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Abstract

A diagnosis procedure is an algorithm to detect and locate (isolate) faulty components
in a dynamic process. In 1994 the California Air Resource Board released a regulation,
called OBD II, demanding a thorough diagnosis system on board automotive vehicles.
These legislative demands indicate that diagnosis will become increasingly important for
automotive engines in the next few years.

To achieve diagnosis, redundancy has to be included in the system. This redundancy
can be either hardware redundancy or analytical redundancy. Hardware redundancy, e.g.
an extra sensor or extra actuator, can be space consuming or expensive. Methods based
on analytical redundancy need no extra hardware, the redundancy here is generated
from a process model instead. In this thesis, approaches utilizing analytical redundancy
is examined.

A literature study is made, surveying a number of approaches to the diagnosis prob-
lem. Three approaches, based on both linear and non-linear models, are selected and
further analyzed and complete design examples are performed. A mathematical model
of an SI-engine is derived to enable simulations of the designed methods.

Key Words: Diagnosis, Analytical redundancy, SI-Engine, FDI, Eigenstructure, Parity
equations, Robustness.
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Notation

Abbreviations

AFD Actuator Fault Diagnosis
CFD Component Fault Diagnosis
DOS Dedicated Observer Scheme
EGO Exhaust Gas Oxygen
EGR Ehaust Gas recirculation
FDI Fault Detection and Isolation
GLR Generalized Likelihood Ratio
GOS General Observer Scheme
IFD Instrumental(sensor) Fault Diagnosis
SI Spark-Ignition
UIO Unknown Input Observer
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Chapter 1

Introduction

Diagnosis is a procedure to detect and locate faulty components in a dynamic process,
e.g. an automotive engine. Why is there a need for diagnosis? The answer depends on
the application. Some areas where diagnosis schemes can be of importance are:

• Chemical plants

• Nuclear plants

• Aero planes

• Automotive engines

The reason for diagnosing faults in the first three areas are that even small malfunctions
can have disastrous, life threatening consequences. Here it is quite natural to want to
detect and isolate a faulty component early before it can lead to plant failure.

This report concerns the last area and one of the main goals of a diagnosis scheme
of an automotive engine is, apart from detecting life threatening failures, diagnosing
faults in e.g. the emission control systems leading to greater volumes of pollutants in
the outlet, [5].

1.1 Automotive engine diagnosis

In 1990 the American agency EPA (U.S Environmental Protection Agency) estimated
that 60% of the total HC (Hydro Carbon) pollutants originated from 20% of the ve-
hicles with malfunctions in their emission control systems, see [45]. This shows that a
diagnostic procedure on board vehicles would probably be a major part of a solution to
reduce vehicle emissions.

In 1988 CARB (California Air Resource Board) proposed OBD 1 I, a regulation stat-
ing that vehicles had to monitor the on-board computer, computer sensed components,
the fuel metering system and the exhaust gas recirculation (EGR)2. In 1994 CARB re-
leased a new regulation, called OBD II, demanding an even more thorough monitor
system.

1On Board Diagnostic
2More about these terms in section 6.1
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The OBD II regulation states that a dashboard light MIL(Malfunction Indicator
Light) should warn the driver when a fault has occured that causes pollutant emissions
to exceed legislated limits by more than 1.5 times. It also states that a DTC (Diagnostic
Trouble Code) is to be stored in the on-board computer to simplify repair. For in depth
description of the regulation see [3].

There has also emerged a federal regulation similar to OBD II from the EPA. This
indicates that a similar regulation for the European market soon will emerge.

Besides the legislative demands on automotive vehicles there are other factors in-
dicating the importance of diagnosis. Examples of advantages with a well functioning
diagnosis scheme are

• Repairability
Repair can be simplified.

• Availability
A diagnosis scheme can be able to determine the severity of a fault and determine
when it is possible to drive the automobile to the workshop, this is called limp-
home.

• Safety
The personal safety in the vehicle is improved.

• Vehicle protection
If faulty components are detected in an early stage, damage to the vehicle can be
avoided.

Due to the legislative demands, it can be hard to incorporate new technology in the
engine. A systematic design procedure reduces the effort to redesign the diagnosis scheme
to be able to include the new component. A general and systematic diagnosis design
procedure thus enhances the possibility to incorporate new technology.

Today the diagnosis tasks performed require great amount of effort. It is estimated
that, today, approximately 40% of the entire software in the control unit are diagnosis
related, [22].

1.2 Objectives

The objectives with this thesis work is to

1. Survey existing methods of model based fault diagnosis of dynamic systems that
has a potential in automotive SI engines.

2. Develop a realistic model of an SI engine in a simulation tool. The model must
contain features suitable for experiments with fault diagnosis.

3. Develop a diagnosis scheme by selecting methods and ideas from literature and
apply them, in combination with own ideas, to the model.

4. In the simulation environment, evaluate the diagnosis scheme chosen in respect to
robustness and other aspects.
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1.3 Readers guide

In chapter 2 the diagnosis problem is defined. A survey over some approaches found in
literature is done in chapter 3, methods to be further analyzed are also chosen. Two of
these are described in detail in chapter 4 and 5. Chapter 5 is the mathematically most
complex chapter in this report. For reader convenience appendix C is included where a
few of the mathematical concepts used are defined.

In chapter 6, engine fundamentals are discussed and a physical model of the engine is
derived. This model is later used in chapter 7 where diagnosis on the model is simulated.
Simulink implementations of the model is found in appendix B. These are included for
completeness and no explanation on how they work are submitted. For a complete
description of Simulink, see [28].

Implementations of different methods are done in Matlab, especially in chapter 4 and
5. See [27] for detailed description of Matlab syntax.

Appendix A describes the laboratory facility used.



Chapter 2

The Fault diagnosis problem

In this chapter we will define the diagnosis problem and discuss why a model based
approach is necessary for high performance diagnosis.

2.1 Problem formulation

A general diagnosis procedure for a dynamic system consists of several tasks. The
following steps are suggested in literature, e.g. in [35].

• Fault detection
Detect when a fault has occured. Special emphasis is laid upon incipient, or
developing, faults rather than large step faults. This because incipient faults are
harder to detect.

• Fault isolation
Isolate the fault. Primarily to determine the faults origin but also the fault-type,
size and time.

These two tasks are commonly referred to as FDI, Fault Detection and Isolation. FDI
is sometimes referred to as diagnosis and the other way around and from now on in this
report diagnosis is equivalent to FDI.

The system to be diagnosed often include a control loop which further complicates
the problem. A control loop tend to hide or mask a faulty component or sensor making
it even more important, in a controlled system, to detect incipient faults.

An important parameter in a diagnosis system is the false alarm rate, i.e. how often
the system signals a fault in a fault-free environment, and probability for missed fault
detection.

We speak about faults and failures in diagnosis. What do we mean by these words?
In diagnosis literature there is a distinction between the two and the definition used can
be written as in [35]:

Definition 2.1. A failure suggests a complete breakdown of a process component while
a fault is thought of as an unexpected component change that might be serious or
tolerable.
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Obvious fault sources are actuators and sensors where the fault can be a bias or a
drift. Other examples are actuator stuck-at faults. These are the types of faults that
will be handled in this report.

In this paper we will investigate model based diagnosis, i.e. a diagnosis procedure
that is founded on a model of the system to be diagnosed. Fault diagnosis and fault
detection is not a new problem and before model based fault diagnosis, diagnosis were
accomplished e.g. by introducing hardware redundancy in the process. A critical process
component was then duplicated, triplicated (TMR 1) or even quadrupled and then using
a majority decision rule.

Hardware redundancy methods are fast and easy to implement but they have several
drawbacks

• Extra hardware can be very expensive

• Introduces more complexity in the system

• The extra hardware is space consuming which can be of great importance, e.g. in
a space shuttle. Also the components weight sometimes has to be considered.

Instead of using hardware redundancy, analytical redundancy can be utilized to reduce,
or even avoid, the need for hardware redundancy. All methods examined in this report
are founded on analytical redundancy. Analytical redundancy is in principle the rela-
tionships that exists between process variables and measured outputs. If an output is
measured there are information about all variables that influences that variable in the
measurement. If the relationships are known, by quantitative or qualitative knowledge,
this information can be extracted and information extracted from different measurements
can be checked for consistency against each other.

There are different types of analytical redundancy. If instead of measuring several
outputs we feed the diagnosis procedure with output measurements at different times. If
the system dynamics are known, we can from this time series extract fault information.
This kind of analytical redundancy is called temporal redundancy.

One area where analytical redundancy based diagnosis will have problems replacing
hardware redundancy is where the demands on fast response is very high, e.g. in an
aircraft where human life depends on extremely fast response to component failure.

When the system model is given as analytical functions, analytical redundancy is
sometimes referred to as functional redundancy. Even model based diagnosis is some-
times used synonymous with analytical redundancy, the correct relationship is however
that a model based diagnosis scheme utilizes analytical redundancy.

2.2 Why model based diagnosis?

Why is there a need for a mathematical model to achieve diagnosis? It is easy to imagine
a scheme where important entities of the dynamic process is measured and tested against
predefined limits. The model based approach instead performs consistency checks of the

1Triple Modular Redundancy, see [12] for more information
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process against a model of the process. There are several important advantages with the
model based approach

1. Outputs are compared to their expected value on the basis of process state, there-
fore the thresholds can be set much tighter and the probability to identify faults
in an early stage is increased dramatically.

2. A single fault in the process often propagate to several outputs and therefore causes
more than one limit check to fire. This makes it hard to isolate faults without a
mathematical model.

3. With a mathematical model of the process the FDI scheme can be made insensitive
to unmeasured disturbances, e.g. in an SI-engine the load torque, making the FDI-
scheme feasible in a much wider operating range.

There is of course a price to pay for these advantages in increased complexity in the
diagnosis scheme and a need for a mathematical model.



Chapter 3

Approaches in literature

In this chapter we will look into the different approaches described in literature and
briefly describe them. They will also be compared to each other and finally the ap-
proaches to be further investigated in this work will be selected.

The faults acting upon a system can be divided into three types of faults.

1. Sensor (Instrument) faults
Faults acting on the sensors

2. Actuator faults
Faults acting on the actuators

3. Component (System) faults
A fault acting upon the system or the process we wish to diagnose.

A general FDI scheme based on analytical redundancy can be illustrated as in figure
3.1, an algorithm with measurements and control signals as inputs and a fault decision
as output. If the system to be diagnosed is very large it can be necessary to include an

Control signals

Actuator faults Component faults
Sensor faults

Outputs
Actuators Sensors

Dynamic
process

Disturbance

Diagnosis
System

Diagnosis
decision

Figure 3.1. Structure of a diagnosis system

inference mechanism to complement the isolation decision that very well can be an AI
inference mechanism.
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It is unrealistic to assume that all signals acting upon the process can be measured,
therefore an important property of an algorithm is how it reacts upon these unknown
inputs. It is also unrealistic to assume a perfect model, the modelling errors can be seen
as unknown inputs. An algorithm that continue to work satisfactory even when unknown
inputs vary is called robust. In some of the approaches described later in this chapter
we have a possibility to achieve disturbance decoupling, i.e. make the isolation decision
independent of unmeasured disturbances. Further discussions around robustness issues
can be found in section 3.2.

There are many ways to categorize the different diagnosis schemes described in lit-
erature, but here we divide them into two groups: knowledge based, emerging from the
computer science field of studies, and approaches based on systems & control engineer-
ing. The approaches based on systems & control engineering will, in the rest of the
report, be shortened to control approaches. In this report we will concentrate on control
engineering based approaches and therefore the discussions around knowledge based ap-
proaches are somewhat brief. This choice should only be seen as a way of limiting the
scope of this work and not as knowledge based approaches are less important. More in-
depth information about knowledge based approaches can be found in [44]. Approaches
in both groups does however utilize analytical redundancy as was described in section
2.1.

3.1 Knowledge based approaches to FDI

This section gives a short introduction to the knowledge based approach to FDI. Here the
word knowledge means that the knowledge known about the process and the faults acting
upon the process is represented in a knowledge base. There is no need for the knowledge
to be supported by analytical functions, the knowledge can be knowledge gathered by the
engineers working with the process. The representation of the knowledge is an important
issue here and is discussed in AI literature, e.g. in [39].

Knowledge based approaches is divided into shallow diagnostic reasoning techniques
and deep diagnostic reasoning techniques.

3.1.1 Shallow diagnostic reasoning techniques

These approaches originates from applications where exact information about the process
is hard to extract, e.g. in medical applications.

The most common way to implement a shallow reasoning diagnostic technique, is
to use look-up tables, or a database, of process condition versus faults. This approach
indicates that the look-up table becomes very large for even a moderately complex
process where there is very little chance of identifying all faults and its corresponding
system state. Therefore these approaches is not further investigated in this work, they
are nevertheless interesting in a general perspective, e.g. because of their ability to
incorporate knowledge not necessarily explainable. Also diagnosis schemes based on
expert systems fits in this category.
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3.1.2 Deep diagnostic reasoning techniques

The foundation of these techniques is a deeper model of the process than the look-up
tables used in shallow knowledge based approaches.

There exists many different approaches to achieve diagnosis within the deep reasoning
concept, two of these methods are

• Constraint suspension technique

• Governing equations technique

Constraint suspension technique

The constraint suspension technique uses constraints determined for all important en-
tities in the process to be diagnosed. All entities, which if connected together forms
the model of the process, has rules or constraints determining the relationships between
in-out variables.

The main idea of the approach can be described as if the measured outputs of the
sensors is consistent with the predicted value, a fault-free state is assumed. If there
exists inconsistencies a fault is assumed present and a list of possible fault sources, i.e.
entities, is determined by backtracking from the inconsistent output block and follow
the dependency chain backwards. The possible fault sources is also called candidates.
An example is given below:

If, in figure 3.2, output y1 is inconsistent and y2 is consistent with model prediction
the candidate list is {1,2,4}. When the fault candidate list is determined each candidate,

u2

u1

u3

u4

y1

y2

1

2

3

4

5

Figure 3.2.

one at a time, is suspended, i.e. the model is assumed unknown and if there exist
an output value of the candidate that explains all inconsistencies in the system that
candidate is assumed as the source of the fault. A candidate can in itself be a set, i.e. it
is possible that one fault alone cannot explain all inconsistencies in the system. If several
sets of candidates can explain the inconsistencies the smallest set, i.e. the minimal set,
is the most probable.

Governing equations technique

This technique was primarily developed for chemical processes but is applicable if your
model allows you to state equations describing constraints in the process and logical
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equations describing inconsistencies. If for example Fin − Fout = 0 describes static flow
through a system. If the left hand side of the equation < 0, i.e. more flow out than in
we can infer that

(Fin-sensor too low) ∨ (Fout-sensor too high)

If the left hand side of the constraint is > 0 we can infer that

(Fin-sensor too high) ∨ (Fout-sensor too low) ∨ (system leak)

When defining a number of constraints as above we get a number of logical equations
from whom it is possible to infer the fault origin. This can be done by a boolean logic
inference system but to achieve a feasible system it is probably necessary to use a non-
discrete inference system. A drawback with this approach is that it can be difficult to
know when enough knowledge has been stated as logic formulas to diagnose any faults.

