row vectors and not matri-
ces so they are placed after each other for every time step. c is not illustrated in
Figure 4.9 but is the vector defining the cost vector and the same logic applies for
c as for b and h.

Second order cone

The quadratic constraint in Equation 4.24 has to be implemented in ECOS as a
second-order cone, see Equation 3.12. The conversion from a quadratic constraint
to a SOCP is done by using the python toolbox Quadratic Cone Modeling Toolbox
(QCML), see [26].

Scaling

As mentioned in subsection 3.3.2, scaling factors are needed in order to avoid
numerical problems. A specific scaling factor, α, is derived for every variable
and a specific scaling factor β is derived for every equation. The scaling factor
α scales the variables to be in the same value range and as a result numerical
problems can be avoided. The variable β scales the equations and is used to
make the solver find a solution faster by prioritizing certain equations. For a
better understanding of how the scaling is made, see Equations (4.32) – (4.34).

Aα
β
x =

b
β

(4.32)
Gα
β
x ≤ h

β
(4.33)

cT ·α (4.34)





5
Validation

The validation is divided into two main parts. The first part is model valida-
tion, which is important to answer the first question posed in this thesis, see
section 1.6.

– Is it possible to save fuel and reduce NOx emissions by considering dynamic
actuator behaviour when developing an optimal EMS for a charge sustaining
HEV?

To be able to answer the question stated above, a comparison is made on how the
solution obtained from the controller using the dynamic models differs from the
solution obtained from the controller using only the static models. This compari-
son is made for both the global optimization and the MPC using both plant 1 and
plant 2.

To answer the second question posed in this thesis,

– By using a prediction horizon, is it possible to save fuel and reduce NOx emis-
sions, and how does the length of the prediction horizon affect the emissions and
fuel consumption?

the solutions obtained from the MPC with different prediction horizons are in-
vestigated to find the most suitable prediction horizon for the static model and
the dynamic model. To isolate the effect of engine dynamics, an iterative bisec-
tion algorithm is developed that find the equivalence factor, λech, that results in a
charge sustaining optimal solution. The algorithm is applied on each drive cycle
for a set of different prediction horizons. All three drive cycles are investigated
for both static and dynamic models.

41
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5.1 Models

The validation variables that have been used here are RMSE, error of variance,
and errors of cumulative sums. The RMSE is the mean of the relative error be-
tween the evaluated model and the measured value at each sample time.

Since there is a varying offset in time between the torque step and the correspond-
ing NOx peak, see Figure 4.4, the RMSE cannot be used since there is no way to
know where the NOx peak should be if no sensor delays, compensation of these
delays, etc would have been present. Therefore, an error of variance is used to
get measurable values on how well the models capture transient behavior. This is
done by taking the difference between the model and a reference signal that has
the shape of a square wave. The reference signal represents a completely static
behaviour with instantaneous change in value when going from one static point
to another one. Then, the variance is calculated for the difference between the
model and the reference signal. This value gives an indication on how well a
model captures the transient behaviour when compared to the variance for the
difference between the actual values (measurements) and the reference signal.
The error of variance is then expressed as the relative error between the variance
for the reference signal subtracted from the model and the reference signal sub-
tracted from the measured values, where the latter represents the correct value
of the variance.

The error of cumulative sum is also expressed as a relative error, where the cumu-
lative sum of the measured signal represents the correct value.
The developed models for fuel and NOx are validated using data from measure-
ments produced in [13] for both Plant 1 and 2. In Table 6.2 and Table 6.6, Plant
1 is referred to as the Convex Model and Plant 2 is referred to as the Non-Convex
Static Model.

When validating the different optimization methods, the two different Plants are
used as illustrated in Figure 4.8 and explained in section 4.4.

5.1.1 Torque

In order to get an accurate and exact validation, all models are validated with the
modeled torque; therefore, the torque is validated first. As mentioned before the
torque model is a first order system fitted to measurement data produced in [13],
and therefore, it is validated against the measured data.

Validation of the torque model is done using RMSE and the error between the
cumulative sums, and also, with a figure to visualize the comparison between the
modeled and measured torques. The cumulative sum is always calculated using
the same length of the same drive cycle.



