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Abstract

Model based fault diagnosis is to perform fault diagnosis by means of models.
An important question is how to use the models to construct a diagnosis system.
To develop a general theory for this, useful in real applications, is the topic of
the first part of this thesis. The second part deals with design of linear residual
generators and fault detectability analysis.

A general framework, for describing and analyzing diagnosis problems, is
proposed. Within this framework a diagnosis method structured hypothesis tests
is developed. It is based on general hypothesis testing and the task of diagnosis
is transferred to the task of validating a set of different models with respect to
the measured data. The procedure of deriving the diagnosis statement, i.e. the
output from the diagnosis system, is in this method formalized and described
by logic.

Arbitrary types of faults, including multiple faults, can be handled, both in
the general framework and also in the method structured hypothesis tests. It
is shown how well known methods for fault diagnosis fit into the general frame-
work. Common methods such as residual generation, parameter estimation, and
statistically based methods can be seen as different methods to generate test
quantities within the method structured hypothesis tests.

Based on the general framework, a method for evaluating and comparing
diagnosis systems is developed. Concepts from decision theory and statistics
are used to define a performance measure, which reflects the probability of e.g.
false alarm and missed detection. Based on the evaluation method, a procedure
for automatic design of diagnosis systems is developed.

Within the framework, diagnosis systems for the air-intake system of auto-
motive engines are designed. In one case, the procedure for automatic design
is used. Also the methods for evaluation of diagnosis systems are applied. The
whole design chain is described, including the modeling of the engine. All diag-
nosis systems are validated in experiments using data from a real engine. This
application highlights the strengths of the method structured hypothesis tests,
since a large variety of different faults need to be diagnosed. To the authors
knowledge, the same problem can not be solved using previous methods.

In the second part of the thesis, linear residual generation is investigated by
using a notion of polynomial bases for residual generators. It is shown that the
order of such a basis doesn’t need to be larger than the system order. Fault
detectability, seen as a system property, is investigated. New criterions for fault
detectability, and especially strong fault detectability, are given.

A new design method, the minimal polynomial basis approach, is presented.
This method is capable of generating all residual generators, explicitly those of
minimal order. Since the method is based on established theory for polynomial
matrices, standard numerically efficient design tools are available. Also, the link
to the well known Chow-Willsky scheme is investigated. It is concluded that
in its original version, it has not the nice properties of the minimal polynomial
basis approach.
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Notations xi

Some Notations Used

S} set of all fault states
o, fault state space for fault mode
0 fault state
Dt fault state space of component i
be fault state space of component ¢ and component fault-mode v
0; fault state of component ¢
free fault state parameter for fault mode ~
) complete system model
~(0) = M, (6,) system model for fault mode 7
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Chapter 1

Introduction and Overview
of Thesis

Model based fault diagnosis is to perform fault diagnosis by means of models. An
important question is how to use the models to construct a diagnosis system. To
develop a theory for this, useful for real applications, is the topic of the first part
of this thesis. The second part deals with design of linear residual generators
and fault detectability analysis.

This chapter starts by, in Section 1.1, giving an introductory background
and a general motivation to the field of fault diagnosis. In Section 1.2, some
fundamental definitions are reviewed. Then Section 1.3 contains an overview
and some criticism to some present approaches to fault diagnosis. Finally, Sec-
tion 1.4 summarizes the thesis and gives the main contributions.

1.1 Introductory Background

From a general perspective, including for example medical and technical ap-
plications, fault diagnosis can be explained as follows. For a process there are
observed variables or behavior for which there are knowledge of what is ex-
pected or normal. The task of fault diagnosis is to, from the observations and
the knowledge, generate a diagnosis statement, i.e. to decide whether there is a
fault or not and also to identify the fault. Thus the basic problems in the area
of fault diagnosis is how the procedure for generating the diagnosis statement
should look like, what parameters or behavior that are relevant to study, and
how to derive and represent the knowledge of what is expected or normal.
This thesis focuses on diagnosis of technical systems, and typical faults con-
sidered are for example sensor faults and actuator faults. The observations are
mainly output signals obtained from the sensors, but can also be observations
made by a human, such as level of noise and vibrations. The knowledge of what
is expected or normal, is derived from commanded inputs together with models
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of the system. The term model based fault diagnosis refers to the fact that the
knowledge of what is expected or normal, is represented in an explicit model of
the system. The type of models considered is mainly differential equations.

Model based diagnosis of technical systems has gained much industrial in-
terest lately. The reason is that it has possibilities to improve for example
safety, environment protection, machine protection, availability, and repairabil-
ity. Some important applications that have been discussed in the literature
are:

e Nearly all subsystems of aircrafts, e.g. aircraft control system, navigation
system, and engines

e Emission control systems in automotive vehicles
e Nuclear power plants

e Chemical plants

e Gas turbines

e Industrial robots

e Electrical motors

Manual diagnosis of technical systems has been performed as long as techni-
cal systems have existed, but automatic diagnosis started to appear first when
computers became available. In the beginning of the 70’s, the first research
reports on model based diagnosis were published. Some of the earliest areas,
that were investigated, were chemical plants and aerospace applications. The
research on model based diagnosis has since then been intensified during both
the 80’s and the 90’s. Today, this is still an expansive research area with many
unsolved questions. Some references to books in the area are (Patton, Frank
and Clark, 1989; Basseville and Nikiforov, 1993; Gertler, 1998; Chen and Pat-
ton, 1999).

Up to now, numerous methods for doing diagnosis have been published, but
many approaches are more ad hoc than systematic. It is fair to say that few
general theories exist, and a complete understanding of the relations between
different methods has been missing. This is reflected in that few books exists
and the fact that no general terminology has yet been widely accepted. However
the importance of diagnosis is unquestioned. This can be exemplified by the
computerized management systems for automotive engines. For these system,
as much as 50% of the software is dedicated to diagnosis. The other 50% is for
example for control.

1.1.1 Traditional vs Model Based Diagnosis

Traditionally diagnosis has been performed by mainly limit checking. When for
example a sensor signal level leaves its normal range, an alarm is generated. The
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normal range is predefined by using thresholds. This normal range can be de-
pendent on the operating conditions. In for example an aircraft, the thresholds,
for different operating points defined by altitude and speed, can be stored in a
table. This use of thresholds as functions of some other variables, can actually
be viewed as a kind of model based diagnosis.

Another traditional approach is duplication (or triplication or more) of hard-
ware. This is usually called hardware redundancy and the typical example is to
use redundant sensors. There are at least three problems associated with the
use of hardware redundancy: hardware is expensive, it requires space, and adds
weight to the system. In addition, extra components increase the complexity of
the system which in turn may introduce extra diagnostic requirements.

Model Based Fault Diagnosis

Increased usage of explicit models in fault diagnosis has a large potential to
have the following advantages:

e Higher diagnosis performance can be obtained, for example smaller and
also more types faults can be detected and the detection time is shorter.

e Diagnosis can be performed over a larger operating range.

e Diagnosis can be performed passively without disturbing the operation of
the process.

e Increased possibilities to perform isolation.

e Disturbances can be compensated for, which implies that high diagnosis
performance can be obtained in spite of the presence of disturbances.

e Reliance on hardware redundancy can be reduced, which means that cost
and weight can be reduced.

The model can be of any type, from logic based models to differential equa-
tions. Depending on the type of model, different approaches to model based
diagnosis can be used, for example statistical approaches, Al-based approaches,
or approaches within the framework of control theory. It is sometimes believed
that model based diagnosis is very complex. This is not true since for example
traditional limit checking is also a kind of model based diagnosis.