3.2 Systems & control engineering approaches to diagnosis

In control based approaches the diagnosis procedure is explicitly parted into two stages,
the residual generation stage and the residual evaluation stage, as illustrated in figure 3.3.
The residual evaluation can in its simplest form be a thresholding test on the residual,

Residual
Generator

Residual
Evaluation

Diagnosis System

Diagnosis
decision

Control Signals Measurements

Figure 3.3. Two stage diagnosis system

i.e. a test if abs(r(t)) > Threshold. More generally the residual evaluation stage consists
of a change detection test and a logic inference system to decide what caused the change.
A change here represents a change in normal behavior of the residual.

The residual generation approaches can be divided into three subgroups, limit &
trend checking, signal analysis and process model based.

• Limit & trend checking
This approach is the simplest imaginable, testing sensor outputs against prede-
fined limits and/or trends. This approach needs no mathematical model and are
therefore simple to use but it is hard to achieve high performance diagnosis as was
noted in section 2.2.
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• Signal analysis
These approaches analyses signals, i.e. sensor outputs, to achieve diagnosis. The
analysis can be made in the frequency domain, [30], or by using a signal model,
e.g. an ARMA-model. If fault influence are known to be greater than the input
influence in well known frequency bands, a time-frequency distribution method as
in [31] can be used.

• Process model based residual generation
These methods are based on a process model and will be further investigated
in this report. The process model based approaches are further parted into two
groups, parameter estimation, and parity space approaches. These methods will be
investigated further later in this section.

Before we can discuss the methods in this section we need to make some definitions.
The approaches to be discussed here generates residuals which can be defined as

Definition 3.1 [Residual]. A residual (or parity vector) r(t) is a scalar or vector that
is 0 or small in the fault free case and 6= 0 when a fault occurs.

The residual is a vector in the parity space. This definition implies that a residual
r(t) has to be independent of, or at least insensitive to, system states and unmeasured
disturbances.

We will now concentrate on linear systems because they can be systematically ana-
lyzed, non-linear system will be briefly discussed in section 3.2.7. A general structure of
a linear residual generator, can be described as in figure 3.4. The transfer function from
the fault f(t) to the residual r(t) then becomes

r(s) = Hy(s)Gf (s)f(s) = Grf (s)

What conditions has to be fulfilled to be able to detect a fault in the residual? In [4]

Process

Residual generator

+

G  (s)f

G  (s)u

+

H  (s)y

H  (s)u

f(t)

u(t)

y(t)

r(t)

Figure 3.4. General structure of a linear residual generator
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detectability has a natural definition. To be able to detect the i:th fault the i:th column
of the response matrix [Grf (s)]i has to be nonzero, i.e.

Definition 3.2 [Detectability]. The i:th fault is detectable in the residual if

[Grf (s)]i 6= 0

This condition is however not enough in some practical situations. Assume that we
have two residual generators with structure as in figure 3.4. When excited to a fault the
residuals behave as in figure 3.5. Here we see that we have a fundamentally different

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

fault
r (t)1

r (t)2
fault

Figure 3.5. Example residuals

behavior between r1(t) and r2(t) as r1(t) only reflects changes on the fault signal and
r2(t) has approximately the same shape as the fault signal. Thus r1(t) can not be used
in a reliable FDI application even though it is clear that Gr1f (s) 6= 0.

The difference between the two residuals in the example are the value of Grf (0). It
is clear that residual 1 has Gr1f (0) = 0 while residual 2 have Gr2f (0) 6= 0. This leads to
another definition in [4]

Definition 3.3 [Strong detectability]. The i:th fault is said to be strongly detectable
if and only if

[Grf (0)]i 6= 0

The above definitions show that it can be of great importance to perform a frequency
analysis of the residual generator. What can be done if the designed residual generator
has a response like r1(t)? An easy solution can be to filter the residual, e.g. through a
integrating filter.
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3.2.1 Isolation strategies

If we now have strongly detectable residuals, how can isolation be achieved? In [33] two
general methods are described

• Structured residuals

• Fixed direction residuals

Structured residuals

The idea behind structured residuals is that a bank of residuals is designed making each
residual insensitive to different faults or subset of faults whilst remaining sensitive to
the remaining faults, i.e. if we want to isolate three faults we can design three residuals
r1(t),r2(t) and r3(t) to be insensitive to one fault each. Then if residuals r1(t) and r3(t)
fire we can assume that fault 2 has occured.

Structured residuals can also be generated with a bank of observers. Here we will
present the structure for instrument fault diagnosis (IFD), the corresponding structure
for actuator fault diagnosis (AFD) is trivial. There are two general structures for the
observer bank, the dedicated observer scheme (DOS) or the generalized observer scheme
(GOS). In DOS only one measurement is fed into each observer. The i:th observer are
therefore only sensitive to sensor faults in the i:th sensor. DOS is illustrated in figure 3.6.
Each observer in a GOS scheme on the other hand are fed by all but one measurement

Observer 1

System Observer k

Observer m

u

u

u

u

r1

rk

rm

y1

yk

ym

Figure 3.6. Dedicated Observer scheme for IFD

making the i:th residual sensitive to all but the i:th measurement. GOS is illustrated
in figure 3.7. Since there always exists modelling errors and disturbances not modeled
residuals are never 0 even in the fault free case. This can make some residuals fire that
shouldn’t and vice versa. Therefore it is more likely that a GOS-bank of residuals are
more reliable than a DOS-bank in a realistic environment. This because that if one
residual in a DOS-scheme happen to fire in a fault free case this immediately results
in a bad fault decision. However in a GOS-scheme more than half of the residuals
have to misfire (if we use a majority decision rule) to make a bad fault decision. If a
residual pattern, i.e. a binary vector describing which residuals that have fired, doesn’t
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Observer 1

System Observer k

Observer m

(y ,...,y  )
2 m

u

u

u

u

1 k-1 k+1(y ,...,y     ,y      ,...,y   )m

(y ,...,y      )
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Figure 3.7. Generalized Observer scheme for IFD

correspond to any fault patterns a natural approach is to assume the faultpattern that
has the smallest Hamming distance to the residual pattern. The Hamming distance is
defined as the number of positions two binary vectors differ, e.g. d((1, 1, 0), (0, 1, 1)) = 2.

As always there is a price to pay for this increased reliability, or robustness, a GOS-
scheme can only detect one fault at a time while a DOS-scheme can detect faults in all
sensors at the same time. It is possible to extend a GOS scheme with extra sensors and
residuals to achieve possibilities to detect and isolate multiple faults as in [16].

A thorough description of structured residuals are given in section 4.

Fixed direction residuals

This idea is the basis of the fault detection filter where the residual vector get a specific
direction depending on the fault that is acting upon the system.

Figure 3.8 gives an geometrical illustration of this type of residuals when a fault of
type 1 has occurred. The most probable fault can then be determined by finding the

Fault direction 1

Fault direction 2
Fault direction 3

Residual

Figure 3.8. Fixed direction residuals
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fault vector that has the smallest angle to the residual vector.

It can be noted that a DOS scheme can be viewed as a fixed direction residual
generator with the basis vectors as directions. A GOS scheme can however not be viewed
as a fixed directions residual generator as a residual there is confined to a subspace of
order n − 1 (if there are n residuals) instead of only a 1-dimensional subspace (the
direction).

3.2.2 Robustness issues

One problem, as we have noticed earlier, is that unmeasurable signals often act upon
the system plus the influence by modelling errors. This makes it hard to keep the false
alarm rate at an appropriate level.

If it is known how the uncertainty influences the process, so called structured uncer-
tainty, this information can be utilized to actively reduce or even eliminate their influence
on the residuals. If it is not known how disturbances act upon the system there is little
that can be done to achieve any decoupling. We actually don’t produce any robust-
ness, at best we can maximize the sensitivity to faults and minimize the sensitivity to
disturbances over all operating points.

However it is possible to increase robustness in the fault evaluation stage, i.e. in the
threshold selection step, e.g. by using adaptive threshold levels or statistical decoupling
as described in section 3.2.6. This is also called passive robustness. It is not likely
that one method can solve the entire robustness problem, a likely solution is one where
disturbance decoupling is used side by side with adaptive thresholds.

3.2.3 Model structure

To proceed in the analysis of residual generation approaches we need an analytical model.
In this report a state-representation of the model are used as

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)) (3.1)

The linear (time-continuous) state representation

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3.2)

As we have noted earlier we have three general types of faults:

1. Sensor (Instrument) faults
Modeled as an additive fault to the output signal.

2. Actuator faults
Modeled as an additive fault to the input signal in the system dynamics

3. Component (System) faults
Modeled as entering the system dynamics with any distribution matrix. Here it is
seen that actuator faults only are a special case of component faults.
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There are also uncertainties about the model or unmeasured inputs to the process, e.g.
the load torque in an automotive engine. If these uncertainties are structured, i.e. it is
known how they enter the system dynamics, this information can be incorporated into
the model.

In the linear case and model uncertainties are supposed structured, the complete
model becomes

ẋ(t) = Ax(t) + B(u(t) + fa(t)) + Hfc(t) + Ed(t)
y(t) = Cx(t) + Du(t) + fs(t) (3.3)

Where fa(t) denotes actuator faults, fc(t) component faults, fs(t) sensor faults and d(t)
disturbances acting upon the system. H and E is called the distribution matrices for
fc(t) and d(t).

3.2.4 Parameter estimation

As we noted in 3.2, process model based residual generators could be parted into two
approaches parameter estimation and parity space approaches. A parameter estimation
method, [18, 19] is based on estimating important parameters in a process, e.g. frictional
coefficients, volumes or masses, and compare them with nominal values.

We first need to define the model structure to use. The process to be modeled
typically consist of both static relations and dynamics relations, both linear and non-
linear.

Theoretically there is no limit on the appearance of these relations, the parameter
estimation could be done by e.g. a straightforward gradient-search algorithm. But to
enable efficient estimation of model parameters here it is assumed that the model is
linear in its parameters. A least squares solution are then easy to extract. Note that
this in no way implies a linear model. The equation

y(t) = a1 x2(t)

is linear in its parameter a1 but is clearly non-linear.

With this assumption the model can be written as a linear regression model

y(t) = ϕT (t)θ (3.4)

where ϕ(t) consists of inputs and old measured variables in a discrete model and output
derivatives in a continuous model. θ are the model parameters to be estimated.

Example 3.1. For an ordinary linear differential equation

y(t) + a1
dy(t)
dt

+ a2
d2y(t)
dt2

+ . . . + an
dny(t)
dtn

=

= b0u(t) + b1
du(t)

dt
+ b2

d2u(t)
dt2

+ . . . + bm
dmu(t)

dtm
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we get

ϕ(t) =

[
−dy(t)

dt
− d2y(t)

dt2
. . . − dny(t)

dtn

u(t)
du(t)

dt

d2u(t)
dt2

. . .
dmu(t)

dtm

]T

θ = [a1 a2 . . . an b0 b1 . . . bm]T

Note that θ is the model parameters, not the physical parameters. θ can be written
as a function of the physical parameters p as

θ = f(p) (3.5)

Note that it can be of great importance how in- and out-signals are chosen as we will
see in the example below.

Example 3.2. Consider a simple linear system, a first order low pass RC-link. Here
there are two physical parameters, the resistance R and capacitance C.

If the input and output voltages, u1 and u2 are chosen as in and out signals, the
system gets

u2(t) = −RCu̇2(t) + u(t) = ϕT (t)θ = (−u̇2(t) u(t))

(
RC
1

)
(3.6)

In equation (3.6) we see that only one parameter appear in θ as RC. We can then
conclude that the two parameters can not be estimated with this choice of input-output
signals. If we instead considers the output current i2 as output signal. The system then
gets:

i2(t) = −RCi̇2(t) + Cu̇(t) = ϕT (t)θ = (−i̇2(t) u̇(t))

(
RC
C

)
(3.7)

Here in (3.7) two parameters appear and both R and C is identifiable. In a practical
problem there might not be a choice in in-out signals but the example shows that in a
parameter estimation method, the in-out signal choice can be of great importance and
should be analyzed.

Now when the model structure is defined we can outline the typical parameter esti-
mation diagnosis method.

• Data processing
With the help of the model and measured output data model parameters can be
estimated, e.g. by minimizing the quadratic estimation error

VN (θ) =
N∑

i=0

(
y(i) − ϕT (i)θ

)2
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Resulting in the well known solution

θ̂ =
[
ϕ(t)T ϕ(t)

]−1
ϕT y

The LS-solution can easily be replaced by a RLS-estimator to achieve adaptability
to a time varying process.

• Fault detection
When an estimation of model parameters θ̂ is produced, an estimation of process
parameters p̂ can be extracted by inverting equation (3.5), this is also called feature
extraction.

p̂ = f−1(θ̂)

Also ∆p = pnominal − p̂ and σp can be extracted to be used in a statistical test
whether a fault is acting upon the system or not.

∆p and σp can be seen as residuals as they are small in the fault-free case. They
are also in parameter estimation articles called syndromes.

• Fault classification
If the statistical test mentioned above decides that a fault is present, isolation of
the fault source is the final stage in a parameter estimation method.

The algorithm outlined above is an example of a typical algorithm, another approach
is taken in [18] where the detection and classification steps are combined into one using a
Bayes classification rule. The drawback with heuristic knowledge are that highly reliable
training data, or experience is needed.

There exists another complication with the parameter estimation method. The ϕ(t)
vector often include time derivatives that are not measurable. In a realistic environment
all measurement will be subjected to measurement noise which will make differentiating
complicated. An ideal differentiator amplifies high frequency components and the typical
measurement noise consists of high frequencies. One way to handle this problem are a
state-variable filter approach described in [38].

3.2.5 Parity space approaches

The approaches described in this section are called parity space approaches because they
generate residuals who are vectors in the parity space. The methods can be divided into
open- and closed-loop approaches. In an open-loop approach there are, as the name
suggests, no feedback from previously calculated residuals.

The idea behind closed-loop approaches, i.e. observer based approaches, are to use
a state-estimator as a residual generator. Both structured residuals and fixed direction
isolation methods is achievable with both open- and closed-loop design methods. There
are a number of approaches suggested in literature, here we will address

• Parity equations from a state-space model

• State observers

• Fault detection filter
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• Unknown Input Observer

• Eigenstructure assignment of observer

Note that these are methods to design the residual generator. Several of these designs
may result in the same residual generator in the end as shown in [8].

Parity equations from a state-space model

An example of an open-loop implementation utilizing temporal redundancy. This method
will be presented in detail in chapter 4.

State observers

If there are no uncertainties acting upon the system, a straightforward approach is to
use a state estimator observer and compare the estimated outputs with the measured.