5.2 Optimization 43

5.1.2 Fuel

Since the convex static fuel models are an approximation of static models, they
are validated against each other. But also, in order to get a better understand-
ing of how the convex static fuel maps match reality, they are validated against
measurement data [13]. An illustration for two torque steps is made with all the
models to visualize how they relate to each other.

5.1.3 NOx

The same validation method as for fuel is used for NOx, and the convex static
maps are validated against both static maps and measured data. The errors are
represented in Tables 6.6 and 6.7 and the different models are illustrated in Fig-
ures 6.3 to 6.6 that are presented in chapter 6.

5.2 Optimization

In this section, the results obtained from the different optimization techniques
are presented. First, the torque trajectories for the ISG and ICE are shown for the
solution obtained from both the global optimization and the MPC, using both
static and dynamic models, in order to emphasize the difference between the so-
lutions when considering engine dynamics. Thereafter, the cost function is eval-
uated for each drive cycle and several prediction horizons including the global
solution using both the static and dynamic models. These results are presented
both as figures in chapter 6 and in a table in Appendix B.

The SoC trajectory is also investigated for each drive cycle, both for the static and
the dynamic controller, and are presented in in figures in chapter 6.

Another variable of interest is the calculation time for the MPC and how it changes
when using different prediction horizons. Therefore, an illustration of the corre-
lation between the length of the prediction horizon and the computational time
is made in figures presented in chapter 6.





6
Results

In this chapter, all the results are presented and for more explanation of what is
presented read associated sections in chapter 5. The sections in this chapter are
the same as in chapter 5 to simplify for the reader how a specific result was ob-
tained. The developed models are presented first and thereafter the optimization
method will be described.

6.1 Models

In this section, the results for the torque, fuel, and NOx models are presented.

6.1.1 Torque

For the torque model, the calculated error between the model and measurements
are presented in Table 6.1. How the model fits the measured torque is illustrated
in Figure 6.1. The Cumulative sum error is very small and the RMSE is relatively
small. The relative error becomes very large for engine torques close to and below
zero. For larger absolute values of the engine torque the relative error is a lot
smaller.

Table 6.1: Validation of the torque model, using measured torque values.

Torque RMSE [%]
Modeled Torque vs measured torque 10.79

Cumulative Sum Eorror [%]
Modeled Torque 0.21

45
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Figure 6.1: An illustration of the modelled torque together with the mea-
sured torque.

6.1.2 Fuel

The result of the static and the dynamic fuel model are presented in Tables 6.2
to 6.5 and Figure 6.2.
The convex static fuel model has a larger relative error than the static non-convex
model when compared to the measured values, see Table 6.2. It can be seen in Fig-
ure 6.2 that the convex approximation often overestimates the static non-convex
model and this overestimation is approximately the same in value for low values
of fuel consumption and high values of fuel consumption, resulting in a high rel-
ative error for low values of fuel consumption. This is a consequence from that
the convex approximation is especially bad for low and negative engine torques.
A consequence from this is that the convex dynamic model also performs bad for
low and negative torques.

Interesting to notice is that if the dynamic model is added to the non-convex
static model, a much lower RMSE value is obtained, see Tables 6.2 and 6.3.

In addition, the same errors were calculated for torques above 15 newton meters
(Nm) and these are presented in Table 6.4. These values show that for torques
above 15 Nm the convex approximation is not as bad which in turn results in a
better convex dynamic model.

Table 6.2: Validation of the static fuel models.

Static Fuel Cumulative Sum Error [%]
Non-Convex Model vs Measurements 0.0022
Convex Model vs Measurements 5.42
Convex Model vs Non-convex Model 5.23

RMSE [%]
Non-convex Model vs Measurements 4.83
Convex Model vs Measurements 11.00
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Table 6.3: Validation of the dynamic fuel model.

Dynamic Fuel Cumulative Sum Error [%]
Convex Model vs Measurements 5.43

RMSE [%]
Convex Model vs Measurement 8.58
Non-convex Model vs Measurement 2.28

Table 6.4: Validation of the static fuel models, using data for engine torques
above 15 Nm.

Static Fuel RMSE [%]
Non-convex Model vs Measurements 5.75
Convex Model vs Measurements 9.77

Table 6.5: Validation of the dynamic fuel model, using data for engine
torques above 15 Nm.