The disadvantage of model based diagnosis is quite naturally the need for
a reliable model and possibly a more complex design procedure. In the actual
design of a model based diagnosis system, it is likely that the major part of the
work is spent on building the model. This model can however be reused, e.g. in
control design. Someone may argue that an disadvantage of increasing the usage
of models is that more computing power is needed to perform the diagnosis.
However, this conclusion is not fair. Actually, for the same level of performance
it can be the case that an increased used models is less computationally intensive
than traditional approaches.
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The accuracy of the model is usually the major limiting factor of the per-
formance of a model based diagnosis system. Compared to the area of model
based control, the quality of the model is much more important in diagnosis.
The reason for is that the feedback, used in closed-loop control, tends to be for-
giving against model errors. Diagnosis should be compared to open-loop control
since no feedback is involved. All model errors propagates through the diagnosis
system and degrades the diagnosis performance.

_ thomg™ )
/ \cmf

air mass-flow P

manifold pressure

engine speed
Figure 1.1: A principle illustration of an SI-engine.

Following is an example of a successful industrial application of model based
diagnosis.

Example 1.1

Consider Figure 1.1, containing a principle illustration of a spark-ignited com-
bustion engine. The air enters at the left side, passes the throttle and the
manifold, and finally enters the cylinders. The engine in the figure have three
sensors measuring the physical variables air mass-flow, manifold pressure, and
engine speed.

The air flow 7 into the cylinders can be modeled as a function of manifold
pressure p and engine speed n, i.e. m = g(p,n). The physics behind the function
g is involved and it is therefore usually modeled by a black-box model. In engine
management systems, one common solution is to represent the function g as a
lookup-table. So by using this lookup-table an estimation of the air mass-flow
can be obtained. When the measured air mass-flow significantly differs from the
estimation, it can be concluded that a fault must be present somewhere in the
engine. The fault can for example be that one of the three sensors are faulty or
that a leakage have occured somewhere between the air mass-flow sensor and
the cylinder. This is an example of model based diagnosis that is commonly
used in production cars today. n
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1.2 Present Definitions

As a step towards a unified terminology, the IFAC Technical Committee SAFE-
PROCESS has suggested preliminary definitions of some terms in the field of
fault diagnosis. Some of these definitions are given here as a way to introduce
the field. Another reason is that most of these terms will be given a more formal
definition later in this theses.

The following list of definitions is a subset of their list:

e Fault
Unpermitted deviation of at least one characteristic property or variable
of the system from acceptable/usual/standard behavior.

e Failure
Permanent interruption of a systems ability to perform a required function
under specified operating conditions.

e Fault Detection
Determination of faults present in a system and time of detection.

e Fault Isolation
Determination of kind, location, and time of detection of a fault. Follows
fault detection.

o Fault Identification
Determination of the size and time-variant behavior of a fault. Follows
fault isolation.

e Fault Diagnosis
Determination of kind, size, location, and time of detection of a fault.
Follows fault detection. Includes fault isolation and identification.

For the definition of the term fault diagnosis, one slightly different definition also
exists in the literature. This definition can be found in for example (Gertler,
1991) and says that fault diagnosis also includes fault detection. This is also the
view taken in this thesis.

If fault detection is excluded from the term diagnosis, as in the SAFEPRO-
CESS, one gets a problem of finding a word describing the whole area. This has
partly been solved by introducing the abbreviation FDI (Fault Detection and
Isolation), which is common in many papers.

In this context, it is also interesting to see how a general dictionary defines
the word diagnosis. The following information can be found in the Webster
Dictionary:

diagnosis

Etymology: New Latin, from Greek diagnOsis, from diagignOskein
to distinguish, from dia- + gignOskein to know

Date: circa 1681

1 a : the art or act of identifying a disease from its signs and
symptoms b : the decision reached by diagnosis
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2 a : investigation or analysis of the cause or nature of a
condition, situation, or problem <diagnosis of engine trouble>
b : a statement or conclusion from such an analysis

1.3 Present Approaches to Model Based Fault
Diagnosis

This section is included because of two reasons. The first is to point out some
problems with present approaches to fault diagnosis. The first part of the thesis
is then devoted to present a new approach in which these problems are avoided.
The second reason is to give newcomers to the field of fault diagnosis a short
background to some of the approaches present in literature.

By reading recent books (Gertler, 1998; Chen and Patton, 1999) about fault
diagnosis of technical processes, or survey papers (Patton, 1994; Gertler, 1991;
Frank, 1993; Isermann, 1993), one can come to the conclusion that the two most
common systematic approaches to fault diagnosis is to use a “residual view” or
parameter estimation. Below these two approaches are presented shortly.

f(t)

d(t)—»

u()

Process

> y(t)

\

Residual| (D)
Generatof >

Yy

Residual| ")
Generatof >

Yy

Residual
Evaluation

Diagnosis
Statement

- »/Residual| "t
»| Generator

Diagnosis Syste

Figure 1.2: A diagnosis system based on the “residual view”.
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1.3.1 The “Residual View”

With this approach, faults are modeled by signals f(t). Central is the residual
r(t) which is a scalar or vector signal that is 0 or small in the fault free case, i.e.
f(t) =0, and is # 0 when a fault occurs, i.e. f(t) # 0. The diagnosis system is
then separated into two parts: residual generation and residual evaluation.

This view of how to design diagnosis system is well established among fault
diagnosis researchers. This is emphasized by the following quotation from the
most recent book (Chen and Patton, 1999) in the field:

?Chow and Willsky (1984) first defined the model-based FDI as a
two-stages process: (1) residual generation, (2) decision making (in-
cluding residual evaluation). This two-stages process is accepted as
a standard procedure for model-based FDI nowadays.”

Almost equally well established is the following way of constructing the resid-
ual evaluation (also called decision logic) procedure. The method is often called
structured residuals and is primarily an isolation method. A diagnosis system
using structured residuals can be illustrated as in Figure 1.2. In this method,
the first step of the residual evaluation is essentially to check if each residual
is responding to the fault or not, often achieved via simple thresholding. By
using residuals that are sensitive to different subsets of faults, isolation can be
achieved. What residuals that are sensitive to what faults is often illustrated
with a residual structure. An example of a residual structure is

| A o 3
71 0 1 0
T2 0 1 1
T3 1 0 1

The 1:s indicates which residuals that are sensitive to each fault. For this
residual structure, assume for example that residuals 7o and r3 are responding,
and rq is not. Then the conclusion is that fault f3 has occured.

A large part of all fault-diagnosis research has been to find methods to design
residual generators. Of this large part, most results are concerned with linear
systems.

A limitation with this approach to fault diagnosis is that faults are modeled
as signals. This is very general and might therefore seem to be a good solution.
However, the generality of this fault model is actually its drawback. Many faults
can be modeled by less general models, and we will see in this thesis that to
facilitate isolation this is necessary in many situations.

Another limitation is that the residual structure, with its 0:s and 1:s, places
quite strong requirements on the residual generators. A 1 more or less means
that the corresponding residual must respond to the fault. It can be understood
that for small faults in real systems, with noise and model uncertainties present,
this requirement is often violated.

A third limitation, related to the the previous limitation, is that the deci-
sion procedure, of how the diagnosis statement is formed from the real-valued
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residuals, does not have a solid theoretical motivation. For example, in the
context of deciding the diagnosis statement, what are the meanings of the 0:s
and the 1:s, and what does it mean that a residual is above the threshold? It
would be desirable to use a decision procedure for which we can find an intuitive
formalism based on existing well-established theory, preferably mathematics if
possible.