Consider the special case of IFD. Assume a linear system with additive sensor faults
fs as

ẋ = Ax + Bu

y = Cx + Du + fs (3.8)

A state observer for system (3.8) can be stated as

˙̂x = Ax̂ + Bu + K(y − ŷ)
ŷ = Cx̂ + Du

If r = y − ŷ is used as the residual it can be written

r = y − ŷ = Cx + Du + fs − Cx̂ − Du = Ce + fs

where e is the state estimation fault e = x − x̂. The estimation error dynamics can be
stated

ė = (A − KC)e − Kfs

Assume fs is a step from 0 to F 6= 0. Since Ac = A − KC is a stable matrix, e will go
towards a stationary value

e → A−1
c KF as t → ∞

As r = Ce + fs and e goes towards a non zero value the residual will be 6= 0 if F 6= 0.
This result motivates the non-linear version of this residual generator that is used in a
robust IFD scheme described in section 7.2.

Fault detection filter

The idea with the fault detection filter [8, 33] is, as was noted in earlier, to produce fixed
direction residuals. The method is based on an observer of the form

˙̂x = Ax̂ + Bu + K(y − Cx̂ − Du)
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Considering a fault in the i : th actuator we get estimation error e = x − x̂ dynamics as

ė = (A − KC)e + bifa

ey = y − ŷ = Cx + Du − Cx̂ − Du = C(x − x̂) = Ce

Where bi is th i : th column in B. By a special choice of K it is possible to make ey, i.e.
the residual, grow in a specified direction when the i : th fault has occured.

In [33] it is noted that the fixed direction approach uses up more of the design freedom
compared to other observer based approaches described next who therefore supersedes
the fault detection filter.

Unknown Input Observer

The unknown input observer residual generator as in [6, 7, 33, 35], is based on a general-
ized observer, the so called Luenberger observer rendering a residual generator as

ẇ(t) = Fw(t) + Ky(t) + Ju(t)
r(t) = L1w(t) + L2y(t) + L3u(t)

Where w is an estimate of the transformed state vector Tx. Assuming a system as in
(3.3) the error dynamics then gets

ė = T ẋ − ẇ = T (Ax + Bu + Bfa + Hfc + Ed) − Fw − Ky − Ju =
= (TA − FT − KC)x + (TB − KD − J)u + Fe + TBfa + THfc + TEd − Kfs

r = L1(Tx − e) + L2(Cx + Du + fs) + L3u =
= −L1e + (L1T + L2C)x + (L2D + L3)u + L2fs

In the fault free, no disturbance case we require r = 0. The conditions can then be
identified as

FT − TA + KC = 0
J + KD − TB = 0

L1T + L2C = 0
L2D + L3 = 0

The conditions above must be upheld for any observer based residual generator, the
unknown input observer is a method of finding all matrices in the generalized observer
described above. Note that the disturbance influence can be eliminated already in the
state estimate w by choosing TE = 0. In the eigenstructure observer described later,
T is assumed to be the identity matrix, thus rendering a so called identity observer.
Therefore there is no way of achieving disturbance decoupling in the state estimate,
only in the residual r.

Eigenstructure assignment of observer

The eigenstructure assignment is an observer approach using an identity observer, i.e.
T = I, to achieve disturbance decoupling in the residual. A detailed description of the
eigenstructure approach is described in chapter 5.
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3.2.6 Residual evaluation

Due to the uncertainties in the model used in the residual generator, measurement noise
and/or that only approximate decoupling from unmeasured disturbances is achievable,
residuals will not be 0 in the fault-free case. Therefore a non-zero threshold has to be
selected. This is even more important in the case of unstructured uncertainties where
exact disturbance decoupling in the residuals is impossible.

In [6] it is noted that when deterministic decoupling, i.e. decoupling of structured
disturbances in the residuals, is not possible there is a possibility, if we know the statis-
tical distribution of the residual, to use this knowledge and achieve robust FDI. This is
called statistical decoupling.

One method who achieves statistical decoupling is the GLR (Generalized Likelihood
Ratio) test where the k : th residual is modeled as

rk(t) = r0,k(t) + Gk(p)f(t)

Where r0,k(t) is white noise with zero mean and Gk is the distribution matrix of the
k : th fault. p is the derivation operator, i.e. ẏ(t) = p y(t).

A hypothesis test is then performed with the hypothesis

H0 : rk = r0,k

Hi : rk = r0,k + Gi,k fi the i:th fault has occured

The hypothesis decision can be made through a test of the likelihood ratio

Li =
Pr(r1, . . . , rn|Hi, fk = f̂i)

Pr(r1, . . . , rn|H0)

Where Pr(·) denotes the density function of the underlying stochastic process. The
estimates f̂i is calculated under the assumption that Hi is true. The decision is then
based on the rule

Li > Ti : Hi is assumed, i.e. the i:th fault is assumed present
Li < Ti : H0 is assumed, i.e. no fault

The desired false alarm rate can be adjusted by choosing suitable thresholds Ti.

This approach can be easily illustrated on a one dimensional residual by figure 3.9.
Assume the observed value of the residual is r. Assume H0 is the density function of r
under assumption H0 and H1 is the density function of r under the assumption H1. We
can directly see that H0 is the most probable hypothesis. Li is then an estimation of
v1
v2

. In this example Li would be small as v1 < v2 and hypothesis H0 would be assumed,
just as expected.

Another more intuitive approach to robust residual evaluation is that of adaptive
thresholds. Since the model used does not model the system perfectly, the residuals will
fluctuate with changing inputs even in a fault-free situation. There might be situations
where these fluctuations are so great so that no threshold level fulfills both satisfactory
false alarm rate demands and missed detection probabilities.
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Figure 3.9. GLR illustration

The adaptive thresholds approach is as noted above based on the fact that the
residuals tend to fluctuate with the input signals (unmeasured or measured). Examples
of adaptive thresholds can be that the threshold level is scaled with the size of the input
vector, i.e. Ti(t) ∝ ||u(t)||, or time-derivative of the input vector, i.e. Ti(t) ∝ ||u̇(t)||.

In the end, we have to set the threshold levels. One simple approach is to observe the
residuals in the fault free case and set the level to get the desired false-alarm rate. The
residual evaluation rules used often get adapted to the application, e.g. by using time-
limits on how long the residual can be above the Threshold before a fault is assumed
etc. It is easy to imagine a number of ad hoc solutions to improve robustness, but a
systematic approach based on Markov theory choosing the thresholds has been suggested
in [46].

3.2.7 Non-linear residual generators

As noted, all previously described residual generators are linear. When applying a linear
residual generator, based on a linearization of a non-linear system, modelling errors
become dominant very quickly as the system deviates from the linearization point. One
way to master this problem is to use a non-linear residual generator taking full advantage
of the knowledge in the non-linear model. Non-linear residuals can be both closed-loop
generators, [6], or open-loop generators [24]. Non-linear parity equations is described in
[24] and used for automotive diagnosis in [9].

An example of a non-linear residual generator is given below.
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Closed-loop approach

Consider a class of non-linear systems described by the differerential equations

ẋ = f(x, u) + E1f1

y = h(x, u) + E2f2

A corresponding non-linear identity observer is given by

˙̂x = f(x̂, u) + H(x̂, u)(y − ŷ)
ŷ = h(x̂, u)

The error dynamics ė = ẋ − ˙̂x can then be calculated as

ė = f(x, u) − f(x̂, u) − H(x̂, u)(h(x, u) − h(x̂, u)) + E1f1 − H(x̂, u)E2f2

A Taylor expansion of f(x, u) around e = 0, i.e. x = x̂ yields

f(x, u) = f(x̂, u) +
∂f(x, u)

∂x

∣∣∣∣
x=x̂

(x − x̂) + h.o.t

f(x, u) − f(x̂, u) can then be written as

f(x, u) − f(x̂, u) = f(x̂, u) +
∂f(x, u)

∂x

∣∣∣∣
x=x̂

(x − x̂)︸ ︷︷ ︸
e

+h.o.t − f(x̂, u) =

=
∂f(x, u)

∂x

∣∣∣∣
x=x̂

e + h.o.t

By the same line of reasoning we can state

h(x, u) − h(x̂, u) =
∂h(x, u)

∂x

∣∣∣∣
x=x̂

e + h.o.t

Assuming ||e|| small enough to neglect higher order terms the expansions above results
in error dynamics and a residual as

ė = (
∂f(x, u)

∂x

∣∣∣∣
x=x̂

− H(x̂, u)
∂h(x, u)

∂x

∣∣∣∣
x=x̂

)e + E1f1 − H(x̂, u)E2f2

r =
∂h(x, u)

∂x

∣∣∣∣
x=x̂

e − E2f2

The observer gain H(x̂, u) has to be designed so that e = 0 becomes an asymptotically
stable equilibrium. If there is any design freedom left, that freedom could be used to
achieve approximate decoupling by using the expressions derived above. Note that it can
be very hard to find the time-varying H(x̂, u) for a general system. Non-linear observers
based on the eigenstructure assignment approach is discussed briefly in section 5.6.
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3.3 Summary of approaches in literature

To summarize the relationships between the different diagnosis methods described in this
section, a tree-structure is presented in figure 3.10. The different residual generation
methods are related as in figure 3.11. All these methods have their advantages and
disadvantages and it is likely that in a complete diagnosis application several of these
methods will be used. A comparison study between different methods is made in [20].

The presentation done here is in no way complete as there exists numerous of ap-
proaches, e.g. the neural network approach [1, 42].

3.4 Approaches to evaluate in this work

In this paper the residual generation stage is emphasized and in particular open- and
closed-loop approaches are investigated further. This because they include the possibility
to design a diagnosis scheme that is invariant to unmeasured structured disturbances,
which exists in the automotive case in the road load.



Chapter 4

Parity equations from state-space
model

In this section structured parity equations from a state-space model [8, 35] are examined
in detail and a design example will be presented.

The parity equation strategy is an open-loop strategy that utilizes what is called
temporal redundancy which is a type of analytical redundancy discussed in section 2.1.
Temporal redundancy is sometimes referred to as serial redundancy.

The main idea with temporal redundancy are that given analytical knowledge on
the process behavior it is possible to predict how process state and input signals affect
future outputs. Considering a time window all information about any faults that may
have occured during that time are present in the measurements.

This makes fault detection possible assuming that all signals acting upon the system
are measurable. This is not always a realistic situation, therefore you need to make the
diagnostic procedure invariant to unmeasurable inputs acting upon the system. And
then to achieve fault isolation you also need to make the residuals insensitive to one or
several of the other faults, achieving what is called structured parity equations. We will
show that all this is possible by applying a multi-dimensional FIR-filter to the output
estimate.

4.1 Residual generator

Restating the model given in equation (3.3), here a time-discrete form is used as it is
more suited for this approach. First we consider the fault free, no disturbance case, i.e.
fa = fc = fs = d ≡ 0.

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (4.1)

It is not necessary to have the model on state-space form to develop the residual gener-
ator, it can just as well be developed using an input-output formulation of the model.
The state-space form is chosen as it produces a clean notation.
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Since we are going to utilize temporal redundancy we need an expression for the
output based on previous states. The output at time t + 1, t + 2, . . . , t + s, s > 0 then
becomes

y(t + 1) = CAx(t) + CBu(t) + Du(t + 1)
y(t + 2) = CA2x(t) + CABu(t) + CBu(t + 1) + Du(t + 2)

...
y(t + s) = CAsx(t) + CAs−1Bu(t) + . . . + CBu(t + s − 1) + Du(t + s)

Collecting y(t − s), . . . , y(t) in a vector yields

Y(t) = Rx(t − s) + QU(t) (4.2)

where

Q =




D 0 . . . 0
CB D 0 . . . 0
CAB CB D 0 0
...

...
. . .

CAs−1B CAs−2B . . . CB D




Y(t) =




y(t − s)
y(t − s + 1)
y(t − s + 2)
...
y(t)


 U(t) =




u(t − s)
u(t − s + 1)
u(t − s + 2)
...
u(t)


 R =




C
CA
CA2

...
CAs




Assuming k inputs and m measurements vector Y is [(s + 1)m] long and U is [(s + 1)k]
long. Matrix R has dimensions [(s + 1)m × n] and Q has [[(s + 1)m] × [s + 1]k]. Note
that y(t) and u(t) are vectors and not scalar values.

In equation (4.2), Y, U and Q are known. Premultiplying with a vector wT of length
[(s + 1)m] and moving all known variables to the left side yields

r(t) = wT (Y(t) − QU(t)) = wT Rx(t − s) (4.3)

As was described in section 3.2, equation (4.3) will qualify as a residual (parity relation)
if the residual is invariant to state variables, i.e.

wT Rx(t − s) = 0 (4.4)

Given a vector w that satisfies (4.4) we have a residual generator where the left hand side
of (4.3) is the computational form and the right hand side is the internal form. It can
now easily be seen that this w can be seen as a multidimensional FIR filter. Rewriting
(4.3) as

r(t) = [Gy1(q) . . . Gym(q)︸ ︷︷ ︸
Gy(q)

Gu1(q) . . . Guk(q)︸ ︷︷ ︸
Gu(q)

]

(
Y(t)
U(t)

)
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I f1 f2 f3

r1 1 1 0
r2 1 1 1
r3 1 1 1

II f1 f2 f3

r1 1 1 0
r2 1 0 1
r3 1 1 1

III f1 f2 f3

r1 1 1 0
r2 1 0 1
r3 0 1 1

Table 4.1. Example coding sets

To ease the notation we note that it is always possible to rearrange Y as

Y(t) =




y1(t)
y2(t)
...
ym(t)


 (4.5)

It is now easy to see that

Gy1(q) = w1q
−s + . . . + wsq + ws+1

...
Gym(q) = wm(s+1)−sq

−s + . . . + wm(s+1)−1q + wm(s+1)

A similar line of argument can be done for Gu1(q), . . . , Guk(q). The point with this
reasoning are that the residual generator becomes a multidimensional FIR filter of order
(s + 1)m where the calculation burden for most practical purposes are small.

4.2 Isolation strategy

The next step after fault detection are fault isolation. For now we assume that we know
how to make the residual invariant to faults and disturbances. details on how to achieve
these invariance will be discussed in section 4.3.

With this assumption we can make a residual insensitive to one or several of the other
faults and we can design a bank of residuals to achieve isolation. This is best explained
by example. In table 4.1 three examples are presented and each row represents a residual,
a 1 in position j on row i implies that fault fj affects residual ri. The different columns
in the coding sets in table 4.1 is called the fault code. A coding set are a table that
describes how different faults affect the residuals.

If for example in coding set III residuals r1 and r3 fire while r2 don’t, i.e. fault code
(101)T , it is probable that fault f2 has occurred.

To detect a fault, no column can contain only zeros and to achieve isolation all
columns must be unique. If these two requirements are fulfilled, the coding set is called
weakly isolating.