Dynamic Fuel RMSE [%]
Convex Dynamic Model vs Measurements 5.37
Non-convex Dynamic Model vs Measurements 2.66
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Figure 6.2: All fuel models in the same figure to illustrate how they relate to
each other. The behaviour of the fuel mass flow is a consequence of torque
steps made for the engine.

6.1.3 NOx

In this subsection, the results of the static and the dynamic NOx models are pre-
sented. The difference between the convex static model and the static non-convex
model is larger for NOx than for fuel. The convex NOx model also overestimates
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the NOx consumption and the approximation is worse for low and negative en-
gine torques. The improvement by only considering engine torques above 15 Nm
is better for NOx than for fuel.

Table 6.6: Validation of the static NOx models.

Static NOx Cumulative Sum Error[%]
Non-convex Model vs Measurements 77.29
Convex Model vs Measurements 77.54
Non-convex Model vs Convex Model 1.15

Variance Error [%]
Non-convex Model vs Measurements 0.0383
Convex Model vs Measurements 0.0355

RMSE [%]
Convex Model vs Non-convex Model 29.18
Convex Model vs Non-convex Model (TICE above 15Nm) 18.85

Table 6.7: Validation of the dynamic NOx model.

Dynamic NOx Cumulative Sum Error [%]
Measurements vs Convex Model 2.05 · 10−6
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Figure 6.3: Dynamic NOx model together with measured NOx values where
the dynamic NOx is smaller than the measured value.
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ṁ
N
O
x
[a
.u
.]
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Figure 6.4: Dynamic NOx model together with measured NOx where the
dynamic NOx is higher than the measured values.

By looking at Figure 6.5, we see that the difference in NOx peaks for the model
and the measurement is very big for a torque step. However, in Figure 6.4 a sim-
ilar torque step is made and the NOx model and the measurement show similar
behaviour.
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Figure 6.5: Dynamic NOx model together with measured NOx.
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In Figure 6.6 the static NOx model and the convex static NOx model are illus-
trated. It is seen that the convex static model often overestimates the static model.
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Figure 6.6: Static NOx model and Convex Static NOx model.

6.2 Optimization

Below, results obtained from the optimization is presented and commented to
point out interesting phenomena.

The engine torque trajectories obtained from the global optimization and the
MPC for a set of different prediction horizons are presented in Figure 6.7. The re-
sults are shown for only the WLTC drive cycle because the behaviour is the same
for each drive cycle. Only the dynamic MPC is presented due to the solution ob-
tained from the static MPC, independent of prediction horizon, is similar to the
solution obtained from the static global optimization. In Figure 6.7 it is worth
noticing the difference in how the torque is requested from the ICE and the ISG
when comparing the global static solution and the dynamic global solution. An-
other interesting fact is how the optimization is able to use the the two actuators
for different prediction horizons. Several different prediction horizons were ana-
lyzed, but to demonstrate the major characteristics the prediction horizons used
in Figure 6.7 are enough. In Figure 6.8 the resulting fuel mass flow and NOx
mass flow are illustrated.
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Figure 6.7: A time slot of the WLTC drive cycle that visualizes how TICE,act ,
TICE,req, and TISG differ if the controller has no knowledge about the dy-
namic behavior (row one), has limited knowledge of the dynamics ahead
(rows two and three) and when it has complete knowledge of the dynamics
for the drive cycle (row four).
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Figure 6.8: A time slot of the WLTC drive cycle that visualizes how the fuel
mass flow and NOx emissions differ if the controller has no knowledge about
the dynamic behavior (row one), has limited knowledge of the dynamics
ahead (rows two and three) and when it has complete knowledge of the dy-
namics for the drive cycle (row four).The figures to the left are the same as
in Figure 6.7
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The following section presents the results of each plant and drive cycle. First, the
results obtained from Plant 1 are presented and thereafter, the results for Plant 2.
All the vales for the cost functions have been normalized with each drive cycles
global solution, obtained from the dynamic controller.