1.3.2 Parameter Estimation

The other main approach to model-based fault-diagnosis is to model faults as
deviations in constant parameters. To illustrate the concept, consider a system
with a model M(0), where 6 is a parameter having the nominal (i.e. fault-free)
value 6y. By using general parameter estimation techniques, an estimate 0 can
be formed and then compared to 6. If 6 deviates to much from 0p, then the
conclusion is that a fault has occured.

The most severe limitation with this approach is its quite restricted way of
modeling faults. To model many realistic faults, more general fault models must
be used.

Another limitation is that when the number of diagnosed faults grow, the
parameter vector 6 grows in dimension. This is a serious problem because the
computations needed to calculate 6 can become quite difficult.

1.3.3 This Thesis

The first part of this thesis, i.e. Chapter 2 to 4, suggests a new approach to fault
diagnosis. This approach does not have the limitations indicated above. Also,
it includes both structured residuals and the parameter estimation approach as
special cases.

1.4 Summary and Contributions of the Thesis

The summaries of the different chapters, given below, indicate the scope of the
thesis and also give an idea of the contributions. In addition, a summary of the
main contributions is included in the end of this section.

Chapter 2: A General Framework for Fault Diagnosis

In this chapter a new framework for describing and analyzing diagnosis problem
is presented. The presentation is formal, and often used terms like “fault”,
“isolation”, and “detectability” are defined. A connection to diagnosis based on
logic (AI), is indicated.

In contrast to previous existing frameworks, e.g. the residual view, arbitrary
fault models can be handled. Also multiple faults are naturally integrated so
that no special treatment is needed. A diagnosis-system architecture, based
on basic ideas from decision theory and propositional logic, is presented. We
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introduce the idea that the output from a diagnosis system can be several pos-
sible faults. Finally, results that relates fault modeling with detectability and
isolability properties, are developed.

Chapter 3: Structured Hypothesis Tests

The general diagnosis-system architecture presented in the previous chapter is
refined to the isolation method structured hypothesis tests. It is based on general
hypothesis testing and uses the general framework developed in Chapter 2. The
task of diagnosis is transferred to the task of validating a set of different models
with respect to the measured data. A main advantage with this method is that
it can handle arbitrary types of faults. As a way to describe the structure of the
diagnosis system we use an incidence structure and a decision structure. Also
the relation to the method structured residuals is investigated.

Chapter 4: Design and Evaluation of Hypothesis Tests for Fault Di-
agnosis

This chapter discusses how to design hypothesis tests to be used with the method
structured hypothesis tests. Three principles are described: the prediction, the
likelihood, and the estimate principle. These three principles should be sufficient
to solve most diagnosis problems.

In this chapter we see how well known methods for fault diagnosis fit in
the general framework from Chapter 2 and structured hypothesis tests. This
also clarifies conceptual links between different approaches to fault diagnosis,
e.g. the connection between residual generation, parameter estimation, and a
statistically based method for detection of abrupt changes. The importance of
normalization is emphasized. Two special cases of this is adaptive thresholds
and the likelihood ratio test.

Also discussed is how to evaluate hypothesis tests and for this, tools from
statistics and decision theory are used. The evaluation scheme developed is
applied to compare the estimate principle and the prediction principle, and it
is concluded that the former has some optimality properties.

Chapter 5: Applications to an Automotive Engine

The methods and the theory developed in the previous chapters are applied
to an automotive engine. Test quantities and diagnosis systems are designed
and analyzed. The whole design chain is covered including the modeling of the
engine. The results are validated in experiments using data from a real engine.
The diagnosis system constructed highlights the strengths of the method struc-
tured hypothesis tests, since a large variety of different faults can be handled.
To the authors knowledge, the same problem can not be solved using previous
methods.
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Chapter 6: Evaluation and Automatic Design of Diagnosis Systems

Based on decision theory, a method for evaluating and comparing diagnosis
system is developed. Probability measures, such as probabilities of false alarm
and missed detection, are used. One key result is the method to evaluate the
performance of a complete diagnosis system by using probability measures of
individual hypothesis tests.

Based on the evaluation method developed, a procedure for automatic design
of diagnosis systems is proposed. The procedure is applied to a real automotive
engine. The diagnosis system obtained is validated using experimental data
from the engine and the results show both that the procedure is working and
also that the evaluation method is sound.

Chapter 7: Linear Residual Generation

Design of linear residual generators, which is a special case of the prediction
principle, is considered. A new method, the minimal polynomial basis approach
has been developed in a joint work with Erik Frisk. This method is capable
of generating all residual generators, explicitly those of minimal McMillan or-
der. Since the method is based on established theory for polynomial matrices,
standard numerically efficient design tools are available.

Also the well known Chow-Willsky scheme is investigated and it is concluded
that in its original version, it has not the nice properties of the minimal poly-
nomial basis approach. However, the Chow-Willsky scheme is modified so that
it algebraically, although not numerically, becomes equivalent to the minimal
polynomial basis approach.

The order of linear residual generators is investigated and it is concluded that
to generate a basis, for all residual generators, it is sufficient to consider orders
up to the system order. This result is new since previous related results only
deal with the existence of residual generators and also only for some restricted
cases.

Chapter 8: Criterions for Fault Detectability in Linear Systems

This chapter refines the general concepts of fault detectability from Chapter 2
to linear systems. The notion of bases, from the previous chapter, is used to
investigate fault detectability seen as a system property, i.e. if there exists
any residual generator in which a fault is detectable. New criterions for fault
detectability and especially strong fault detectability are developed.

1.4.1 Main Contributions

e The general framework, for describing arbitrary faults, and describing and
analyzing diagnosis problems, presented in Chapter 2.

e The diagnosis method structured hypothesis tests presented in Chapter 3.
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1.5

The methods to evaluate and compare diagnosis systems, presented in
Chapter 4 and 6.

Demonstration of the feasibility of the evaluation and design methods in
real applications, presented in Chapter 5.

The method to design linear residual generators, the minimal polynomial
basis approach, presented in Chapter 7.

The criterions for fault detectability and strong fault detectability in linear
systems, presented in Chapter 8.
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Chapter 2

A General Framework for
Fault Diagnosis

The author’s experience and also other people’s experience, e.g. Bggh (1997),
is that ad-hoc approaches to fault diagnosis give equally good or even better
performance than present systematic approaches. One reason is that present
approaches are too limited to special cases. For example, there is a large amount
of systematic methods that are designed for linear systems. The problem is that
almost no real systems are linear enough so that these methods often result in
bad performance.

Previous attempts to introduce systematics have very much focused on sys-
tematic methods to design residual generators'. However, of all parts in a design
chain, it is not sure that residual generation is the right thing to systematize.
The reason is that systematic methods for residual generation tend to be either
not general enough, so that they are not applicable to the specific application
at hand, or too general, so that they can not utilize the special structure of each
application. One further reason is that for many cases, residual generator de-
sign is actually not very difficult, and engineering intuition can often take us far.
Instead of focusing on systemization of the residual generation, the approach
in the following three chapters is to systematize other parts of the design, e.g.
the architecture of the diagnosis system, and leaves the details of the residual
generator design to the engineer. However, we will give some general principles
also for the residual generation part.

The underlying philosophy of all this is that the engineer should do what
he or she makes best, which is probably the residual generation, and the rest
should be left to the design method. The goal has been to find a systematic
approach that can utilize ad-hoc design of residual generators at the maximum.
In this way, design solutions that have been previously considered to be ad-

1We use the term residual generator here in a quite broad meaning. This is because many
readers have a quite good understanding of this term. However after this introductory section,
we will switch to a more general terminology and residual generator will only be used for some
specific cases.