To keep the false alarm rate at a low level, the thresholds making the residuals to
fire are set high [8]. It is therefore more likely that a residual that should fire don’t, i.e.
a 1 is replaced by a 0, than the other way around, i.e. a 0 is replaced by a 1. To avoid
mis-isolation, the coding set should be constructed as no two columns can get identical
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when ones in a column are replaced by zeros. A coding set that fulfills this requirement
is called a strongly isolating set.

In figure 4.1 coding set I is non-isolating, II is weakly isolating and III is strongly
isolating.

4.3 Residual invariance

Earlier we have assumed it possible to achieve invariance to unmeasured signals, here a
method for achieving invariance is presented. If we drop the fault-free no disturbance
assumption made in (4.1) the residual generator (4.3) transforms into

r(t) = wT (Y(t) − QU(t)) = wT (Rx(t − s) + QV(t) + TN(t) + S(t)) (4.6)

where
V is a vector of (unknown) actuator faults
N is a vector of (unknown) disturbances
S is a vector of (unknown) sensor faults
T relates to N(t) as Q relates to U(t). It can be seen that T has the same structure

as Q with B changed to E and D = 0.

If we also want the residual (4.6) to be insensitive to the unknown disturbances or
actuator faults we add the additional constraint:

wT
[
T Q̃

]
= [0 0] (4.7)

where Q̃ are the Q matrix where only the columns in the B and D matrices corresponding
to inputs to decouple are left.

If we want the residual to be insensitive to sensor faults we make sure that all wi

that appears in front of the sensor whose fault we wish to make the residual insensitive
to are set to 0. This implies (s+1) zeros per sensor fault. If we have rearranged Y(t) as
in (4.5) and want to make the residual insensitive to faults in the i : th sensor w gets
the structure:

w = (w1, . . . , w(i−1)s+i−1, 0, . . . , 0, wi(s+1)+1, . . . , wm(s+1))
T

4.4 Diagnostic limits

Of course it is not possible to make the residual insensitive to an arbitrary number of
disturbances and faults. We will now derive some of those limits.

What conditions must be fulfilled to make it possible to find a w that satisfies (4.4),
(4.7) and then how many actuator/sensor faults are possible to decouple.

We first note that if we see disturbance as an (unknown) input we only need to
consider actuator and sensor fault decoupling. Further we assume that the number of
inputs, nu ≤ n where n is the system order and nu includes the number of disturbances
acting upon the system.
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This is a very reasonable assumption. If the assumption doesn’t hold we can always
rewrite our system in a way to uphold the inequality.

Consider the system

ẋ(t) = Ax(t) +

B︷ ︸︸ ︷(
1 0 1
0 1 1

) u1(t)
u2(t)
u3(t)




Here we have 3 inputs and system order 2. We can define a new system with only two
inputs ũ1(t), ũ2(t) that are equivalent as:

ẋ(t) = Ax(t) +

(
1 0 1
0 1 1

) u1(t)
u2(t)
u3(t)


 = Ax(t) +

(
u1(t) + u3(t)
u2(t) + u3(t)

)
=

= Ax(t) +

(
1 0
0 1

)(
u1(t) + u3(t)
u2(t) + u3(t)

)
= Ax(t) +

(
1 0
0 1

)(
ũ1(t)
ũ2(t)

)

Denote the number of actuator faults and disturbances we want to decouple by su and
the number of sensor faults by sy. We note that

• To decouple the state influence on the residual, i.e. fulfill (4.4), we have to impose
n constraints on w.

• When decoupling sy outputs we set sy(s + 1) elements in w = 0.

• To decouple su actuator faults we impose su(s + 1) if D 6= 0 and sus if D = 0
constraints on w. The special case when D = 0 is easy to see when the last column
in Q̃ then becomes all zero.

In [8] s is chosen as s = n if D 6= 0 and s ≥ n − su if D = 0. Summarizing and
assuming s = n if D 6= 0 and s = n − su if D = 0, we can see that the number of
constraints on w are:

nc =

{
n + (su + sy)(n + 1) , if D 6= 0
n + su(n − su) + sy(n − su + 1) , if D = 0

The w vector have as we earlier noted [(s+1)m] elements and to ensure a solution other
than the trivial w = 0 we need (s+1)m > nc, i.e. an under determined equation system.

That is if D 6= 0

(n + 1)m > n + (su + sy)(n + 1)

⇒ su + sy < m − n

n + 1
= m − 1 +

1
n + 1

We also know that n > 0 ⇒ 1
n+1 > 0, which yields the upper limit on how many

faults/disturbances we can decouple.

su + sy = m − 1
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If D = 0 we get

(n − su + 1)m > n + su(n − su) + sy(n − su + 1) = (su + sy)(n − su + 1) + n − su

⇒ su + sy < m − n − su

n − su + 1
= m − 1 +

1
n + 1 − su

We also know from the discussion above concerning an upper limit on number of in-
puts nu that n ≥ nu ≥ su ⇒ 1

n+1−su
> 0 which yields the upper limit on how many

faults/disturbances we can decouple even here gets

su + sy = m − 1



Chapter 5

The Eigenstructure assignment
approach

In this chapter we will discuss the eigenstructure approach to FDI, as described in [33–
36], and exemplify with an example to demonstrate how the theory can be used.

The eigenstructure approach is a closed-loop observer based method aiming to make
the residual, not the state estimates, insensitive to disturbances. It can easily be ex-
tended to generate structured residuals to facilitate fault isolation. The eigenstructure of
a matrix A is the set {βi, vi}i=1...n, where βi are the eigenvalues and vi the eigenvectors.

5.1 Residual generator

Assume a linear system as in (3.3), the residual generator is based on a straightforward
state estimator, observer as

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t) − ŷ(t))
ŷ(t) = Cx̂(t) + Du(t)

From now on all time arguments will be dropped for notational simplicity.

Letting e = x − x̂ we get estimation error dynamics as

ė = ẋ − ˙̂x = (A − KC)︸ ︷︷ ︸
Ac

e + Bfa + Hfc + Ed − Kfs

Now the residual generator can be formed. As in chapter 4 we premultiply the output
estimation error to achieve insensitivity as

r(t) = W (y(t) − ŷ(t)) = W (Cx + Du + fs − Cx̂ − Du) =
= W (Ce + fs) = WCe + Wfs

Going into the frequency domain we can now present the complete residual response as

r(s) = WC(sI − Ac)−1 [Bfa + Hfc + Ed − Kfs] + Wfs =
= WC(sI − Ac)−1 [Bfa + Hfc − Kfs] + WC(sI − Ac)−1Ed + Wfs



32 5 The Eigenstructure assignment approach

The disturbance decoupling condition can now be easily seen above as

Grd(s) = WC(sI − Ac)−1E = 0 (5.1)

The problem is now how to find matrices W and K that fulfills (5.1).

Implementing a residual generator as was described above requires 4 matrix multi-
plications and 4 matrix additions to generate a residual. This computational burden is
likely to be small in a practical situation. Another question is how to choose to dimen-
sion on the residual vector. The choice depends on the isolation strategy chosen and will
be discussed below.

5.2 Isolation strategy

When using a closed-loop (observer) approach the isolation strategies available as de-
scribed in section 3.2.1 are structured residuals and fixed direction residuals. When
designing a structured residual bank there is no gain in choosing the residual dimension
larger than 1, but if we use fixed direction residuals it is clearly seen that the dimension
must be larger than 1 if more than two faults are to be isolated.

In this paper we will use structured residuals, utilizing either a GOS or a DOS
observer scheme, therefore any residuals will be of dimension 1.

5.3 Residual invariance

We have earlier in this section only addressed disturbance decoupling. It can easily be
seen that actuator faults can be thought of as unmeasured disturbances entering the
system dynamics by the B matrix. To achieve actuator fault decoupling we enlarge the
E matrix by columns in the B matrix.

Example 5.1. Consider the system

ẋ = Ax +

B︷ ︸︸ ︷
[b1 b2 . . . bk]




u1 + fa

u2
...
uk


+ Ed

If we want to consider the actuator fault fa as a disturbance we can rewrite the system
as

ẋ = Ax + B




u1

u2
...

uk


+ [E b1]

(
d
fa

)

We have now constructed a new E matrix and can achieve actuator fault decoupling by
means of disturbance decoupling.

Component faults can by similar line of argument be thought of as disturbances.
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When this is an observer approach, to achieve decoupling from sensor faults we only
need to skip the feedback of a sensor, i.e. the observer is not driven by the sensor whose
faults we want to decouple. Therefore will we only consider disturbance decoupling since
all fault decoupling cases can be seen as special cases.

Before we can proceed and describe a method to find W and K to achieve the dis-
turbance invariance we need some additional mathematical tools regarding eigenvectors
and eigenvalues, i.e. the eigenstructure.

Lemma 5.1. If matrix A has eigenvalues {βi}i=1...n then AT has the same set of
eigenvalues {βi}i=1...n. This is equivalent to that the left and right eigenvectors of a
matrix has the same set of eigenvalues.

Lemma 5.2. Assume A has right eigenvectors, {vi}i=1...n and left eigenvectors {li}i=1...n

corresponding to the eigenvalues β1, . . . βn. As noted in lemma 5.1 left and right eigen-
vectors has the same set of eigenvalues. Then a given left eigenvector li (corresponding
to eigenvalue βi) is always orthogonal to the right eigenvectors vj corresponding to
eigenvalues βj 6= βi. i.e.:

lTi vj = 0, if βi 6= βj

Proof. By definition we have

βivi = Avi

βil
T
i = lTi A (5.2)

By post multiplying (5.2) with vj we get

βil
T
i vj = lTi Avj = βj l

T
i vj

Here it can easily be seen that

lTi vj = 0, if βi 6= βj

which ends the proof. 2

This lemma can be extended to state that for anya diagonalizable matrix

lTi vi 6= 0

where li and bi corresponds to the same eigenvalue. This will be used in a proof later
on.

The dynamics in (5.1) originates from (sI − Ac)−1, i.e. the observer dynamics, this
makes it interesting to analyze it further.

The matrix (sI − Ac)−1, the so called resolvent, can be expanded in several ways.
Different expansions will result in different design methods for the residual generators.
We will here look into two expansions.
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Lemma 5.3. The resolvent (sI − Ac)−1 can be expanded as

(sI − Ac)−1 =
I

s
+

Ac

s2
+ . . . +

Am
c

sm+1
+ . . . (5.3)

Proof. Left multiplying (5.3) with (sI − Ac) we get

I =
sI − Ac

s
+

(sI − Ac)Ac

s2
+ . . . +

(sI − Ac)Am
c

sm+1
+ . . . =

= I − Ac

s
+

sAc

s2
− A2

c

s2
+ . . . +

sAm
c

sm+1
− Am+1

c

sm
+

sAm+1
c

sm+1
+ . . .

We see from above that every other term cancels out except for the first I term, i.e. the
equality holds ending the proof. 2

It can easily be seen that the decoupling condition (5.1) now transforms into

WCAi
cE = 0 , i = 1 . . . n − 1

WCE = 0 (5.4)

Note that i only goes up to n − 1, this is a direct consequence of Cayley-Hamilton’s
theorem from which the lemma below follows.

Lemma 5.4. A square matrix satisfies its own characteristic equation, i.e. if

det(β − Ac) = βn + a1β
n−1 + . . . + bn−1β + bn

then
An

c + a1A
n−1
c + . . . + bn−1Ac + bnI = 0

This implies that for matrix of order n, Ac raised to any power p ≥ n can be written as
a linear combination of {Ai

c}i=1...n−1

If it is possible to find a K and a W such that the rows of WC are left eigenvectors
of Ac corresponding to eigenvalue 0 at the same time as WCE = 0 then decoupling
according to (5.1) is achieved. We will show that under certain circumstances it is
possible to place both eigenvalues and eigenvectors by a suitable choice of K.

As we have noted that Ac = (A − KC) are the observer dynamics and placing
eigenvalues in 0 yields a marginally stable system that very easily could become instable.
The observer can however be designed in discrete time, when poles in 0 in a discrete
system corresponds to a stable rather than a marginally stable system. The observer
then corresponds to a so called dead-beat observer. The dead-beat observer has fast
residual dynamics which is desirable but it also makes the observer sensitive to model
faults as it uses all possible knowledge about the process to clobber the estimation fault.

Another expansion of (sI − Ac)−1 where the eigenvalues of Ac can be selected arbi-
trarily, as long as the observer is stable, can be derived.

Lemma 5.5. The resolvent (sI − Ac)−1 can be expanded in its eigenstructure as

(sI − Ac)−1 =
n∑

i=1

vil
T
i

s − βi
(5.5)
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where vi and li are the right and left eigenvectors corresponding to eigenvalue βi. vi and
li must be scaled so that

vT
i li = 1

n is the order of matrix Ac.

Proof. Left multiply both sides of (5.5) with (sI − Ac):

I =
n∑

i=1

(sI − Ac)
vil

T
i

s − βi
=

n∑
i=1

s
vil

T
i

s − βi
− Ac

vil
T
i

s − βi
=

=
n∑

i=1

(sI − βi)
vil

T
i

s − βi
=

n∑
i=1

vil
T
i︸ ︷︷ ︸

S

We now need to show that S = I, i.e

Sx = x,∀x ∈ Rn

If it is shown that the equality above is fulfilled for n linearly independent vectors
{vi}i=1...n then S = I since x can be written as a linear combination of any set of n
linearly independent vectors. If we choose the set to be the n right eigenvectors we get

Svj =
n∑

i=1

vil
T
i vj , j = 1, . . . , n

From lemma 5.2 we know that

lTi vj =

{
0 , if i 6= j
1 , if i = j

Using this result we see directly that

Svj = vj, j = 1, . . . , n

Which completes the proof. 2

Theorem 5.1. If WCE = 0 and all p rows of the matrix WC are left eigenvectors of
Ac then (5.1) is satisfied. p is the dimension of the residual.

Proof. The rows of matrix WC are left eigenvectors of Ac, i.e.:

WC =




lT1
lT2
...
lTp




The decoupling condition are

WC(sI − Ac)−1E = WC
n∑

i=1

vil
T
i

s − βi
E = 0
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But according to lemma 5.2 and since all rows of WC are left eigenvectors, li, we
have WCvi = 0, i = p+1, . . . , n. The decoupling condition (5.1) can then be written as

WC(sI − Ac)−1E = WC
p∑

i=1

vil
T
i

s − βi
E

But it was assumed that WCE = 0, i.e. lTi E = 0, i = 1, . . . , p which yields

WC(sI − Ac)−1E = 0

ending the proof. 2

The procedure to find W and K can be summarized as

1. Compute W so that WCE = 0. This determines the left eigenvectors of the
observer dynamics, according to lemma 5.1.

2. Determine the desired behavior of the residuals, i.e. where the observer poles
should be placed

3. Find the corresponding K that generates the desired eigenstructure, i.e. the K
that generates a matrix Ac with the desired eigenvalues and eigenvectors.