WLTC - Plant 1

In Figure 6.9, the advantage of using a dynamic controller can be seen. The dy-
namic controller is able to minimize the fuel consumption and NOx emissions
because the transient engine operation is better for the dynamic controller than
for the static controller. The x-axis has a logarithmic scale to highlight that the
major reduction of the cost function is made for small prediction horizons.
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Figure 6.9: The objective function and its individual portions as a function
of prediction horizon for both the static and dynamic controller evaluated
in Plant 1 for the WLTC drive cycle. The left figure represent the obtained
results from the static controller and the right figure, results obtained from
the dynamic controller. All values are normalized with the solution obtained
from the dynamic global optimization.

In Figure 6.10, the SoC trajectories for the dynamic controller are presented for
a set of prediction horizons and for the global SoC trajectory. Note that longer
prediction horizon results in a SoC trajectory favouring higher SoC values. For
the static controller, no such trend is observed and the SoC trajectories do not
have a considerable dependency on the prediction horizon. The SoC trajectory
that differs from the other is the global SoC trajectory, see Figure 6.11.
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Figure 6.10: SoC trajectory for different prediction horizons, including the
global solution, using the dynamic model in the controller for the WLTC
drive cycle.
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Figure 6.11: SoC trajectory for different prediction horizons, including the
global solution, using the static model in the controller for the WLTC drive
cycle.
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FTP75 - Plant 1
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Figure 6.12: SoC trajectory for different prediction horizons, including the
global solution, using the dynamic models in the controller for FTP75.
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Figure 6.13: SoC trajectory for different prediction horizons, including the
global solution, using the static models in the controller for FTP75.

When inspecting Figure 6.12, it is seen that the SoC reaches its upper limits for
lower prediction horizons and when inspecting Figure 6.13, we see that the SoC
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reaches its lower limits for lower prediction horizons. The SoC trajectories dif-
fer more for the dynamic controller than for the static controller. For the static
controller, the biggest difference for the SoC trajectories is between the global tra-
jectory and all others who are more or less the same independent of the length of
the prediction horizon.

In Figure 6.14, the same trend as for the WLTC drive cycle is observed. However,
The curve is not as smooth and this is probably due to that the solver occasionally
only finds the optimal solution within reduced tolerances.
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Figure 6.14: The objective function and its individual portions as a function
of prediction horizon for both the static and dynamic controller evaluated in
plant 1 for the FTP75 drive cycle. The left figure represents results obtained
from the static controller and the right figure, results obtained from the dy-
namic controller. All values are normalized with the solution obtained from
the dynamic global optimization.
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City driving cycle - Plant 1
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Figure 6.15: SoC trajectory for different prediction horizons, including
global solution, using the dynamic model in the controller for the City drive
cycle.
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Figure 6.16: SoC trajectory for different prediction horizons, including
global solution, using the static model in the controller for the City drive
cycle.
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The SoC trajectories obtained by using the static controller are visualized in Fig-
ure 6.16. Notice the difference between the global solution and the trajectories
obtained using MPC with different prediction horizons.
In Figure 6.17, similar behavior is observed as for the WLTC and FTP75 drive
cycles, see Figures 6.9 and 6.14. One thing that differs is the amount of dynamic
NOx for the dynamic controller which is higher for the City driving cycle than
for the other drive cycles. The SoC trajectory, see Figure 6.15, when using the dy-
namic model in the controller fluctuates more for shorter prediction horizon. For
the lowest prediction horizon, the fluctuation almost reaches both the maximum
and the minimum allowed SoC value.
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Figure 6.17: The objective function and its individual portions as a function
of prediction horizon for both the static and dynamic controller evaluated
in plant 1 for the City drive cycle. The left figure represents the obtained
result from the static controller and the right shows the result obtained from
the dynamic controller. All values are normalized with the solution obtained
from the dynamic global optimization.
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WLTC - Plant 2