13
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hoc becomes part of a systematic method. Also previous methods that have
been considered to be systematic, e.g. structured residuals, statistical methods,
parameter estimation, are naturally included.

Although systematic, many previous diagnosis approaches are not based on
any theoretical framework, as was exemplified in Section 1.3. On the contrary
the approach suggested here is theoretically grounded in hypothesis testing (seen
from either a statistical or decision theoretic standpoint) and to some extent also
in propositional logic. Since many previous diagnosis methods are part of this
framework, it also serves as a theoretical motivation to the methods that were
previously not theoretically grounded. The approach presented is also strongly
connected to how human beings would reason when performing diagnosis.

As said above, the description of this approach is distributed in the following
three chapters. We start in this chapter by giving a general framework in which
diagnosis problems can be described in a formalized and abstract manner. We
will throughout this chapter, and also the following, not be restricted to any
special types of faults and also, no restriction will be made regarding the mul-
tiplicity of faults. This is in contrast to almost all other works in which it is
common that only one specific type of fault is considered and also only single
faults. In fact the presented framework is valid for any arbitrary faults in any
multiplicity.

Why is there a need for a general framework for fault diagnosis? One moti-
vation is that in many situations we need to design diagnosis systems capable
of diagnosing several different types of faults at the same time. One example
of this is the automotive engine application investigated in Chapter 5. Another
motivation is that, if we find design or analysis methods that can be described in
terms of a general framework, then they are automatically valid for a large class
of diagnosis problems. An example of such a design method is the structured
hypothesis tests given in Chapter 3, and an example of such an analysis method
is the method for diagnosis-system evaluation given in Chapter 6.

The first part of this chapter, i.e. Section 2.1, discusses fault modeling and
then, in Section 2.2, the notion of fault modes will be introduced. Then a general
architecture for a diagnosis system is given in Section 2.3. Section 2.4 defines
a submode relation between fault modes and Section 2.5 contains definitions
of isolability and detectability. Finally, Section 2.6 discusses what implications
the submode relation has on isolability and detectability. All the formalism
introduced in this chapter will be used in the next two chapters to describe
more precise methods that can be used to perform diagnosis. Note that all
notations introduced are summarized in the beginning of this thesis (and also
in Appendix 2.A).

2.1 Fault Modeling

For constructing a model-based diagnosis system, a model of the system is
needed. This model is the formal representation of the knowledge of possible
faults and how they influence the process. In general, better models implies
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better diagnosis performance, e.g. smaller faults can be detected and more
different types of faults can be isolated. We will in this section describe a general
framework for fault modeling. In this framework, practically all existing fault
modeling techniques fit in naturally.

G(0c, pa) —y(t)

Z(t7 eza ¢z)—’

Figure 2.1: A general system model, linear or non-linear.

2.1.1 Fault State

The system model considered is illustrated in Figure 2.1. The model consists of
a plant G(fg, ¢¢) and the vector valued signal z(t, 6, ¢.). The parameters 0
and 0, describe faults and the parameters ¢ and ¢, describe disturbances.

The plant is modeled as an arbitrary system G(fq, ¢c) described by differ-
ential equations. It has known inputs u(t), e.g. control signals, and measurable
outputs y(¢). In addition, the plant can be affected by other signals, which are
collected in z(t, 6., ¢.). These additional signals are assumed to be unknown or
at least partially unknown. Some of the signals z(t,6,, ¢.) may be modeled as
stochastic processes. Note that the plant G(0g, ¢¢) is considered to be com-
pletely deterministic, and thus all stochastic parts of a model are collected in
the signal z(t, 0., ¢,). Except for this, there are cases in which a part of a model
can be included in either G(0¢g, ¢¢) or z(t, 0., ¢.). In such cases it is up to the
user to decide what is most natural for the given application.

The constant parameter vector g represents the true but unknown fault
situation of the plant G(fg, ¢c). The constant parameter vector . represents
the true but unknown fault situation of the signal z(¢,0,,¢.). The parameter
vector 6 = [fg 0] is called the fault state and represents the fault situation of
the complete system. One or possibly several fault states always corresponds to
the fault-free case. The fault state space, i.e. the parameter space of 6, will be
denoted ©. Note that we have chosen the convention that € is not dependent
on time which corresponds to an assumption that the fault state of the system
never changes. Even though this may seem to be a limitation, this is not the
case as we will see later. We will be quite liberal regarding the definition of the
parameter vector 6, e.g. we will allow elements that are functions.

Corresponding to 6 there is the constant parameter vector ¢ = [dg ¢.],
which represents disturbances affecting the system. However, this thesis will
mostly not be focused on handling of disturbances. Therefore, the parameter
¢ will often be neglected and the system model then consists of G(6g) and
2(t,0q).
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Example 2.1

Consider a model of an amplifier:
y(t) = gu(t) + v(t) v(t) ~ N(0,0)

where u(t) is the input, y(¢) the output, g the amplifying gain, and v(t) is a
noise signal with variance o2. This means that the signal z(¢,6,) in the general
model here corresponds to v(t) and the parameters 6 and 6, are:

0c =g

0, =o

Then the fault-free case can for example be assumed to correspond to the fault
state

0 =[g o] = [10 0.01]

and any deviation of 8 from this fault state may be considered to be a fault. m

2.1.2 Component Fault States

Besides to separate a system model into a plant G(fg) and a signal z(¢,6.), it
is natural to also separate a system into a number of components. For each of
these components, a number of faults may occur. Parts of the system that are
not directly affected by any fault are not considered to be components.

Each component ¢ has a, possibly vector-valued, parameter 6; which deter-
mines the exact fault state (which can be no fault) of the component. Assume
that there is a total number of p components. Then the fault state 8 of the
whole system can be written

0 =1[01,...6p]
The parameter space of ; is denoted D?. Then parameter space © becomes

©=D!x ... xDP

2.1.3 Models

(with ¢¢ and ¢,

As was said above, the model consists of G(f¢) and z(t,6,)
() and thus

neglected). The whole system model will be denoted M
M(0) = (G(0c), 2(t,0.))

The model M(0) with a fixed value of 8 then exactly specifies the system when
a specific fault (or no fault) is present.
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Example 2.2

Consider a system described by the following equations:
T =f(x,u) (2.1a)
y1 =h1(z) + by (2.1b)
Yo =ha(x) + bo (2.1c)
b1 >0 (2.1d)
by >0 (2.1e)

The constants b; and by represents sensor bias faults and it is assumed that only
positive biases can occur.

The system can be considered to have two components: sensor 1 and sensor 2.
Then #; = b, and 6, = by. The corresponding fault-state spaces D' and D? are
D! = [0, 00] and D? = [0, oo[ respectively. This means that § = [0 03] = [by bo]
and the fault-state space © becomes

© = D' x D? = {[by by]; by > 0,by > 0}

2.1.4 Examples of Fault Models

We will in this section give some examples of common fault modeling principles,
and see how they fit into the framework of this thesis. However, in a real
application one should not be limited to the examples given here, but instead
always choose the fault model that is “best suited” for the particular application,
e.g. in terms of performance and computing power available. In practice only
the fantasy sets the limit of what fault models that can be considered.

Fault Signals

Commonly faults are modeled as unrestricted arbitrary fault signals, e.g. (Gertler,
1998)(Chen and Patton, 1999). When fault signals are used, a specific fault is
usually modeled as a scalar fault signal. Fault modeling by signals is very general
and can describe all types of faults. However, as we will see later in this thesis,
to use fault models that are too general may imply that it becomes impossible
to isolate different faults.