As we have seen, both expansions result in a solution that require us to find a K that
places eigenvalues and eigenvectors for Ac = (A − KC), a general procedure to achieve
this will now be presented.

5.3.1 Direct eigenstructure feedback design

This problem is in [36] addressed as a control-feedback problem, not an observer problem.
That is to find an L giving matrix (A − BL) a suitable eigenstructure. The observer
problem can be seen as the dual control problem, i.e. by replacing A by AT , B by CT

and L by KT we get an observer problem.

The problem kan now be formulated as to find an L that satisfies

(A − BL)vi = βivi (5.6)

Where the eigenstructure {vi, βi} are as close to the desired eigenstructure as possible.
The necessary and sufficient conditions to find a real feedback matrix L that satisfies
(5.6) are:

• The vi ∈ Rn are linearly independent.

• v∗j = vi whenever βi = β∗
j

1

1* here denotes complex-conjugate
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We know from basic control theory that if a system is controllable we can place the
closed-loop poles wherever we want to, see [11]. We will show by example that if one
has more inputs than “necessary”, i.e. all inputs are not needed to make the system
controllable, one also has some freedom in placing the eigenvectors. More inputs in the
control problem relates to the dual observer problem as more measurements. This is
quite natural, the more outputs we have, the more freedom we get when designing the
observer.

Example 5.2. Consider the system

ẋ =

(
1 0
0 2

)
x +

(
1 0
1 1

)
u

With the control law

u = −
(

l11 l12
l21 l22

)
x

Here only the first input signal is necessary to make the system controllable, and thus
making it possible to place all eigenvalues at arbitrarily positions, but we have an extra
input signal.

Assume we want to place the closed-loop poles (eigenvalues) in −1 and −2. After
some trivial but lengthy calculations we get a solution

l11 = 6 − l12 − l22

l21 = −12 − l12 − 7l22 + l12l22 + l222
l12

And l12, l22 can be chosen arbitrarily. If we choose l12 = l22 = 1 we get the closed loop
matrix

Ac =

(
1 0
0 2

)
−
(

1 0
1 1

)(
4 1

−6 1

)
=

(
−3 −1

2 0

)

Which has the the desired eigenvalues −1 and −2 with the corresponding eigenvectors
v1 = (1 − 2)T and v2 = (−1 1)T .

Here we have seen that we have two parameters that we can choose freely and still
achieve the desired closed-loop eigenvalues. This extra freedom can be used to shape
the eigenvectors. If we instead chooses l12 = 1 and l22 = 4 we get the closed loop matrix

Ac =

(
1 0
0 2

)
−
(

1 0
1 1

)(
1 1

−3 4

)
=

(
0 −1
2 −3

)

This also has eigenvalues −1, and −2 but here the corresponding eigenvectors are
v1 = (1 1)T and v2 = (1 2)T . Here we see that we got different eigenvectors with this
other choice of l12 and l22. We can however not choose the eigenvectors arbitrarily as
we will show next.

We will now show that the subspace where the eigenvectors can be assigned are
completely determined by the eigenvalue (and the system).
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To derive a base for the subspace we first need to make some definitions. With each
eigenvalue βi associate two matrices Q(βi) and S(βi) as

Q(βi) =
(

βiI − A B
)
∈ Rn×(n+m)

S(βi) =

(
P (βi)
T (βi)

)
∈ R(n+m)×m

where the columns of S(βi) forms a basis for the null space of Q(βi),ie:

Q(βi)S(βi) = 0 (5.7)

If we post multiply (5.7) by any vector ei of length m and perform the matrix multipli-
cation we get

Q(βi)S(βi)ei =
(

βiI − A B
)( P (βi)

T (βi)

)
ei =

= (βiI − A)P (βi)ei + BT (βi)ei = 0 (5.8)

We can rewrite (5.6) as:
(βiI − A)vi + BLvi = 0 (5.9)

Comparing (5.8) and (5.9) we identify:

vi = P (βi)ei (5.10)

That is, vi is spanned by the columns in P (βi). We can also see that

Lvi = T (βi)ei = zi (5.11)

Which we will use to calculate the feedback (observer) gain later.

The problems left are how to find the S(βi) given Q(βi) and find ei given desired
eigenvectors. We begin to address the first problem.

As noted earlier S(βi) were a basis for the null space for Q(βi). There are several
ways to find a null space basis for a matrix, several of them including inverting matrices
and thus making numerical issues important. In [36] a procedure that is based upon a
Singular Value Decomposition (SVD) are presented.

Applying a SVD to Q(βi) ∈ Rn×(n+m) yields

Q(βi) = U

n︷ ︸︸ ︷ m︷︸︸︷


σ1

σ2

. . .
σn

0
0
...
0




W T

And since W is an orthogonal matrix, the last m columns in the product Q(βi)W will
be 0 since W T W is a diagonal matrix. We have then found a null space of Q(βi) with
the m last columns of V as a base, i.e. S(βi) consists of the last m columns of V .

Now that we have found S(βi) we address the last problem, how to find the ei that
yields the corresponding eigenvector vi that is closest to the desired.
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Since eigenvectors only can reside in the subspace spanned by the columns in P (βi),
normally the desired eigenvector is not possible. Then an approximate decoupling will
have to suffice. But it is often the case, see [36], that only a few components of the
desired eigenvector are specified, i.e. the rest of the components can take arbitrarily
values. This freedom can be utilized rendering a LS-solution.

Assume that vd
i is the desired eigenvector. The rows can always be reordered by a

transformation matrix R as

Rvd
i =




vθ
i

x
...
x




where vθ
i are the specified components and x are the components that can take on

arbitrarily values.

A vector that lies in the prescribed subspace can be reordered in the same way and
can the via (5.10) be written as




vo
i

x
...
x


 = RP (βi)ei =

(
J
J ′

)
ei

The ei that minimizes |vo
i −vθ

i | in a least-squares sense can be obtained as the well known
solution

ei = (JT J)−1JT vθ
i

Now that we have found ei we can determine the feedback gain L from equation (5.11)
as

LV = Z

And if {vi}i=1...n is an independent set, L can be determined as

L = ZV −1

A full method for designing the observer has now been presented, there are however
some limits to the described procedure. It is assumed that A is diagonalizable, i.e. the
eigenvectors are linearly independent which isn’t always the case. If all βi are different
then {vi} form an independent set, however in the first expansion of (sI − Ac)−1 it
was required to assign m eigenvalues at 0. This can in some cases lead to dependant
eigenvectors. More on how to handle this can be found in [36]. The problem with
dependant eigenvectors only arise in the first expansion, in the second expansion the
eigenvalues could be selected arbitrarily, i.e. it is always possible to select eigenvalues so
that no two eigenvalues are equal. If no two eigenvalues are equal the eigenvectors form
an independent set.
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5.4 Diagnostic limits

In [33] it is stated that the necessary and sufficient conditions to solve the disturbance
decoupling problem is to find W , K and that the following inequality are satisfied.

rank(E) ≤ n − p (5.12)

Where p is the dimension of the residual. When can we find a W and K? The constraints
given in section 5.3.1 must be fulfilled. A sufficient condition can be stated as

rank(E) ≤ rank(C) − 1 (5.13)

Since rank(P (βi)) = rank(C) the dimension of the ei vectors are rank(C). That is, since
P (βi) spans the subspace where the eigenvector can reside, we have rank(C) parameters
to influence the eigenvector. Now rank(E) determines the number of constraints placed
upon the eigenvector. This results in a equation system that is under determined, i.e.
we can achieve a non-zero solution, if inequality (5.13) is fulfilled.

If inequality (5.12) is not fulfilled we can at least achieve optimal approximate de-
coupling. The solution of course depends on how the optimization problem are stated.
In [33] the problem is stated as to find a matrix E∗ where rank(E∗) = n−p, WCE∗ = 0
and minimize

||E − E∗||2F

Where the || · ||2F denotes the Frobenius norm.

The solution to the problem can be found by a SVD decomposition of E as:

E = U diag(σ1, . . . , σn)V T

where U and V are orthogonal matrices and σ1 ≥ σ2 ≥ . . . ≥ σn are the singular values.
Then E∗ can be found as

E∗ = U diag(σ1, . . . , σn−p−1, 0, . . . , 0)V T

5.5 Example

To demonstrate the design procedure a residual generator will be designed that has
disturbance and actuator fault decoupling.

Consider a generic strictly stable fifth order system

ẋ = Ax + Bu + Bfa + Ed

y = Cx + Du
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Where

A =




−1 0 1 0 1
1 −2 0 0 1
0 1 −3 1 0
0 0 1 −4 2

−1 −1 0 1 −5


 B =




1 0
0 1
0 0
0 0
1 0


 C = I5

D =




1 0
0 1
0 0
0 0
0 0


 E =




0
1
0
1
0




If rank(C) < n more conditions than outlined in section 5.4 has to be fulfilled by the
eigenvector. If rank(C) < n then a sufficient condition to find W and K are

rank(E) + n − rank(C) ≤ rank(C) − 1
⇒ rank(E) ≤ 2rank(C) − n − 1

Therefore are rank(C) intentionally chosen to n in this example since extra conditions
only would unnecessarily complicate the example.

Assume that we want to design a scalar residual generator that is invariant to d(t)
and u1(t), i.e. to find a W = lT1 such that, according to theorem 5.1 the following is
fulfilled

WC[E b1] = [0 0]

where b1 is the first column in B. This imposes 2 constraints on WC, i.e. on the left
eigenvector to Ac that is chosen as a row in WC. If l1 = [l11, . . . , l15]T the constraints
can be written

l11 + l15 = 0
l12 + l14 = 0 (5.14)

The poles of the system are determined by the eigenvalues of the A matrix. We, quite
naturally, want the observer dynamics to be faster than the system dynamics. The
fastest system pole are βmin(A) = −5.8662. We can then choose observer poles to be
−10,−11,−12,−13,−14. They are intentionally selected to different values to ensure
linearly independent eigenvectors.

The eigenvector, lT1 , corresponding to eigenvalue −10 are chosen as the row in WC.
The procedure to calculate l1 are described below in Matlab code

Q1 = [-10*eye(5,5)-A’, C’];
[U, S, V] = svd(Q1);
L1 = V(:,6:10);
P1 = L1(1:5,:);
T1 = L1(6:10,:);
J = [P1(1,:)+P1(5,:);P1(2,:)+P1(4,:)];
e1 = [1;1;1;-inv(J(:,[4,5]))*(J(:,1)+J(:,2)+J(:,3))];
l1 = P1*e1;
z1 = T1*e1;
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The J matrix represents the constraints in equation (5.14). Here also z1 in equation
(5.11) are calculated to enable calculation of the observer gain later. l2, . . . , l5 are de-
termined in a similar way corresponding to eigenvalues −11,−12,−13,−14, only here
there are no constraints on the eigenvector.

The observer gain K and the matrix W are then calculated as

K = ([z1, z2, z3, z4, z5]*inv([l1, l2, l3, l4, l5]))’;
W = l1’;

Their numerical values (with 4 decimals precision) are

W = ( −0.3704 0.4466 0.5715 −0.4466 0.3704 )

K =




10.9270 −2.6920 2.3141 −0.1604 1.4279
0.8315 7.7330 −0.5795 0.7637 0.8228

−0.3893 −2.0097 9.8634 1.2675 0.2758
−3.4944 −9.3532 0.0476 11.5719 1.7417
−2.4821 −10.0029 −3.5535 6.2237 4.9047




To make sure that the design has been successful we calculate the eigenvalues end eigen-
vectors of AT

c (the transponate because we are interested in left eigenvectors) with the
Matlab commando eig as:

>> [eigvec, eigval] = eig((A-K*C)’)

eigvec =

-0.0000 0.0000 0.6021 0.5647 -0.3704
-0.9864 -0.6918 0.0096 -0.0997 0.4466
-0.0072 0.7076 -0.7950 0.6624 0.5715
-0.0206 -0.0923 0.0719 -0.4621 -0.4466
0.1626 0.1103 0.0087 0.1371 0.3704

eigval =

-11.0000 0 0 0 0
0 -13.0000 0 0 0
0 0 -12.0000 0 0
0 0 0 -14.0000 0
0 0 0 0 -10.0000

Here we see that the calculated l1 is indeed an eigenvector corresponding to eigenvalue
−10 fulfilling equation (5.14).

To demonstrate the residual generator the system is simulated. The system is excited
with the signals in figure 5.1. The dotted lines indicates the faulty signal, i.e. u1 is
subjected to a 10% fault at t = 5 and u2 at t = 7. The system is also subjected to
an unmeasured disturbance, here in the shape of a square wave as in figure 5.2. The
calculated residual generator then produces a residual as in figure 5.3, note how the
residual are insensitive to both disturbance and faults in actuator 1, but reacts to the
fault in actuator 2 at t = 7.
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Figure 5.2. Disturbance signal

5.6 Nonlinear eigenstructure observers

In most applications it is not realistic to assume a linear model. In [33] a class of
nonlinear systems are presented where the approach described in this section can be
used. Decoupling is possible if the differential equations describing the system can be
stated on the form

ẋ = Ax + B(y, u) + E1d1 + R1f

y = Cx + E2d2 + R2f + Du

where d1, d2 are disturbance vectors and f are the fault vector
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As the nonlinearity B(y, u) only depends on measured variables, it can be com-
pensated thus leading to a linear system. Another class of non-linear systems where
the eigenstructure assignment approach has been shown to be applicable is when the
differential equations can be written on the form

ẋ = A(x) + B(x)u + E1(x)d1 + R1(x)f
y = C(x) + E2d2 + R2f + Du



Chapter 6

Modelling the SI-engine

As was established in section 2.2, a mathematical model is essential to accomplish high
performance FDI. In this chapter we will discuss the mathematical model used to analyze
the different diagnosis schemes.

First, a short introduction to Spark Ignition(SI) engines and a few concepts used are
presented to make the modelling work done later in the chapter more easy to understand.

Then analytical expressions that builds the model are derived. Then we discuss
measurements on a real SI engine, identification of model parameters, validation of the
model.

To make diagnosis possible and realistic, several features has to be added, e.g. mea-
surement noise and fault simulation.

6.1 SI-Engine fundamentals

A principle sketch of a SI-Engine is given in figure 6.1. Air flows into the engine past
the throttle plate into the intake manifold. The air-speed depends on the sub pressure
in the manifold and the throttle angle α. A closed throttle has α = 0◦ and a wide open
throttle (WOT) has α = 90◦. When inlet valves on the cylinders are open, air flows
into the cylinders and are at the same time mixed with fuel, compressed and ignited to
produce a power stroke. The engine to be modeled here is a four-stroke engine, i.e. the
engine cycle to produce one power stroke is split into four stages.

1. Intake stroke
Starts with the piston at its top position (TC). The inlet valve is opened and the
exhaust valve is closed. While the piston travels downward it draws fresh air-fuel
mixture into the cylinder. When the piston reaches its lowest position (BC) the
intake stroke ends.