When applying the optimal torque split on Plant 2 a similar result was obtained
as when applied on Plant 1. When analyzing Figure 6.18, Figure 6.19, and Fig-
ure 6.20 a difference is observed when compared to the corresponding Figures for
Plant 1, see Figures 6.9, 6.14 and 6.17. This difference is because of the convex
static models, used in Plant 1, are over-estimating fuel and NOx compared to the
static model. Since the models describing the extra fuel consumption and NOx
emissions due to transient engine operation are the same in both plants, their por-
tion relative the global solution will be larger. All values in the following figures
are normalized with the solution obtained from the dynamic global optimization.
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Figure 6.18: The objective function and its individual portions as a function
of the prediction horizon for both the static and dynamic controller eval-
uated in plant 2 for the WLTC drive cycle. The left figure represents the
results obtained from the static controller and the right figure shows the re-
sults obtained from the dynamic controller.
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Figure 6.19: The objective function and its individual portions as a function
of the prediction horizon for both the static and dynamic controller eval-
uated in plant 2 for the FTP75 drive cycle. The left figure represents the
results obtained from the static controller and the right figure shows the re-
sults obtained from the dynamic controller.
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Figure 6.20: The objective function and its individual portions as a function
of prediction horizon for both the static and dynamic controller evaluated
in plant 2 for the City drive cycle. The left figure represents the results
obtained from the static controller and the right figure shows the results
obtained from the dynamic controller.
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Calculation Time

Another variable of interest when evaluating an MPC is the calculation time and
how it differs when using different lengths of the prediction horizon. All calcu-
lations were done using a laptop with quad core i7 2.8 GHz CPU and Matlab
R2015b. In Figure 6.21, it is illustrated how the calculation time depends on the
length of the prediction horizon. The dependency is close to exponential and
there exist some strange behaviour where the computation time decreases with
longer prediction horizon. This is probably a consequence from that the opti-
mization is able to find the solution using less iterations for some specific cases.
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Figure 6.21: Calculation time for the MPC as a function of the length of the
prediction horizon for the three investigated drive cycles. The top row repre-
sents the static controller and the bottom row shows the dynamic controller.
Each column corresponds to one drive cycle.





7
Analyses of Result

In this chapter the results presented in the previous chapter are discussed and
analyzed. First the models are analyzed and then the different optimization meth-
ods will be investigated.

7.1 Models

The decision to use convex optimization implied developing convex model ap-
proximations of the non-convex models. By using convex static models instead of
static models, bigger model errors are introduced due to another model approx-
imation. This applies for all the convex models and is presented in section 6.1
for the NOx and fuel models. The relative mean errors for the convex fuel and
convex NOx model turned out to be bigger than expected, especially for NOx.
However, the mean is highly affected by a few huge relative errors occurring for
negative and positive torques close to zero. This is confirmed when considering
only positive engine torques above 15 Nm. Then, the relative mean error is re-
duced for both fuel and NOx, as seen when comparing Table 6.2 and Table 6.4.

However, one can not neglect some torques and the method used for approximat-
ing the static fuel and NOx map would have to be improved to get a better convex
approximation. Also, note that the error for the non-convex dynamic fuel model
is lower than for the non-convex static fuel model, see Tables 6.2 and 6.3, indicat-
ing that the dynamic fuel model is a good approach and that the problem is with
the convex static models.

Also worth mentioning is that the dynamic model for NOx is not always able to
correlate NOx peaks to torque steps as seen in the measurement data. An exam-
ple is illustrated in Figure 6.5. This is because the data used for validating the
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NOx model was obtained from measurements in which several parameters were
adjusted in order to develop a more complex NOx model. To be able to capture
this behaviour, these parameters have to be taken into account which is beyond
the scope of this thesis. However, the model developed in the thesis could proba-
bly be tuned better if better measurement data had been available. That is, if the
data had been produced for the purpose of this thesis.

By comparing the cost function evaluated in Plant 1 and Plant 2, it can be seen
that the errors due to convex approximation do not have a big impact on how the
MPC is able to minimize the cost function with increasing prediction horizon.
Even though the behaviour is the same, the values of the cost function differ
quite a lot for Plant 1 and Plant 2 and this is because of the convex models often
overestimating the static models.