Faults that are traditionally modeled as signals, are possible to describe also
in the framework described above, where faults are described by the fault state
parameter. To illustrate this, consider a general nonlinear system modeled as

#(t) = g(z(®),ult), (1))
y(®) h(x(t), u(t), f(£))
The signal f(t) here represents an arbitrary fault that can for example be an

actuator fault or a sensor fault. There are several possibilities to include the
fault signal f(¢) in the general framework:
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1. The fault signal is seen as a parameter of the plant, i.e. 0g = f(¢).
Note that 6¢ is still constant and its value is the whole signal f(¢). If
discrete time and finite data is considered, then 65 becomes a vector

Oc = [f(t2) ... f(tn)].
2. The fault signal is seen as an unknown input and z(¢,0,) is chosen as
z(t) = f(t).

3. The fault signal is seen as an unknown input z(¢,6,) where 6, = f(t) and
then z(t,0,) = 0,. Note again that 6, is constant.

4. The fault signal is seen as an unknown input and z(¢,0,) is chosen as
z(t) = 0,f(t). The parameter 6, can be binary (0 or 1), indicating only
the presence of the fault, or real-valued, indicating the amplitude of the
fault.

Remember that we want to describe the fault situation of the system with the
fault state 6 and that each possible fault corresponds to a point in the fault
state space ©. These desires can be met by using the first, third, or fourth
alternative above, but the not the second.

It is also possible to include some more restrictions on the fault state param-
eter 6. An example of a natural restriction is that the value of a fault signal f(t)
is limited in range. Another example is that the bandwidth of f(t) is limited to
some value. In general it is advantageous to include restrictions into the fault
models. The reason is that the isolation task get easier the more restrictive fault
models we have.

Constant Plant Parameters

Another very common fault model is to model faults as deviations of constant
plant parameters from their nominal value, e.g. (Isermann, 1993). It is obvious
that such faults can in the general framework be modeled by the parameter 6.
Faults that are typically modeled in this way are “gain-errors” and “off-sets”
(“biases”).

Fault modeling by constant plant parameters is exemplified in Example 2.1
where the parameter g is 10 in the nominal case and a fault is represented as a
deviation from this nominal value. Another example is the parameters b; and
by in Example 2.2.

Also for this fault modeling principle, it is possible to include some restric-
tions on the fault state parameter 6. For example the size of a bias or a gain-error
is usually limited by the system.

Constant Signal Parameters

In some cases, it is appropriate to model a fault as a deviation of a constant
signal parameter from its nominal value. A typical example is a signal whose
variance is constant and low in the fault-free case, and when a fault is present the
variance is also constant but higher. These faults can in the general framework
be modeled by the parameter 6,.
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Figure 2.2: Some different types of time-variant behavior of faults.

Abrupt Changes

A quite common fault model is to consider abrupt changes of variables, e.g. see
(Basseville and Nikiforov, 1993). This is illustrated in Figure 2.2 as the solid line.
It is assumed that a variable or signal has a constant value 6y before an unknown
change-time t.;, and then jumps to a new constant value 6. The parameters 6y
and #; can be unknown or known. The abrupt change model fit into the general
framework by letting either g or 6, contain the three parameters 6y, 6;, and
teh-

Example 2.3

Consider an electrical connector. One possible fault is a sudden “connection
cut-off” at time t.,. A model for this fault mode is

ys(t) = (L —c(t)2(t)

where

Oy = t te
oty = {0 =0t <ten
01=1 t>tg

That is, the fault model is based on an abrupt change in the signal ¢(t). Since
the levels 0y and 61 are known at beforehand, this fault can be described by the
single parameter t.p, i.e. O = tep.

]
Note that the abrupt change model can also be used to model any abrupt

change, and not only changes of the level of an signal. For example, we can
assume that the derivative or the variance of a signal changes abruptly.
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Incipient Faults

In some sense, the opposite of abrupt changes is incipient faults. Incipient faults
are faults that gradually develops from no fault to a larger and larger fault. This
is illustrated in Figure 2.2 as the dash-dotted line. An incipient fault could for
example be a slow degradation of a component or developing calibration errors
of a sensor. Modeling of incipient faults are exemplified in the two following
examples:

Example 2.4
Let c(t) represent the “size” of the fault. If the fault is incipient, then c(t)

becomes
0 t<t
C(t) _ ch
g(t*tch) tztch

Then the fault state could be 6 = [t.;, g]. This fault model can in fact be seen
as special case of the abrupt change model. n

Example 2.5

Consider a limited time window and assume that during this time window,
either the no fault case is present or that an incipient fault has already started
to develop, i.e. the starting-point is actually outside the range of the window.
Then an appropriate fault model would be

c(t) = co + gt

where ¢ is the time within the window. Thus 6 = [¢y g] and the fault free case
would correspond to 6 = [0 0]. n

Intermittent Fault

An intermittent fault is a fault that occurs and disappears repeatedly. This is
shown in Figure 2.2 as the dashed line. A typical example of an intermittent
fault is a loose connector.

Example 2.6

Consider a sensor measuring a state z. The model of this (sub-) system can be
written

ys(t) = cr(t)z(?)

where y, is the sensor output and z is the state. The function ¢ (¢) is our model
of the loose contact. For some ¢, there is no contact and therefore ¢4 (t) = 0. For
other ¢, the contact is perfect and ¢;(¢t) = 1. That is, ¢1(¢) is a function that
switches between 0 and 1 at unknown time instances. In terms of the general
model description, z(t,6,) can be chosen as z(t,6,) = ¢(t) where the unknown
time instances are collected in the vector 6,. ™
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2.2 Fault Modes

Different faults can be classified into different fault modes. For example, consider
a system containing a water tank and leakages in the bottom of this tank. All
such leakages, regardless of their area, belong to the same fault mode “water
tank bottom leakage”.

The classification of different faults into fault modes corresponds to a parti-
tion of the fault-state space ©. This means that each fault mode ~y is associated
with a subset ©, of ©. One of the fault modes corresponds to the fault-free
case and this fault mode will be denoted “no fault” or NF. Further, all sets ©,
are pairwise disjoint and

o= Je,

YEQ

where () is used to denote the set of all fault modes.

If fault mode ~ is present in the system, then we know that # € ©,. The
fact that all sets ©, are pairwise disjoint means that only one fault mode can
be present at the same time. We will use the convention that one of the fault
modes always corresponds to the no fault case.

4 N

- /

Figure 2.3: The fault state space divided into subsets corresponding to different
fault modes.

For notational convenience we will to each fault mode associate an abbrevi-
ation, e.g. “no fault” was abbreviated NF. All this is illustrated in Figure 2.3
which shows how the whole set © has been divided into five subsets correspond-
ing to fault modes NF, F1, F2, F3, and F4. It is now possible to formally
define fault:

Definition 2.1 (Fault) A fault state 0 is a fault if 0 ¢ ONF.
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We have already used the term fault in a non strict sense and will also continue
to do so in many not-so-formal parts of the thesis.

Example 2.7

Consider again Example 2.2. Four fault modes are considered:

NF no fault
B1 bias in sensor 1
B2 bias in sensor 2

B1&B2 bias both sensor 1 and sensor 2

The sets O, ONF, OB1, OB2, and Og1gB2 become

© ={[b1 ba]; b1 > 0,b2 > 0} (2.2a)

Onr ={[0 0]} (2.2b)
©p1 ={[b1 0; b1 > 0} (2.2¢)
©B2 ={[0 b2]; b2 > 0} (2.2d)
OB1gB2 ={[b1 b2]; b1 > 0,02 > 0} (2.2¢)
]

The fault mode present in the system will frequently be denoted Fp. Thus
when the present fault mode is F1, we write this as Fp = F1. This further
means for the present fault state 6 it holds that 6 € Opy.