2. Compression stroke
Now both valves are closed and when the piston travels upward towards TC the
mixture inside the cylinder is compressed to a fraction of its initial volume. Before
the piston reaches TC combustion is initiated by ignition resulting in dramatically
increased cylinder pressure.
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Figure 6.1. Principle sketch of the SI-engine

3. Power stroke
Keeping both valves closed, the high pressure gases pushes the piston downwards
and forces the crank-shaft to rotate. The developed work is about five times the
work needed to compress the air-fuel mixture. When the piston reaches BC the
power stroke ends.

4. Exhaust stroke
As the exhaust valve is opened the remaining burned gases flows out of the cylinder,
because the cylinder pressure is initially substantially higher than exhaust pressure.
The piston also pushes the gases out of the cylinder as it moves upward towards
TC to begin another four stroke cycle.

Note that during this four-stroke cycle, the crankshaft has rotated 720◦.

The combustion process depends on the proportions of air and fuel in the cylinder
mixture. The stoichiometric proportions of air and fuel is defined as when there is just
enough oxygen for burning all the fuel. The stoichiometric value depends on the fuel
used, but is normally between 14.57-14.70. In this thesis 14.67 will be used. The air/fuel
ratio is denoted

(A/F) =
ṁa

ṁf

ṁ represents mass flow, the subscript a indicates air mass-flow and the subscript f
indicates fuel mass-flow. The parameter λ is the air/fuel ratio normalized with the
stoichiometric value, i.e. in this thesis

λ =
ṁa
ṁf

14.67

Modern vehicles has a catalytic converter to reduce the emissions from the engine.
The efficency of the catalytic converter is highly dependant on λ. To achieve maximum
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efficency λ must be very near 1. λ can be measured with a exhaust gas oxygen (EGO)
sensor. The EGO sensor has a sharp relay-like in-out characteristic, thus making it
possible only to measure lean (λ > 1) or rich (λ < 1) mixtures. There is also a more
expensive type of λ-sensor, the Universal Exhaust Gas Oxygen (UEGO), sometimes also
called a linear oxygen sensor. The UEGO sensor can measure the actual λ and not just
lean or rich mixtures. This sensor is used in later on in this chapter to compare model
λ with real λ. In figure 6.1 a second λ-sensor is marked, after the catalyst. According
to OBD-II the catalyst must be diagnosed. One way to make diagnosis of the catalyst
possible is to use this additional λ-sensor.

In chapter 1 it was noted that the OBD II regulation stated that the EGR-system
had to be monitored. Some engines use the concept of exhaust gas recycle (EGR). The
EGR-valve is put out in figure 6.1. It is used to control emissions, a fraction of the
exhaust gases is recycled and mixed with fresh air. The engine modeled here is not
equipped with an EGR valve.

Another concept we will use when modelling the engine is the volumetric efficency
ηvol. Volumetric efficency is an efficiency measure of the engines intake stroke and is
defined as the air mass flow divided by the displaced air volume, i.e.:

ηvol =
ṁa

n ρa,i
Vd
2

Where ρa,i is the inlet air density and Vd is the total cylinder volume. Vd is divided by
two because on a four-stroke engine, half the total cylinder volume is displaced in one
crankshaft rotation.

Another parameter that is used in the modelling work is ηfc, the fuel-conversion
efficency. This efficency measure relates the output power to the power in the injected
fuel as

ηfc =
P

QHV ṁf

where P is the developed power, ṁf is the injected fuel and QHV is the so called heating
value of the fuel. QHV is a fuel dependant constant that defines the energy content in
the specified fuel.

The material in this section was found in [15] and [37].

6.2 Physical model

The mathematical model used in this thesis is a “Mean-Value” model. Fast dynamic
relationships, i.e. relationships that reaches equilibrium in a few engine cycles, are as-
sumed static in this model and time developing processes are described by non-linear
differential equations. A consequence of this simplification is that phenomena occuring
during crank-shaft revolutions does not appear in the model, e.g. the crank-shaft revo-
lution speed fluctuates in a real engine due to the two ignitions (on a four stroke, four
cylinder engine) per revolution.

More information on mean-value modeling can be found in [14], and in-depth infor-
mation about engine dynamics in [15].
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The mathematical model consists of three major subsystems

1. Crank shaft dynamics

2. Fuel dynamics

3. Air dynamics

To get an overall view of the model and get a feel of how the three subsystems influences
each other a block model is presented in figure 6.2. In a real engine λ influences the

Crankshaft
Dynamics

Air
Dynamics

Fuel
Dynamics n

p
man

α

m fi
. m f

.

Mload

λ-sensor
Dynamics

mac
. λ VO2

Figure 6.2. Block representation of SI-engine model

crank-shaft dynamics as it influences the fuel-conversion efficency ηfc. Here in this model
λ is assumed near 1 and therefore no λ dependency in the crank-shaft dynamics. The
model presented in this chapter also models the dynamics in the λ-sensor because the
output of the λ-sensor is used in a control loop, adjusting the injected fuel to maintain
λ near 1.

Table 6.1 summarizes most of the symbols and units used in the model. In the
equations that follow factors 1/3600 and 1/60 appear. This is because the units on
mass-flow and crank-shaft speed is not SI-units. The mass-flow unit is kg/h instead of
m3/s and the crank-shaft speed is rpm instead of rad/s.

Crank-shaft dynamics

The crank-shaft dynamics is modeled by Newtons Second Law for rotating masses. It
can be stated as

M = Iω̇

where M is the momentum acting upon the rotating mass, ω the angular velocity and I
the moment of inertia. For the crank-shaft the equation then becomes

Itot
2π
60

ṅ = Mgross − Mfric − Mload (6.1)

Mgross =
ηfc QHV ṁf

1
3600

n 2π 1
60

(6.2)

Mfric = a0 + a1n + a2n
2 + (a3 + a4n)pman (6.3)
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Itot Total moment of inertia [kg m2]
n Crank-shaft revolution speed [rpm]
Mgross Engine developed momentum [Nm]
Mfric Frictional momentum [Nm]
Mload The load momentum [Nm]
ηfc Fuel conversion efficency
QHV Heating value [J/kg]
ṁf Cylinder port fuel mass flow [kg/h]
pman Intake manifold air pressure [kPa]
pamb Ambient air pressure [kPa]
Tman Intake manifold air temperature [K]
Tamb Ambient air temperature [K]
Vman Volume of intake manifold [m3]
ṁat Air mass flow past throttle plate [kg/h]
ṁac Cylinder port air mass flow [kg/h]
Vd Displaced cylinder volume (entire engine) [m3]
α Throttle angle [degrees]
κ Ratio of specific heats = 1.4 for air
τff Evaporation time-constant in fuel dynamics [s]
X Fraction of injected fuel which is deposited on manifold as fuel film
ṁfi Injected fuel mass flow [kg/h]
ṁff Fuel film mass flow [kg/h]
λ Normalized A/F ratio
τλ Time constant in λ-sensor dynamics [s]

Table 6.1. Symbols and units

Worth noticing is equation (6.3) describing the frictional momentum. Today, the fric-
tional momentum is not yet completely understood and therefore there is no physical
expression describing the friction. Instead we are forced to use a phenomenological
model, the model used here in this thesis is equation (6.3) as suggested in [14].

Air dynamics

The model for the pressure in the intake manifold is obtained from the ideal gas law

pV = mRT

where p is pressure, V volume, m mass, R a gas constant and T is the temperature. For
the engine we get

ṗman =
RTman

Vman

1
3600

(ṁat − ṁac) (6.4)

ṁac =
Vd ηvol

2R Tman
60n pman (6.5)

ηvol =
2R Tmanṁac

pman Vd 60n
=

= ηvn0 + ηvn1n + ηvn2n
2 + ηvp1pman (6.6)
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Like for the frictional momentum there is no well accepted physical model for ηvol and
we are also here forced to use a phenomenological model. The model used in this thesis
is equation (6.6), for more details see [14].

The air flow past the throttle can be closely approximated by the air mass flow of a
compressible fluid through a converging nozzle. In its simplest form, this can be written
as [15, 17]

ṁat = f(α, pman) =

= ct
π

4
D2

pamb

√
2 κ
κ−1√

RTamb︸ ︷︷ ︸
Kat

β1(α)β2(pman) + ṁat0 (6.7)

The functions β1 and β2 is given by

β1(α) = 1 − cos(α − α0) (6.8)
β2(pman) =

=




√(
pman

pamb

) 2
κ −

(
pman

pamb

)κ+1
κ , if

(
pman

pamb

)
≥
(

2
κ+1

) κ
κ−1

√
κ−1
κ+1

(
2

κ+1

) 2
κ−1 , otherwise

(6.9)

In this thesis Tman is assumed constant room temperature (290 K) and pamb is
assumed normal air pressure (100 kPa).

Fuel dynamics

m̈ff =
1

τff
(−ṁff + Xṁfi) (6.10)

ṁf = (1 − X)ṁfi + ṁff (6.11)

This is a fuel flow model as in [14] where part, (1−X)ṁfi, of the injected fuel mixes with
the air directly and the rest strikes the manifold and becomes a puddle at the engine
port, the fuel film.

The fuel in the fuel-film is evaporated off the heated intake manifold with a time-
constant τff .

λ-Sensor Dynamics

The λ-sensor dynamics is modeled by a first order system. λ is the real air-fuel ratio,
and λ̃ is the output of the sensor dynamics. VO2 is the output voltage of the sensor.

˙̃
λ(t) =

1
τλ

(
−λ̃(t) + λ(t − τd)

)
=

=
1
τλ


−λ̃(t) +

ṁac(t−τd)
ṁf (t−τd)

14.67


 (6.12)

VO2 = σ(λ̃) (6.13)
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Equation (6.13) models the fact that the most common λ-sensor, the EGO-sensor, has
a sharp relay-like in-out characteristic.

In equations (6.12) and (6.13) the time dependency has been explicitly noted, this
because in all other model equations there is no time-delay, but here a time-delay τd is
present. This exists because there is a significant time-delay between the inputs to the
engine and the oxygen sensor output. The delay consists of three components

1. Hold-up time in the cylinders

2. Transport delay in the exhaust manifold and pipe

3. Reaction delay of the oxygen sensor

The delay is here modeled as τd ∝ 1
n , but a more accurate model can be found in [9].

The output of the sensor is used in the λ controller mentioned earlier. As ṁac is a
function of n and pman according to equation (6.5) we can by feeding back n and pman

calculate the ideal fuel mass flow, i.e. the fuel mass flow that results in λ = 1 as

ṁf =
ṁac

14.67

As there exists fuel-dynamics, we can’t control ṁf directly, we can only control ṁfi.
This plus measurement noise leads to a λ that isn’t identically 1. The output of the
λ-sensor is used with a PI-controller to control the air-fuel ratio.

6.2.1 State representation

From the modelling work done above it is possible to present a non-linear state form of
the system. One natural set of state variables are as

x1 = n
x2 = pman

x3 = ṁff

x4 = λ̃

These state-variables, except for x4 as it is not modeled there, are the same as used in
[14]. With α = u1, ṁfi = u2 and Mload = d1 we get

ẋ1 =
60

2πItot

{
ηfcQHV

2π 60x1
((1 − X)u2 + x3) − Mfric(x1, x2) − d1

}

ẋ2 =
R Tman

Vman 3600

{
(Katβ1(u1)β2(x2) + ṁat0) − Vd ηvol(x1, x2)

2R Tman
60x1 x2

}

ẋ3 =
1

τff
(−x3 + X u2)

ẋ4 =
1
τλ

{
−x4 +

1
14.67

Vd ηvol(x1, x2)
2R Tman

60x1 x2
1

(1 − X)u2 + x3

}
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6.2.2 Model assumptions

Apart from the assumptions made when using a mean-value model there are some addi-
tional model assumptions made in this thesis, for clarity the most important assumptions
made are listed below

• mean-value model assumptions

• phenomenological model for frictional momentum, equation (6.3)

• phenomenological model for ηvol, equation (6.6)

• pamb assumed constant = normal air pressure 100 kPa

• Tman assumed = room temperature, 290 K

• The time displacement τd in equation (6.12) is ∝ 1
n

6.3 Measurements

Before the mathematical model is ready to be used in a simulation tool, e.g. Simulink,
the different parameters in the model, e.g. Vman in equation (6.4) need to be determined
numerically. This is accomplished by doing experiments on a real SI-engine. The pa-
rameters are then identified so that the model corresponds as, in some sense, close as
possible to the real engine. Some of the parameters had already been determined before
this work; or are physical constants only to be looked up in a book. The previously
identified frictional model coefficients used in this thesis are


a0

a1

a2

a3

a4


 =




7.4081 101

−6.1214 10−3

2.3851 10−6

−3.5173 10−1

6.7426 10−5




Figure 6.3 shows the identified function. The other constants used in the model, not
identified here, are listed in table 6.2.

Variable Value
ηfc 0.40
τff 0.3
τλ 0.15
τd prop. const 195
κ 1.4
X 0.2
R 0.2870
QHV 4.3 107

Table 6.2. Model constants
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Figure 6.3. Engine friction

The parameters that needed to be identified was the parameters in equations (6.4)-
(6.9), i.e. the equations describing air dynamics. That is, the following parameters had
to be identified

• Vman in equation (6.4)

• ηvn0, ηvn1, ηvn2 and ηvp1 in equation (6.6)

• Kat, α0 and ṁat0 in equation (6.7)

It is essential for the success of the identification that the chain of actions leading to the
actual identification is well thought through. The following steps had to be considered

1. Operating range of the model

2. Sampling frequency and anti-alias filtering

Model operation range

When developing a model for a system this complex it is hard to achieve a complete
description of the system. The model can therefore only work satisfactory in a certain
operating range, outside which there is no guarantee of model behavior. The model
operating range is naturally the range where identification data has to be collected.

When establishing the model operating range it is important to bear in mind that
a balance between two conflicting goals exists, as in almost all control problems, good
model correspondence versus the size of the operating range.



54 6 Modelling the SI-engine

In this work it isn’t important that the model corresponds perfectly with the labo-
ratory engine, the main goal is that the model behaves like an engine, not the engine.
Therefore a rather large operating range has been chosen as

1000 ≤ n ≤ 4000
30 ≤ pman ≤ 100

Sampling frequency and anti-alias filter

The choice of sampling frequency, fs and cut-off frequency, fc, of the anti-alias filter are
important choices.

Constraints/requirements on the anti-alias filter:

1. For simple filter design, first order RC-filters are to be used

2. Noise (assumed white) power attenuation at fs/2 at least 20 dB

A first order filter has asymptotical power attenuation of 20 dB/decade and be-
cause of the mean-value model only frequencies below the largest crank-shaft rotation
frequency fmax = nmax

60 are interesting. The following inequality can then be formulated

fs/2 > 10 fc > 10
nmax

60

⇒ fs > 20
nmax

60


nmax=4000

> 1333Hz

nmax = 4000 is deducted from the chosen model operating range. fs was then chosen to
5000 Hz, an oversampling by 3.75 times.