7.2 Optimization

By studying Figures 6.7 and 6.8, the difference between how the different con-
trollers uses the ICE and the ISG is illustrated. The dynamic optimization tries to
run the ICE at steady state engine operation as much as possible in order to avoid
extra fuel consumption and emissions due to transient engine operation. Instead,
it utilizes the ISG to minimize transient engine operation in order to cancel out
the resulting consequences. This phenomena increases with the length of the pre-
diction horizon. The MPC with a 0.1 second long prediction horizon is not able
to counteract the engine dynamics as well as the MPC with a prediction horizon
of 3 seconds. This is due to the fact that the time constant of the dominating
dynamics of the ICE (the turbo-lag) is higher than 0.1 seconds and lower than
3 seconds. The resulting fuel consumption and NOx emissions are presented in
Figure 6.8 where it is seen that the ability to decrease the amount of fuel and NOx
peaks increase with a longer prediction horizon for the dynamic controller.

This is also confirmed in Figures 6.9 and 6.17 where a decreasing trend of the
cost function with increasing prediction horizon is observed for the dynamic con-
troller for each drive cycle which is consistent with the behaviour of the actuators,
as explained above. However, the drawbacks of the dynamic NOx model devel-
oped are again illustrated. When the dynamics are not taken into account, as
for the static controller, the dynamic NOx represent approximately half of the
total value of the cost function, or in other words, it represents the cost of static
fuel, dynamic fuel and static NOx together. This does not represent reality and
is either a consequence of having insufficient data when constructing the simple
model or not having a more complete model. This must be further investigated.

One could question why a more complex model was not developed in this the-
sis and there are three major reasons why not. Firstly, since most EMS that are
used today do not incorporate dynamic models for either fuel or NOx, the aim of
this thesis was to investigate if by doing so, could some improvements be made.
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Therefore, a simple model was the natural approach to begin with. Secondly,
the long term goal of the developed MPC is to be implemented on an Electronic
Control Unit (ECU). An ECU has very limited computing power and therefore, a
simple model should be used. Thirdly, developing a more complex NOx model
would be a thesis work by itself and is outside the scope of this thesis. Therefore,
the approach that has been used here is considered appropriate.

Nonetheless, the developed EMS behaves very well and is able to decrease fuel
consumption and NOx emissions due to transient engine operation. Even though
the major effect is seen for dynamic NOx, it is also able to decrease dynamic
fuel consumption while keeping the static fuel consumption and NOx emissions
around the same level as the static controller. This is observed for both Plant 1
and Plant 2, meaning that the model errors introduced through convex approxi-
mation do not cause different behaviour. However, since the dynamic part of the
developed models are the same in the controller as for both Plant 1 and Plant 2,
further validation would be needed to fully confirm this.

Worth noticing is that the static controller is not able to reduce the value of the
cost function when the prediction horizon is increased. By studying Figures 6.10
and 6.17, it is identified that the value of the cost function is more or less con-
stant; in other words, it is independent of the length of the prediction horizon.
There is a slight decreasing trend toward the global solution but it is negligible.
This is also confirmed when studying the SoC trajectories for the static controller,
see Figures 6.11, 6.13 and 6.16. The SoC trajectory is not dependent on the pre-
diction horizon and the only noticeable difference is that the global solution finds
a different SoC trajectory than the static MPC. This is reasonable since the global
solution is able to vary λech, while it is a constant value for the MPC. The value
resulting in a charge sustaining trajectory. However, the behaviour of the static
MPC, primarily the solution being independent of the length of the prediction
horizon should be investigated further.

The SoC trajectory for the dynamic controller differs a lot, more than for the
static controller. This is reasonable because it is able to predict and counteract
transient engine operation by using the ISG in a more efficient way in this con-
text. By changing the behaviour of the ISG which directly affects how the battery
is charged/discharged, the SoC trajectory will be affected as well. Another trend
that is present when investigating the SoC trajectories is that the global solution
favours higher levels of the SoC, meaning that its trajectory finds a higher SoC
value then what the solution using a prediction horizon has. One reason for this
could be that since the battery losses depend on SoC level according to Equa-
tion 4.17, a higher level of SoC will result in lower battery losses which in turn
results in a more efficient way of using the battery to reduce fuel consumption
and NOx emissions. The global optimization has the flexibility to vary λNOx dur-
ing the cycle, and utilizes this to achieve battery operation in a higher SoC range.
The MPC controller is limited to one constant lambda value throughout the en-
tire cycle, hence lacks this flexibility.
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However, the results are somewhat misguiding. The choice of a constant lambda
without a more sophisticated SoC controller might lead to what is illustrated in
Figure 6.10 and Figures 6.12 and 6.13. That is, without a more sophisticated
SoC controller, the choice of a constant lambda could potentially lead to the SoC
trajectory hitting the SoC limits many times during a drive cycle. Consequently,
the free energy gained from regenerative braking can not be utilized if the bat-
tery is fully charged when this occurs, or if the battery is fully depleted, the ICE
would have to be used if the driver would demand a acceleration of the vehicle
heavily, which results in transient engine operation that could have been avoided.