2.2.1 Component Fault-Modes

Besides defining fault modes for the whole system, it is natural to also consider
component fault-modes. To emphasize the difference between component fault-
modes and fault modes for the whole system, the latter will sometimes be called
system fault-modes.

As was said in Section 2.1.2; a system can usually be separated into a number
of components. The characteristic property of a component is that only one type
of fault can be present at a time. The classification into different types of faults is
made by introducing component fault-modes. Consider for example a valve with
fault modes “no fault”, “stuck open”, and “stuck closed”. Obviously no two of
these fault modes can be present at the same time. In analogy with the system
fault-modes, we use the convention that one of the component fault-modes is
the no fault case.

Each component fault-mode 1 is associated with a subset Df/) of D*. That
is, if fault mode %) is present in component 4, then 6; € be. In analogy with the
system fault-modes, the sets be form a partition of the component fault-state
space D?. This means that the sets be are pairwise disjoint and

b Yo
PEQ;

where €; is the set of all component fault-modes for component i.
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Relation to System Fault-Modes

Let F; denote the j:th component fault-mode of the ¢:th component. We will
reserve the fault-mode F¢ to be the “no fault” case of the i:th component. The
fault-mode F¢ will also be denoted NF*. Let p be the number of components
and n; the number of different component fault-modes for the i:th component.
All component fault-modes can then be collected in a table:

component | component
number ¢ fault-modes
1 FOIENFl,Fll,... Fél
2 FOQENF2,F12,... FEL2
p Fé’ENF”,Ff,...Fﬁp

A system fault-mode can then be composed by a vector of component fault-
modes. Thus the length of this vector is p and the total number of possible
system fault-modes is

p

JIEZ (2.3)

i=1

To distinguish between system fault-modes and component fault-modes, we
have here used bold-face letters to denote system fault-modes. However, when
it is clear from the context, we will later in the thesis often skip the bold-face
notation. Some examples of system fault-modes are

NF =[NF! NF? .. NF? (2.4a)

F1 =[F!,NF? . .. NF? (2.4b)

F? =[NF',F2,NF3 .. NF?] (2.4c)
Fi&F2 =[Fy,F2, NF3 ... NF?] (2.4d)

The first of these examples is the no-fault case of the whole system. For the
other examples, we have used the convention that components, that have none
of its component fault-modes included in the notation for the system fault-mode,
are assumed to have component fault-mode NF?. This means that from only
the notation of the system fault-modes and the sets Dib, we are able to uniquely
infer the sets ©,. For the examples (2.4) we have

NF 0 € Onr = {0 € O\, 0; € D}y i} ,
Fi 0 e GF% ={0€0|6;, D}:ll /\i;ﬂ 0i € Dy pi}
F? 6 € Opz = {0 € O € D3y N\ 0 € Diy i}

F3&F7 60 € Opyepz = {0 € 0|61 € Dll%l RS D%“f Niz1 0 € Dy i}

To clarify the relation between system fault-modes and component fault-
modes, it may be useful to study a Venn diagram over the different fault modes
of a system. This is illustrated in the following example.
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Example 2.8

Consider again Example 2.7. Four component fault-modes are considered, i.e.
NF1, NF2, Bl, and B2, and they are defined by the sets be as follows:

Dzlvm ={0}
DL, ={z >0}

D?Vm ={0}
Dy, ={z > 0}

The sets €2; of component fault-modes implies that there are four possible system
fault-modes:

NF =[NF1, NF?2]

B1 =[B1, NF2]

B2 =[NF1, B2
B1&B2 =[B1, B2

The fault-state space and the different fault modes are shown in a Venn diagram
in Figure 2.4. The whole area corresponds to the set ©. The left circle represents
all fault-states for which component fault-mode B1 is present, i.e. the set

{0161 € Dpy}

Similarly the right circle represents all fault-states for which component fault-
mode B2 is present. These two circles together divides the fault-state space into
the four sets Onr, OB1, OB2, and Op1gB2, Which are shown in the figure. m

ONF

OB1

Figure 2.4: A Venn diagram showing the relation between the component and
system fault-modes.
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2.2.2 Single- and Multiple Fault-Modes

The system fault-modes in which only one of the component fault-modes is not
NF? are said to be single fault-modes. For example, B1 and B2 in the example
above, are both single fault-modes. Usually also the no-fault system fault-mode,
i.e. NF, is said to be a single fault-mode. The opposite are multiple fault-modes
where more than one of the component fault-modes are not N F*.

The terminology single faults and multiple faults are frequently used in the
diagnosis literature. In the framework presented here, a fault 0 is a single fault
if it belongs to a single fault-mode, i.e. § € ©, and + is a single fault mode.
Similarly a fault 6 is a multiple fault if it belongs to a multiple fault-mode. Note
that with the formalism described here, multiple fault-modes comes in naturally
and requires no special treatment.

A problem with considering multiple fault-modes is that the complexity of
the diagnosis problem increases. When the number of components gets larger,
the number of different system fault-modes grows exponentially, see (2.3). This
further implies that a more complex and more expensive diagnosis system is
needed. A solution is to consider only single fault-modes. This corresponds
to an assumption that only one fault can be present at the same time. In
that case, the number of system fault-modes grows linearly with the number of
components, i.e. the number of possible system fault-modes becomes

P

14 (ni—1) (2.5)

i=1

The assumption to only consider single fault-modes may seem to be unreal-
istic at first, but at least three practical considerations support this assumption.

e If a sufficiently small time scale is chosen it is probably the case that one
fault has occured first even though several faults are present.

e In a system in which one fault is highly improbable (as it usually is), it is
even more improbable that two or more faults occur.

e The specifications of a diagnosis system only require diagnosis of single
faults. The reason can be that diagnosis systems capable of handling mul-
tiple fault modes would become to expensive because of increased sensor
and hardware costs. In fact, the current diagnosis legislative regulations
for automotive engines only require single fault diagnosis.

An alternative to only consider single fault-modes, but still not all multiple
fault-modes, is to consider a subset of the multiple fault-modes. For example,
one could choose to consider all system fault-modes where at maximum two
component faults are present.

2.2.3 Models

Remember the system model M(6) that is capable of describing the system for
all possible fault states § € ©. By restricting 6 to a subset ©,,, corresponding
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to a fault mode 7y, we get a “smaller” model. For especially single fault-modes,
the models can get much smaller. To each fault mode v, we can then associate
a model M., (0) which we formally define as

M(0) = M(0)loco,, (2.6)

Thus the model M, (9) is capable of describing the system as long as fault mode
7 is present.

For a specific fault mode -y, the constraint § € ©, usually fix a part of the
vector # to some constants. Then, as an alternative to the notation M. (6),
we will use M, (6,), where 6., is the part of the #-vector that is not fixed. If
the f-vector is completely fixed by the fault mode ~, the #-argument becomes
unnecessary and the corresponding fault model can be denoted M.,.

Example 2.9

The models corresponding to each fault mode are given by (2.1) and some
additional constraints on by and by defined by (2.2). The models associated
with the different fault modes are

NF: Mnr(0) = MNF
B]_Z MBl(Q) == MBl(bl)
B2: MB2(9) = MB2(b2)

B1&B2: Mgpigp2(0) = Mpigs2([b1 ba))

Note: As a reference, this sensor-bias example, that has been step-wise
expanded in this and the previous section, is summarized in Appendix 2.A.