The filter was finally constructed as R = 274 kΩ and C = 2.2 nF . This filter has
fc,3dB = 264 Hz and 20 dB attenuation at 2.6 kHz which approximately fulfills the
conditions layed up for the filter.

The actual measurements was performed by a Matlab-script who measured all the de-
sired working points 2 times each, this to be able to use the most reliable measurements.
The Matlab-script used can be found in appendix D.

6.4 Identification

6.4.1 ηvol identification

ηvol is identified first since the ηvol model is used when identifying the other parameters.
The model used, equation (6.6), is linear in its parameters and therefore a simple least-
squares solution is possible.

The identification resulted in the parameters


ηvn0

ηvn1

ηvn2

ηvp1


 =




−8.2119 10−2

−3.0125 10−5

1.0573 10−8

9.9272 10−3






6.4 Identification 55

Figure 6.4 shows the identified function.
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Figure 6.4. Volumetric efficency, ηvol, function

6.4.2 Air-flow past throttle identification

There are three parameters to be identified in equation (6.7), Kat, α0 and ṁat0. Equation
(6.7) is not linear in all parameters, it is non-linear in parameter α0 and identification
is therefore not as easy as above. The identification is done numerically by a steepest-
descent search with a least-squares cost function.

The identification resulted in the values
 ṁat0

Kat

α0


 =


 6.7557

6109.1
5.1222




The identified function is plotted in figure 6.5

6.4.3 Vman identification

To identify Vman in the dynamic equation (6.4), a response to a throttle step is measured.
This is the same experiment as is described in [15].

To avoid differentiating the noisy measured pman we integrate equation (6.4). We
then get

pman(T ) − pman(0) =
R Tman

Vman

1
3600

∫ T

0
ṁat(τ) − ṁac(τ) dτ (6.14)
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Figure 6.5. Air flow past throttle plate function

ṁat is measured and ṁac is calculated with equation (6.5) and (6.6), the integral can
then be approximated by a trapezoidal approximation. This resulted in the identified
volume Vman = 4.3 liters.

6.5 Model validation

The derived and identified model now need to be implemented and then validated. The
Simulink implementation can be found in appendix B. It is important to stress that the
model here need not correspond perfectly with the laboratory engine to use the model
for evaluation of diagnosis schemes, it only need to behave like a SI-engine where the
influences of input signals affect the system approximately as in a real engine. Therefore
will the validation of the model only consist of qualitative comparisons of step responses
to see that time constants and general behavior etc. are approximately correct.

When validating air dynamics (since these are the dynamics that has been identified
in this work) we see that in equation (6.7), if we let β = β1(α)β2(pman), the air mass
flow past the throttle ṁat is now a linear function in β. Plotting model vs. measure-
ments renders figure 6.6, where the solid line is model behavior and the ’+’ marks are
measurements. As can be seen, the linear relationship holds.

To compare the complete engine model and real engine behavior, a step in the throttle
is made at t = 0 and important entities are measured and compared with corresponding
model behavior. Results is plotted in figure 6.7, the dotted lines are model outputs and
solid lines are real measured signals.

The decrease in crank-shaft speed after the initial speed increase due to the throttle
step depends on a crank-shaft speed control algorithm, with the load torque as control
signal, that is active controlling the speed back to 2500 rpm again. As seen, model
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Figure 6.6. Air mass flow plotted against β

behavior behaves well enough to be used as a diagnosis simulation model.

6.6 Diagnosis adaptations of model

Measurement noise

Measurement noise is modeled as white noise added to sensor outputs. The noise power
has been selected to make model outputs “look” like real measurements.

Fault simulation

In this thesis we will investigate FDI approaches to diagnose all three types of faults,
actuator, component and sensor (instrument) faults. The fault sources chosen to analyze
are:

• Actuator faults
1. Fuel injector faults

2. Throttle actuator fault

• Component faults
1. Manifold leakage

• Sensor faults
1. Rpm sensor faults

2. pman-sensor faults
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Figure 6.7. Engine and model response to throttle step

3. ṁat-sensor faults

There is actually no loss of generality when choosing these particular faults to analyze
since all three types of faults described in chapter 3 are covered.

Actuator Faults

All actuator faults, i.e. fuel injector and throttle actuator faults, are here modeled as
an additive disturbance entering the system dynamics in the same way as the actuator
signal. This can be illustrated as in figure 6.8.

Since the approaches examined here in this thesis make no assumptions on the fault
signal, e.g. this model also models multiplicative faults. If a 10% bias fault are to be
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Actuator +

Fault

System
u

f

u~

Figure 6.8. Actuator fault model

simulated, i.e. ũ = 0.9u the fault signal can be set to f = −0.1u.

Sensor Faults

Sensor faults, i.e. rpm, pman and ṁat-sensor faults, are also modeled as an additive
disturbance and can be illustrated as in figure 6.9.

Sensor +

Fault

OutputSystem

Figure 6.9. Sensor fault model

Component Fault

The component fault, manifold leakage, are here modeled as extra air flow into the
manifold. Restating equation (6.4) with the fault element ṁleak introduced results in:

ṗman =
R Tman

Vman

1
3600

(ṁat − ṁac + ṁleak) (6.15)



Chapter 7

Diagnosis applied to automotive
engines

In this chapter we will discuss diagnosis on automotive engines, and investigate the
possibility to apply the methods previously described on the SI-engine model derived in
chapter 6. We will investigate the possibility to use parity equations from state-space
models, IFD observers and an approach based on eigenstructure observers.

In [5] ideal properties of a diagnostic procedure applied to an automotive engine are
suggested and important examples are:

1. Low computational properties
The lower the computational load the cheaper on-board processor can be used.

2. Insensitive to unmeasured disturbances
In a realistic situation it is not uncommon that there are signals having significant
influence on the process that are not measurable. On an automotive vehicle the
load torque, e.g. if the vehicle is traveling down or uphill, is such a signal that can
not be measured. To make diagnosis possible on such a process it is necessary to
make the diagnostic algorithm insensitive to the unmeasured disturbance.

3. Model robustness
Different vehicles behaves, quite naturally, slightly different, e.g. due to aging and
production tolerances. Therefore are robustness to model faults highly desirable.

4. No active diagnosis
It is called active diagnosis when the procedure assumes special, predefined, input
signals acting upon the system. This will probably have negative influence on the
process, e.g. the driving comfort in a car. Therefore diagnosis procedures relying
on active diagnosis is not desired.

5. Low false-alarm rate, low missed fault probability
Since legislative regulations state that a car manufacturer is fined if the on-board
diagnosis system has a too high false-alarm rate or to high missed fault detection
probability, these characteristics are important.
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Variable Value
n 2600 [rpm]

pman 64.5 [kPa]
α 28◦

ṁfi 9 [kg/h]

Table 7.1. Operating point

6. Full operating range functionability
To fulfill OBD-II demands, the emission system must be diagnosed over the whole
operating range. Therefore it is essential that the diagnosis system performs well
in the whole operating range.

Diagnosis on automotive engines have been described in literature. The most common
approach are different methods based on structured parity equations as described in
[9, 10, 23]. Also the failure detection filter has been used in [41].

Other approaches and topics related to automotive diagnosis can be found in [5, 16,
21, 22, 25, 26, 29, 40, 43].

7.1 Parity equations from state-space model

Here a linear residual generator is designed as was described in chapter 4 creating struc-
tured residuals. The model used in the filter design is a linearization around a operation
point as in table 7.1. The assumption made when converting the time-continuous model
into a time-discrete model is that all input signals to the system is piecewise constant.
This yields a 2-state representation as

∆x(t + 1) = A∆x(t) + B∆u(t) + Ed(t) + K1


 fa1(t)

fa2(t)
fc1(t)




∆y(t) = C∆x(t) + D∆u(t) + K2




fa1(t)
fs1(t)
fs2(t)
fs3(t)




A =

(
−1.6688 4.1250
−0.2926 −15.8177

)
B =

(
0 410.3077

55.6064 0

)

E =

(
−23.3822

0

)
K1 =

(
0 410.3077 0

55.6064 0 5.3471

)

C =


 1.0000 0

0 1.0000
0 −0.6655


 D =


 0 0

0 0
10.3995 0




K2 =


 0 1.0000 0 0

0 0 1.0000 0
10.3995 0 0 1.0000
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a1 a2 s1 s2 s3 Mload c1

r1 0 0 1 1 1 0 1
r2 1 0 1 1 1 0 1
r3 1 0 0 1 1 0 0
r4 1 0 1 0 1 0 1
r5 1 0 1 1 0 0 1
r6 1 0 0 1 1 0 0

Table 7.2. Coding set

a1 s2 s3 c1

r1 0 1 1 1
r4 1 0 1 1
r5 1 1 0 1
r6 1 1 1 0

Table 7.3. Reduced coding set

where ∆x =

(
∆n
∆pman

)
, ∆u =

(
∆α
∆ṁfi

)
, d = Mload,

(
fa1

fa2

)
=

(
Throttle actuator fault
Fuel injector fault

)
,

fc1 = Manifold leak and


 fs1

fs2

fs3


 =


 rpm-sensor fault

pman-sensor fault
ṁat-sensor fault




The model derived in chapter 6 had 3 states (4 if the λ-sensor dynamics were in-
cluded), but since there are no measurements revealing any information about the fuel-
dynamics state we here have to assume fuel dynamics in perfect accordance with the
model, hence only a two state model.

To isolate all 6 different type of faults we need 6 residuals, each independent of one
fault each. All residuals should also be independent of the disturbance d. This is however
not possible for this model, this can easily be seen as the disturbance d enters the system
dynamics in the same way as faults in the ṁfi-sensor, fa2. This means that any residual
decoupling disturbance, automatically decouples any faults in the ṁfi-sensor. This is
seen in the resulting coding set in table 7.2, the second column corresponding to a2 is
all zero. Note that this observation only holds for this linearization of the non-linear
model, in the full non-linear case it might very well be possible to make a distinction
between the two. It can also be seen that when decoupling s1 you also decouple c1 and
vice versa indicated by the two underlined 0, this making the two columns identical
making it impossible to isolate these two faults. Usually the rpm-sensor s1 is very
reliable. Therefore can the fault code for these two columns be assumed indicating a
manifold leakage. As we now only have 4 faults left to diagnose, we only need 4 residuals.
Removing the columns for a2, s1 and Mload and residuals r2 and r3 results in the reduced
coding set in table 7.3 that is a strongly isolating coding set.

The time window, s, is chosen as in section 4 (D 6= 0) to s = n = 2. Matlab
code to generate the first residual r1, insensitive to load disturbances and faults in the
rpm-sensor, can be written as
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Q = [[D;C*B;C*A*B], [zeros(size(D));D;C*B], [zeros(size([D;C*B]));D]];
T = [[zeros(3,1);C*E;C*A*E], [zeros(3,1);zeros(3,1);C*E],

[zeros(size([zeros(3,1);C*E]));zeros(3,1)]];
R = [C;C*A;C*A*A];
%%%%% Decoupling, d1 + actuator1 faults
Qtilde = [[D(:,1);C*B(:,1);C*A*B(:,1)], [zeros(size(D(:,1)));D(:,1);C*B(:,1)],

[zeros(size([D(:,1);C*B(:,1)]));D(:,1)]];
Z = zeros(7,9);
Z(1:2,:) = R’;
Z(3:4,:) = T(:,1:2)’;
Z(5:7,:) = Qtilde(:,1:3)’;
w_temp = Z(:,[1:4,6:7,9])\(-Z(:,5)-5*Z(:,8));
w1 = [w_temp(1:4);1;w_temp(5:6);5;w_temp(7)];

Residuals r4, r5 and r6 are generated with similar code. This residual generator can
now be tested, first by simulating faults on the linearized system to see ideal behavior.
Figure 7.1 illustrates the simulation. Note how the step in load (≈ uphill) affects the
speed at t = 2. The lowest plot, the α-plot, illustrates how the assumed throttle angle
is 28◦ but at t = 5 a 3◦ fault happens as indicated by the dotted line, also note how this
(unwanted) increase in throttle angle affects the crank-shaft speed. Figure 7.2 shows the
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Figure 7.1. Linear throttle fault simulation

corresponding residuals. As expected (column 1 in table 7.3) r4, r5 and r6 fires at t = 5
while r1 does not. Note the invariance to the Mload step at t = 2.

Performing a similar simulation on the full non-linear model instead, with Mload

variations as in figure 7.3 and a 10% step fault in the throttle actuator at t = 8 results
in the solid lines in figure 7.4.

Note how the system state now deviates from the linearization point. The residuals
corresponding to the simulation is shown in figure 7.5. The dotted lines represents
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Figure 7.3. Mload variations in non-linear simulations

example thresholds chosen from fault-free simulations of the non-linear system around
the operating point. We see that residuals r4, r5 and r6 fires while r1 don’t, just as we
wanted. Residual behavior is here approximately the same as in the ideal case, somewhat
more oscillative. If we instead of a throttle actuator fault simulates a manifold leakage of
10 kg/h at t = 8 the system behaves as the dotted lines in figure 7.4. The corresponding
residuals are shown in figure 7.6. According to the coding set residuals r1, r4 and r5

should fire while r6 should not. As we see this is fulfilled but all of residual responses are
very near the selected thresholds, r6 even “dips” below the treshold, indicating the large
insecurity in the residuals. Also note that the system deviation from the linearization
point is smaller in the second simulation than in the first simulation but still produced
more insecure residuals. This is because the system is non-linear and no assumptions on
residual “goodness” can be made on the basis of system state.

In this section we have seen that structured parity equations approach function well
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Figure 7.4. Non-linear simulations
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Figure 7.5. Residuals of non-linear throttle fault simulation

in the ideal linear case, but runs into severe problem when applied to the non-linear
system. The solution seems to be to use some non-linear residual generators as discussed
in section 3.2.7. But the approach described in this section is suitable to a system that
is linear, or nearly so.
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Figure 7.6. Residuals of non-linear manifold leakage fault simulation

7.2 Robust IFD with non-linear observers

This method is based on non-linear observers, creating a IFD-DOS scheme as described
in section 3.2.1. The structure is illustrated in figure 7.7. The unmeasurable disturbance,
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Figure 7.7. Non-linear IFD observer bank

i.e. the road-load, only affects the crankshaft-dynamics directly (see equation 6.1) and
since the rpm sensor usually is very reliable we can consider the rpm-sensor output to
be correct. With this assumption, also made in [9], we can achieve robust IFD, i.e.
residuals insensitive to the road-load variations. We design two observers to monitor the
two remaining sensors, ṁat and pman as

˙̂x = f(x̂, u) + K1(ṁat − ˆ̇mat)
ˆ̇mat = h1(x̂, u)
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and

˙̂x = f(x̂, u) + K2(pman − p̂man)
p̂man = h2(x̂, u)

Note how the first observer is only fed with ṁat observations and the second only with
pman indicating that the first observer estimates states independently of any eventual
faults in the pman sensor and vice-versa.