In Figure 6.21, the computing time as a function of the length of the prediction
horizon is presented for the static and dynamic MPC, and for each drive cycle. It
is seen that the relationship is almost exponential but for low prediction horizons
the MPC is quite fast. This in combination with the major improvement in reduc-
tion of the cost function for short predictions horizons which is a positive result.
If the MPC were to be implemented on an ECU, it would be very beneficial.
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Conclusions & Future Work

8.1 Conclusions

The conclusions drawn in this chapter answer the posed thesis questions, see sec-
tion 1.6, and are based on the results in chapter 6 and analyses made in chapter 7.

• It is possible to save fuel and reduce NOx emissions when using a controller
that incorporates simple models of NOx emissions and fuel consumption
due to transient engine operation. The NOx peaks can be very high during
transients relative to the magnitude of NOx emissions during steady-state
engine operation, as can be seen in the measurement data in [13]. Therefore,
a model capturing this behaviour is considered to be a better approximation
of reality than a model that only considers steady state engine operation.

• When implementing an dynamic MPC, it is observed that the ability to de-
crease NOx emissions and fuel consumption increases with the length of
the prediction horizon. Note that the major improvement is made for small
prediction horizons, 0.1 to 1 seconds, and that no major improvement is
seen after 10 seconds for all drive cycles investigated in this thesis. It is
very good that the biggest improvement is made for very low prediction
horizons because if an MPC is implemented on an ECU, the requirement
on computational efficiency would only make an MPC with very small pre-
diction horizon possible for implementation.

• The computational time for the developed MPC increases with increasing
prediction horizon. This relationship is close to exponential. However, not
a lot of effort have been put into making the MPC as computationally effi-
cient as possible and the code could be improved in this context.
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• The optimization was investigated using two different plants, one with the
same models used in the controller and one with different static models.
When the optimal torque split is validated using both plants, similar results
are obtained indicating that the model errors due to convex approximation
do not have a major impact on the how the MPC is able to reduce fuel con-
sumption and NOx emissions with an increased prediction horizon. This is
positive since none of the models that are being used today is able to rep-
resent reality without any errors. However, the value of the cost function
evaluated in plant 1 and plant 2 differs quite a bit and it is because of the
bad convex approximation of the static maps.

8.2 Future Work

In this chapter, suggestions are made on how the work in this thesis can be fur-
ther developed. Some improvements that can be made on the work done in this
thesis are also discussed.

To obtain a better approximation of the static models, the convex static models
can be improved. As the majority of the errors occur for engine torques around
zero and below, the biggest improvement can be made for those cases.

The transient developed NOx model does not represent reality very well. As
explained earlier, this is due to that the measurement data that was used for de-
veloping the model was intended for the development of another NOx model,
and takes more parameters into account when it estimates NOx emissions. It
would be interesting to see if the model that was developed in this thesis could
be tuned better if better measurement data was available. Especially since the
optimization does a very good job when minimizing transient engine operation
if the fuel consumption and NOx emissions due to transients can be expressed as
function of the difference between requested torque and actual torque. If using
better measurement still does not result in a good dynamic NOx model, a more
complex model must be investigated.

In this thesis, piecewise linearization was used to get convex models. Some mod-
els could be approximated using a quadratic function. It would be interesting
to investigate the trade off in accuracy and computing time of the optimization
for these two approaches. As a first step, the battery losses, that in this thesis
was approximated using a second order cone, could be compared with a model
approximation using piecewise linearization.