2.3 Diagnosis Systems

To perform fault diagnosis, a diagnosis system is needed. The general structure
of an application including a diagnosis system is shown in Figure 2.5. Inputs
to the diagnosis system are the signals u(¢) and y(t), which are equal to, or a
superset of, the control system signals. Except for control signals, the plant is
also affected by faults and disturbances and these are not known to the diagnosis
system. The task of the diagnosis system is to generate a diagnosis statement
S, which contains information about which fault modes that can explain the
behavior of the process. Note that it is assumed that the diagnosis system is
passive, i.e. it can by no means affect the plant.

In terms of decision theory (e.g. see (Berger, 1985)), the diagnosis system is
a decision rule §(x), where x = [u y|, and S is the action. That is, the diagnosis
system is a function of u and y and S = §(x) = §(Ju y]). Note that = can also
contain several samples of u and y from different times.

One way of structuring a diagnosis system is shown in Figure 2.6. The
whole diagnosis system ¢(x) can be divided into smaller parts §;(z), which we
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Control
System

Faults

Plant

Disturbances

Diagnosis
System

Diagnosis Statement

Figure 2.5: General structure of a diagnosis application.

will call fests. These tests are also decision rules. Assume that each of the
tests d;(x) generates the diagnosis statement S;, i.e. S; = d;(x). The purpose
of the decision logic is then to combine this information to form the diagnosis
statement S.

The diagnosis statement S and the individual diagnosis statements S; do
all contain information about which system fault-modes that can explain the
behavior of the system. We can represent and reason about this information
in at least two ways. The first is to use a representation where the diagnosis
statements S and S; are sets of system fault modes. The second is to let the
diagnosis statements be expressed as propositional logic formulas where the
propositional symbols are component fault-modes. In the next two sections,
these two alternatives will be investigated.

2.3.1 Forming the Diagnosis Statement by Using a Set
Representation

An example of a diagnosis statement, represented by a set of system fault-modes,
is

S ={B1,B2}

The interpretation here is that each of the fault modes B1 and B2, can alone
explain the behavior of the system. This can also be expressed as that each of
the models Mp1(0) and Mp2(6) can explain the measured data x.
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Figure 2.6: A general diagnosis system.

All individual diagnosis statements S; contain information of which system
fault-modes that can explain the data. To derive the diagnosis statement S, we
want to summarize the information from all the individual diagnosis statements
S;. By using the set representation, this is done via an intersection operation,
i.e. the diagnosis statement S is formed as

S=[)S: (2.7)

Thus the decision logic of the diagnosis system can be seen as a simple inter-
section operation.
The following example illustrates this principle.

Example 2.10

Consider the system fault-modes NF, B1, B2, and B1&B2. Assume that
the diagnosis system contains three individual tests. Assume further that the
diagnosis system has collected and processed the input data, and the individual
diagnosis statements S; are

S, ={NF,B1}
S, ={B1,B1&B2}
S5 ={B1,B2}

Then the diagnosis statement S becomes

S = {NF,B1} N {B1,B1&B2} n {B1,B2} = {B1}
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The result should be interpreted as B1 is the only system fault-mode that can
explain the behavior of the system. n

In the example above, it happened that S only contained one system fault-
mode. It can also happen that S contains several system fault-modes. If for
example the individual diagnosis statements S; are

S, ={NF,B1,B1&B2}
Sy ={B1,B1&B2}
Sy ={B1,B2,B1&B2}

Then the diagnosis statement S becomes

S ={NF, B1, B1&B2} N {B1,B1&B2} n {B1,B2, B1&B2} =
—={B1,B1&B2}

This diagnosis statement should be interpreted as both the system fault-modes
B1 and B1&B2 can explain the behavior of the system.

One special case is when the fault mode NF (no fault) is contained in the
diagnosis statement. For example

S = {NF, B1, B2, B1&B2}

This means that the system fault-mode NF (and also some other system fault-
modes) can explain the behavior of the system. Further this corresponds to that
the fault free model MnF can explain the behavior of the system. In this case
there is no reason to generate an alarm. On the other hand if the fault mode
NF is not contained in the diagnosis statement S, some faults are probably
present and an alarm should be generated.

The set representation of diagnosis statements will be used a lot in this thesis.
One reason is that it is easy and intuitive to express that a system fault-mode
v is part of the diagnosis statement S. This is written v € S. For example the
principle of when to generate an alarm can be expressed as

NF e S NOT generate an alarm
NF ¢ S generate an alarm

The diagnosis-system architecture presented here is based on the same prin-
ciple as human beings are using when performing diagnosis. That is, a human
being breaks down a complex diagnosis problem into smaller tasks (the tests).
These smaller tasks are performed (can be to observe a special characteristic)
and the outcome from all of them are combined to form the total diagnosis
statement. This connection to human reasoning will be even more detailed in
the next chapter in which the individual tests are seen as hypothesis tests.

Below follows a larger example, similar to one given in (Sandewall, 1991), of
a diagnosis problem and a diagnosis system. In addition to illustrating general
principles, also the connection to human reasoning will hopefully be realized.
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Remember the symbol €2 which denotes the set of all system fault-modes. If a
diagnosis statement is 2, then this means that any fault mode can explain the
system behavior.

Example 2.11
Assume that we want to diagnose a car. The following system fault-modes are

considered:

NF no fault

BD battery discharged
SB  start motor broken
NG no gasoline

Remember that only one of these fault modes can occur at the same time. An
automated diagnosis system or a human being can perform the following tests:

01: When the ignition key is turned on, observe if the start motor starts.
The different conclusions are then

test is not performed S1=0Q
start motor starts S; = {NF,NG}
start motor do not start S; = {BD,SB}

The conclusion “test is not performed” means that the ignition key has not been
turned on.

d2: When the ignition key is turned on, observe if the engine starts. The
different conclusions are then

test is not performed Ss =2
engine starts Sy = {NF}
engine do not start Sy = {BD,SB,NG}

03: When the head-light switch is turned on, observe if the head-lights are
turned on. The different conclusions are then

test is not performed S3=0Q
head-lights are turned on S3 = {NF,SB, NG}
head-lights are not turned on  S3 = {BD}

Now assume that both the ignition key and the head-light switch are turned
on and the following observations are made:

estart motor do not start
eengine do not start
ehead-lights are turned on
This means that the diagnosis statement S becomes
S=5nN5nNnS;={BD,SB}N{BD,SB,NG} N {NF,SB,NG} = {SB}

That is, the conclusion is that the only fault mode that can explain the behavior
of the system is SB, i.e. start motor broken. n
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2.3.2 Forming the Diagnosis Statement by Using a Propo-
sitional Logic Representation

We will now investigate the case where the diagnosis statements S; and S are
expressed as propositional logic formulas, and the propositional symbols are
component fault-modes. Note first that this representation is equivalent to
using sets of system fault-modes. The diagnosis statement S is with this repre-
sentation formed as
S=NA\S:
3

Thus the decision logic can be seen as a simple conjunction operation.

As noted in Section 2.2.2, a representation based on system fault-modes can
be problematic since the number of system fault-modes grows exponentially
with the number of components. The reasoning based on propositional logic and
component fault-modes, does not have this problem. An additional advantage
with this representation is that we obtain a closer connection to other diagnosis
methods based on logic, e.g. (Reiter, 1987). It can also be argued that a
representation based on component fault-modes is more natural.

The next example will illustrate reasoning based on propositional logic and
component fault-modes. Also shown is the link to the equivalent representation
based on sets of system fault-modes. In the example, we have assumed that
each component has only two possible component fault-modes. In this case,
standard “two-valued” propositional logic can be used. If some components
have more than two possible component fault-modes, than some “multi-valued”
propositional logic? must be used, e.g. see (Larsson, 1997).