The observer gains were calculated from a linearization of the non-linear model
around the same point as in the previous section indicated by table 7.1. Since the
observer uses the same model as used to simulate the engine, disturbances has to be in-
troduced to see how it reacts in a non-ideal situation. Here white noise has been added
to the sensor outputs. It is difficult to estimate the SNR (Signal Noise Ratio) in the
lab-environment so the noise power has been chosen to make the signals “look” like the
pre-filtered real measurements.

As in the previous section we assume fuel dynamics in perfect accordance with the
model, hence the fuel-dynamics module in figure 7.7.

In all of the simulated experiments in this section a throttle step is made from α = 28◦

to α = 31◦ at time t = 1. ṁfi is controlled so that λ = 1. The road-load varies according
to figure 7.8. Figure 7.9 presents a simulation of a 10% fault in the pman-sensor at t = 4.
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Figure 7.8. Mload variations

The dotted residual r2 fires compared to the suggested threshold while the solid residual
r1 remains near 0. The throttle step at t = 1 is clearly visible in the rpm-plot, there is
a distinct speed increase at t = 1. This step however does not show in the residuals.

If we instead simulates a 10% fault in the ṁat-sensor we get system behavior as in
figure 7.10. Here the same throttle step is seen not to influence the residuals. The fault
at t = 4 however influences the solid residual r1, i.e. the other residual than in figure 7.9.
These two residual generators are based upon a functioning and reliable speed sensor,
if the speed sensor should be affected by a fault, the isolation properties of r1 and r2

are cancelled as shown in figure 7.11 where the rpm-sensor has been subjected to a 10%
fault at time t = 4. As seen, both residuals show non-zero behavior even when both
pman and ṁat sensor are fault free.
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Figure 7.9. Simulation of pman sensor fault

As seen in this section the approach described handles sensor faults well, and since
the full non-linear model is used, an improved model directly results in more reliable
diagnosis. But this under the condition that no faults in either rpm-sensor or actuators
are present. This implies that this approach can be used, but not stand alone, the
actuators need to be diagnosed to be able to rely on the sensor diagnosis.

7.3 Eigenstructure Diagnosis

Here we assume we want to diagnose all faults, i.e. even the rpm-sensor and therefore
we need disturbance decoupling. In section 5.4 it was noted that the inequality

rank(E) ≤ n − p

has to be fulfilled to be able to solve the decoupling problem. Here we want to design a
GOS scheme, therefore we set the residual dimension p = 1. rank(E) is the number of
independent signals we want to decouple, here rank(E) = 2 since we want to decouple
the road load disturbance and one fault. The model derived in chapter 6 is a three state
model, but since no information about the fuel-dynamics state can be inferred from any
of the measurements there is no gain in using a three state model. We are limited to
a two-state model, i.e. n = 2. Examining the limit inequality again we see that with
this model the inequality can not be fulfilled, i.e. the eigenstructure can not be used
with this model. However if we were to develop a better model, or a sensor revealing
information about the fuel-dynamics state the eigenstructure assignment could very well
be used. Also if we made the same assumptions regarding the rpm-sensor as earlier a
eigenstructure approach might be feasible.
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Chapter 8

Conclusions and extensions

8.1 Conclusions

In this report it was noted that with the OBD-II regulation, diagnosis will become
increasingly important for automotive engines in the next few years. It was also con-
cluded that some form of model-based diagnosis is crucial for the success of a modern
high-performance diagnosis system.

The mathematical model used in this thesis is a small mean-value model derived
for the complete SI-engine system. The modelling work resulted in a 4-state nonlin-
ear model. This model, although quite small, performs like an engine in a very wide
operating range and is well suited for diagnosis experiments.

A literature survey was made and a number of methods to perform diagnosis are
examined. Many of them are well suited for diagnosing faults in linear systems. Three
methods are chosen for further detailed analysis.

• Parity equations from a state-space model

• Eigenstructure observer

• Non-linear IFD observer

Two of the chosen methods are linear, one open- and one closed-loop, and one non-
linear. The linear methods both have the ability to achieve insensitivity to the unmea-
sured Mload. However the methods are linear and the SI-engine is a highly non-linear
system. From simulations it was shown that the linear methods with designs based on
linearization of the non-linear system run into severe problems when subjected to the
full non-linear process. The simulations also show that it was not possible to determine
a reliability measure of the diagnosis based on process state. Intuitively, a reliability
measure of the linear diagnosis would be how far the process state has deviated from
the linearization point. But due to the non-linear process, no such conclusions can be
made.

The third non-linear method could achieve the same Mload insensitivity under the
assumption that the rpm-sensor is fault-free, a quite realistic assumption as the rpm-
sensor on a real automotive engine is highly reliable. This approach works well in the
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whole operating range but a major limitation with this approach is that it is only able
to diagnose sensor faults. It could however be used as a part of a complete diagnosis
system.

A general approach to the non-linear problem is to use a diagnosis method that relies
on a non-linear model, just as the third method. There exists non-linear approaches to
FDI, but no general theory exists and therefore more research has to be done investi-
gating the non-linear problem.

8.2 Extensions

This report has given an overall survey of the diagnostic field with emphasis on linear
residual generators. To be able to design a complete diagnostic system, a more deep
understanding of the linear but more importantly the non-linear field is required.

Important areas that should be investigated further are

• Linear residual generators

• Non-linear residual generators

• Residual evaluation

• Integrating Knowledge based and Control Engineering approaches

Linear residual generators

In this thesis the eigenstructure observer approach were investigated. However with the
UIO, [7], more design freedom exists as the observer need not be an identity observer.
How this extra freedom influences the diagnosis problem ought to be investigated further.

Other extensions in the linear field can include methods based on stable factorization
of transfer functions [33], multiple fault diagnosis [16] or an approach where diagnostics
are seen as as a one-step procedure instead of the 2 stage approach used here [2].

Non-linear residual generators

As noted in the report, linear residual generators generally performs poorly on non-linear
processes. Methods of designing residual generators for non-linear processes are highly
desirable. Methods that ought to be analyzed are for example feedback-linearization,
non-linear parity equations [9, 24] or a gain scheduling approach.

Also parameter estimation methods might be a way of handling non-linear processes.

Residual evaluation

In this report, the residual evaluation step has only been a simple threshold test of
the residual. A further investigation of residual evaluation methods to increase the
robustness of the diagnosis procedure are desirable. E.g. GLR, Marginalized Likelihood
Ratio(MLR)[13] and approaches based on fuzzy logic [33] can be of importance.
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Integrating Knowledge based and Control Engineering approaches

There are advantages with both knowledge based approaches and approaches based on
control engineering. Ways to integrate methods from both fields to utilize their respec-
tive advantages should be investigated as they might result in more reliable diagnosis
procedures.
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Appendix A: Laboratory Facility and Engine Specifications

This appendix will describe the laboratory equipment, at the Division of Vehicular
Systems at Linköping University, including engine, dynamometer,measurement
equipment and computers.

Engine Specifications

The engine is a SAAB 2.3 L spark ignition standard engine equipped with extra
sensors for measurement of in cylinder pressure, ionization currents, air mass flow etc.
The electronic control unit is called Selma and is developed by Mecel AB. It controls,
among many other things, the fuel injectors and spark advance of each cylinder of the
engine. Selma is equipped with a CAN–bus1 interface making it possible to send and
receive information during engine tests. The general specifications of the engine are:

Engine type: 4 cylinder, four stroke, 16 valve engine with double
overhead camshafts and double balance shafts.

Displacement: 2.3 liters (2290 cm3).
Bore: 90 mm.
Stroke: 90 mm.
Firing order: 1–3–4–2.
Maximum engine power: 150 bhp (110 kW).
Maximum engine torque: 212 Nm.
Weight: ≈ 160 kg.
Serial number: B2341.4N10M219569.

Dynamometer

To simulate different driving conditions, engine speed and engine load, we need a
dynamometer (brake). There are different types of brakes and the one used in the
laboratory is a Dynasyn NT 85 servo motor/generator from Schenck. It can operate
under conditions up to engine torques of 150 Nm.

Computers

Besides Selma we use three standard PCs when the engine is running. All three
computers and Selma communicate via the CAN–bus, see Figure A.1. The first
computer, Hillman, contains a real time system using RTKernel software. It’s on this
computer the different controllers are executed, e.g. a crank-shaft speed controller.
From the second computer, Minx, reference values for throttle angle and engine speed
can be set with help of a graphical user interface with slide bars.

1Controller Area Network
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Computer: Hillman

Computer: SAAB

Computer: Minx

Computer: Selma Process: Process: 

BrakeEngineElectronic 
Control Unit

Real Time 
System

Supervision
System

Supervision
System

A/D-card
Measurements
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Process: 

Throttle Servo
Motor

Engine speed

Throttle angle

Figure A.1. Hardware setup.

Sensors

5 sensors are used in this report and the measured values enter Hillman via a 12 bit
A/D conversion card (type RTI–815 from Analog Devices) with a resolution of
4.88 mV as indicated in figure A.1. The 5 sensors are:

• rpm sensor
An rpm-sensor was built before any engine-speed measurements could be done by
Erik Frisk and Mattias Nyberg.

• Intake manifold pressure sensor
The pressure sensor used is a KRISTAL pressure transmitter 4285A2

• Torque sensor
The torque sensor used is a Hottinger Baldwin Messtechnik GMBH of type MBL
40

• Air mass-flow sensor
A BOSCH Hot-Film Air-Mass Sensor of type HFM2C - 4.7 is used

• λ-sensor
The sensor for measuring lambda are either the standard EGO sensor located
80 cm downstream the exhaust manifold or an UEGO sensor of type
TL–7111–W1 with electronic controller TC–6000 from NGK. The UEGO sensor is
located at the same position as the standard EGO sensor.
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Appendix B: Simulink Implementations

Figure B.1. Subsystem
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Matrix rank

Let A ∈ Rm×n.

• The row rank of A is the number of linearly independent rows in A

• The column rank of A is the number of linearly independent columns in A

It can be shown that row rank = column rank and is denoted rank(A). Matrix A is
said to have full rank if rank(A) = min(m,n).

Left eigenvectors

A vector l is called a left eigenvector to matrix A if there exists a β so that

lT A = βlT

The constant β is called the corresponding eigenvalue.

An eigenvector v that multiplies with A from right, i.e.

Av = βv

is called a right eigenvector or just eigenvector.

Left eigenvector l to matrix A is right eigenvector to matrix AT as

(lT A)T = (βlT )T

⇒ AT l = βl

Diagonalizable matrices

A matrix A is said to be diagonalizable if it can be written

A = TDT−1

Where D is a diagonal matrix and T is the transformation matrix. If the eigenvectors
of a matrix is linearly independent the matrix is diagonalizable. A set of eigenvectors
corresponding to different eigenvalues are linearly independent.
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Singular Value Decomposition (SVD)

If Z ∈ Rm×n, then there exists orthogonal matrices

U ∈ Rm×m

W ∈ Rn×n

such that

Z = UDW T

D = diag(σ1, . . . , σq)

where q = min(n,m) and σ1 ≥ σ2 ≥ . . . ≥ σq. The values σ1, . . . , σq is called the
singular values.

If m < n, the matrix D becomes

D =

m︷ ︸︸ ︷ n − m︷︸︸︷


σ1

σ2

. . .
σm

0
0
...
0




For example, if

A =

(
1 0 1
0 2 0

)

the SVD becomes

U =

(
0 1
1 0

)
D =

(
2 0 0
0 1.4142 0

)
W =


 0 0.7071 −0.7071

1 0 0
0 0.7071 0.7071




Frobenius norm

The Frobenius norm is defined as taking the square root out of the squared sum of all
matrix elements, i.e.

A ∈ Rn×m, ||A||F =

√√√√ n∑
i=1

m∑
j=1

a2
ij

Or equivalently
||A||F =

√
trace(AT A)
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Appendix D: Matlab measurement script

function [mat1, pman1, n1, mat2, pman2, n2, actualRate] =
measure( nMin, nMax, pMin, pMax, numWPoints, fs );

% nMin - Minimum rpm [rpm]
% nMax - Maximum rpm [rpm]
% pMin - Minimum manifold pressure [kPa]
% pMax - Maximum manifold pressure [kPa]
% numWPoints - Number of WP
% fs - Sampling frequency [Hz]

if nargin ~= 6
disp(’Wrong number of arguments’);
break;

end

hillman(’exec "engine.ini"’);
hillman(’start brake’);
hillman(’make r1(PIpman)’);
hillman(’r1.yport=4’);
hillman(’r1.uport=0’);
hillman(’r1.Ti=5’);
hillman(’r1.Tt=5’);
hillman(’start r1’);

nRange = [nMin:(nMax-nMin)/(numWPoints-1):nMax];
pManRange = [pMin:(pMax-pMin)/(numWPoints-1):pMax];
mat1 = zeros( numWPoints, numWPoints );
pman1 = zeros( numWPoints, numWPoints );
n1 = zeros( numWPoints, numWPoints );
mat2 = zeros( numWPoints, numWPoints );
pman2 = zeros( numWPoints, numWPoints );
n2 = zeros( numWPoints, numWPoints );

[y, t, actualRate] = sample([0], fs, .1);
for i = 1:numWPoints
for j = 1:numWPoints
% Enter WP(i,j)
disp( sprintf(’pman = %d, n = %d\n’, pManRange(i), nRange(j)) );
hillman( sprintf(’r1.ref = %d’, pManRange(i)) );
hillman( sprintf(’port(18) = %d’, nRange(j)/1000) );

% Wait trainsients, delay-kommando!!!
delay(5);

hillman( ’suspend r1’ );
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delay(15);
% Measure 1 sec samples and take mean-value
y = sample( [0 1 2], fs, 1 );

hillman( ’resume r1’ );

mat1(i, j) = mean( fsma(y(:,1)) ); % [kg/h]
pman1(i, j) = mean( fspman(y(:,2)) )*100; % [kPa]
n1(i, j) = mean( fsw(y(:,3)) ).*(60/(2*pi)); % [rpm]

end;
end;

for i = numWPoints:-1:1
for j = numWPoints:-1:1

% Enter WP(i,j)
disp( sprintf(’pman = %d, n = %d\n’, pManRange(i), nRange(j)) );
hillman( sprintf(’r1.ref = %d’, pManRange(i)) );
hillman( sprintf(’port(18) = %d’, nRange(j)/1000) );

% Wait trainsients, delay-kommando!!!
delay(5);

hillman( ’suspend r1’ );

delay(15);
% Measure 1 sec samples and take mean-value
y = sample( [0 1 2], fs, 1 );

hillman( ’resume r1’ );

mat2(i,j) = mean( fsma(y(:,1)) );
pman2(i,j) = mean( fspman(y(:,2)) )*100;
n2(i,j) = mean( fsw(y(:,3))).*(60/(2*pi) );

end;
end;

hillman( ’killall’ );