A more sophisticated SoC controller would be favourable to implement along
side the MPC. This is because the constant lambda approach without a SoC con-
troller might result in the battery reaching its limits during scenarios where it
would be favourable to be able to discharge the battery further or charge it more.
This investigation might give a better understanding about how different predic-
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tion horizons correlates to the SoC trajectory, especially for the static MPC.

The MPC would have to be applied on a much more complex car model with a
driver model to be able to really understand how it would perform in reality. A
good next step would be to implement the MPC in VSim where this is already
implemented.

Not a lot of effort has been focused on making the code more efficient and it
would be interesting to see if improvements in computational time could be made
by doing so. Writing the MPC in a faster programming language such as C would
also be of interest. By decreasing the computational time a longer prediction
horizon could be possible when implementing the MPC on an ECU.
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A
Drive Cycles

In this appendix drive cycles used in the thesis are presented. The drive cycles
are used to validate the result of the models and the MPC.
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Figure A.1: Velocity profile for WLTC
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Figure A.2: Velocity profile for FTP75
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Figure A.3: Velocity profile for a random drive cycle from city driving



B
Tables

Data from the MPC are presented in a table for the WLTC using Plant 1. Here,
the values of the results shown in Figure 6.9 are presented. The calculation time
(Time) is normalized using the calculation time for MPC with a prediction hori-
zon of 0.1 for the static and the dynamic models. Meaning that with a longer
prediction horizon, the calculation time increases with the calculation time at
prediction horizon 0.1 times the time value at the corresponding prediction hori-
zon.
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PH, Static [s] Jf ,stat Jf ,dyn JNOx,stat JNOx,dyn Jtot Time
0.1 0.8541 0.04117 0.01773 0.9472 1.86 1
0.3 0.8541 0.04127 0.01773 0.9501 1.863 1.4384
0.5 0.8541 0.0412 0.01773 0.9482 1.861 2.0707
0.7 0.8541 0.0412 0.01773 0.948 1.861 2.7331
1 0.8541 0.04119 0.01773 0.9478 1.861 3.9853
2 0.854 0.04122 0.01773 0.9491 1.862 8.9483
3 0.854 0.04119 0.01773 0.9481 1.861 14.6026
4 0.854 0.04116 0.01773 0.947 1.86 21.7489
5 0.854 0.04116 0.01773 0.9468 1.86 28.7813
6 0.854 0.04114 0.01773 0.9463 1.859 39.4300
7 0.854 0.04115 0.01773 0.9464 1.859 39.7237
8 0.854 0.04117 0.01773 0.9468 1.86 38.1137
9 0.854 0.04118 0.01773 0.947 1.86 43.9602

Global 0.8539 0.04103 0.01776 0.944 1.857 20.9736

PH, Dynamic [s] Jf ,stat Jf ,dyn JNOx,stat JNOx,dyn Jtot Time
0.1 0.9005 0.00954 0.01805 0.1826 1.11 1
0.3 0.8947 0.006703 0.01789 0.1356 1.055 2.0847
0.5 0.8925 0.06333 0.01792 0.1321 1.049 3.3037
0.7 0.8904 0.006246 0.01791 0.132 1.047 3.4635
1 0.8881 0.005927 0.01794 0.1295 1.041 4.1543
2 0.8836 0.005448 0.01797 0.1278 1.035 8.7167
3 0.8812 0.005029 0.01795 0.1237 1.028 14.6904
4 0.8787 0.004929 0.01793 0.1227 1.024 21.3444
5 0.8769 0.004829 0.01788 0.1203 1.02 29.1513
6 0.8746 0.004804 0.01778 0.1194 1.017 35.0947
7 0.8734 0.004751 0.01772 0.1181 1.014 40.5529
8 0.8755 0.004556 0.01774 0.1135 1.011 50.0862
9 0.8769 0.004442 0.01775 0.1105 1.01 55.7240

15 0.8791 0.004222 0.01784 0.1037 1.005 119.6217
20 0.8792 0.00421 0.0178 0.1024 1.004 191.4819

Global 0.882 0.004081 0.01767 0.09623 1 224.0329
Table B.1: The distribution of cost for the real-time optimizer using the static
model and the dynamic model respectively for different Prediction Horizons
(PH). Also the calculation time for each PH is presented in the right column.
The data is taken from the WLTC, and is the same as Figure 6.9.
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