Example 2.12

Assume that we want to diagnose the same car as in the previous example. Now
we will consider multiple faults and it is natural to start defining the component
fault-modes:

component  component
name fault-modes
battery NFB BD
start motor NF¥, SB
gasoline NF% NG

The abbreviations have the same meaning as in the previous example. This
means that the set of all system fault-modes become:

Q = {NF, BD, SB, NG, BD&SB, BD&NG, SB&NG, BD&SB&NG}

We can now proceed as we did in Example 2.11, but instead we will choose to use
a reasoning based on propositional logic and component fault-modes. Instead

2If such a multi-valued logic is adopted, we could in principle also use propositional logic
to reason about system fault-modes, i.e. as an alternative to the set representation.
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of for example NFP we will write ~BD. The symbol L will be used to denote
falsity. Then the three tests can be formulated as follows:

01: When the ignition key is turned on, observe if the start motor starts.
The different conclusions are then

test is not performed Si1=-1
start motor starts S1=-BDA-SB
start motor do not start S; =BDV SB

Note that S; is now expressed with component fault-modes which is significantly
different compared to the previous example where system fault-modes were used.
For example, the last alternative conclusion of test d;, expressed by system fault-
modes and the set representation, is

S, = {BD, SB, BD&SB, BD&NG, SB&NG, BD&SB&NG

d2: When the ignition key is turned on, observe if the engine starts. The
different conclusions are then

test is not performed S, = - L
engine starts Sy =—-BDA-SBA-NG
engine do not start Se=BDV SBV NG

03: When the head-light switch is turned on, observe if the head-lights are
turned on. The different conclusions are then

test is not performed S3=-_1
head-lights are turned on S3 =-BD
head-lights are not turned on S3 = BD

Now assume that both the ignition key and the head-light switch are turned
on and the following observations are made:

estart motor do not start

eengine do not start

ehead-lights are turned on
This means that the diagnosis statement S becomes

S =S5S1 NSy AS3= (BD\/SB)/\(BD\/SB\/NG)/\ﬂBD:
=-BDASB
That is, the conclusion is that the behavior of the system corresponds to that
the component fault-modes —BD and SB are present. That is, the battery is

not discharged and the start motor is broken. If we instead had used reasoning
about the system fault-modes, the diagnosis statement would become

S = {SB,SB&NG}



Section 2.3. Diagnosis Systems 33

Remark: In the above example, we considered multiple fault modes, in con-
trast to Example 2.10, in which only single fault-modes were used. If we want
consider only single fault-modes, also when using reasoning based on compo-
nents and propositional logic, we have to add a set of premises saying that no
two component faults can be present at the same time, e.g. =(BD A SB). Such
premises are not needed when the reasoning is based on system-fault modes and
the set representation. That is, multiple fault-modes could have been introduced
in Example 2.10, without any special considerations.

2.3.3 Speculative and Conclusive Diagnosis-Systems

As have been said above, a diagnosis statement S can in general contain more
than one system fault-mode. This is in contrast to most fault diagnosis litera-
ture, in which the diagnosis statement can only contain one system fault-mode.
The difference is fundamental and to distinguish between the two types of diag-
nosis system, we will use the terms conclusive diagnosis-system and speculative
diagnosis-system.

A speculative diagnosis-system corresponds well to a desired functionality
since in cases where it is difficult or even impossible to decide which fault mode
that is present, it is very useful for a service technician to get to know that there
are more than one fault mode that can explain the behavior of the process. If
the diagnosis system was forced to pick out one fault mode in cases like this, it
is highly probable that a mistake is made and wrong fault mode is picked out.

The diagnosis task of a conclusive diagnosis-system is to infer which one,
of several fault scenarios (fault modes), that is present. On the other hand,
the diagnosis task of a speculating diagnosis-system is to speculate which fault
scenarios (possibly several) that can be present such that the collected data can
explain the behavior of the system.

Formally, the conclusive diagnosis-system is a special case of a speculative
diagnosis-system with the additional restriction that no matter the outcome of
the different tests d;, the diagnosis statement S does always contain maximally
one system fault-mode.

2.3.4 Formal Definitions

Now when faults, fault modes, and diagnosis systems have been formally defined,

we are ready to introduce more formal definitions to the conceptually important
terms in the SAFEPROCESS list from Section 1.2. These definitions are valid
for the speculative as well as the conclusive diagnosis system.

Definition 2.2 (Fault Detection) Fault Detection is the task to determine
if the system fault-mode NF can explain the behavior of the system or not.

Definition 2.3 (Fault Isolation) Fault isolation is the task to determine which
system fault-mode that can best explain the behavior of the system.
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Definition 2.4 (Generalized Fault Isolation) Fault isolation is the task to
determine which system fault-modes that can explain the behavior of the system.

Definition 2.5 (Fault Identification) Fault identification is the task to es-
timate the fault state 6 that can best explain the behavior of the system.

Now we define fault diagnosis as equivalent to the generalized fault isolation:

Definition 2.6 (Fault Diagnosis) Fault diagnosis is the task to determine
which fault modes that can explain the behavior of the system.

Note that this definition of fault diagnosis is not in agreement with many other
sources which define diagnosis as the combined task fault detection, fault isola-
tion, and fault identification, e.g. compare with the definitions in Section 1.2.
However, as we will see in Chapter 4, it can happen that fault identification
must be implicitly performed when doing fault isolation.

Note also the difference between fault diagnosis and general system identi-
fication in which the single 6, that best explains the data, is sought. To use
system identification directly to perform both fault detection, isolation, and
identification, would in some cases theoretically be possible. However, for most
cases the problem is that the vector 6 is usually quite large and the identification
therefore becomes difficult. In addition, it can very well be the case that the
model is not identifiable with respect to 6. However, if one fault mode is as-
sumed, the fault identification becomes much simpler and this is the motivation
why we need to perform fault isolation before fault identification.

2.4 Relations Between Fault Modes

Because of for instance “over parameterization”, it can happen that two different
fault modes can describe the system behavior equally well. Consider for example
a system modeled as

y = abu

where one fault mode F, corresponds to that a # 1 and fault mode F} cor-
responds to that b # 1. It is obvious that both F, and Fy, can equally well
describe the system.

These kinds of relations between F, and Fy, are further investigated in this
section. We will see later that for both analysis and design of a diagnosis
system, these relations play a fundamental role. There is also a close relation
to identifiability in system identification, e.g. (Ljung, 1987).

First a notion of equivalent models is established:

Definition 2.7 (Equivalent Models) Two models M1(01) and M (62), with
fixed parameters 01 and 0y are equivalent, i.e.

Mi(61) = M2(62)
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if for each initial state 1 of M1(01), there is an initial state x2 of Ma(62) such
that for all signals u(t) and z(t), the outputs y1(t) and y2(t) are equal, and vice
versa.

Definition 2.8 (Submode) We say that a fault mode 1 is a submode of
another fault mode 73, i.e.

= Y2

if for each fized value 0, € ©,,, there is a fized value 8y € ©O., such that
M, (61) = M., (62).

Definition 2.9 (Submode in the Limit) We say that a fault mode v is a
submode in the limit of another fault mode 2, i.e.

7 <72
if for each fized value 61 € ©,,, there is a fived value 8 such that

le (91) = 932%* Mvz (92)

02€0,,

These relations are transitive which means that if v < v and 72 < 3, then
7 < 3. Further if 4 <* 72 and 72 <* 73, then 11 <* 3 (at least under
regularity conditions). Further we have that if v1 < 72 then also y1 <* 7s.

The submode relation between fault modes can quite easily arise when mod-
eling systems and faults. Unfortunately they are undesirable since they, as we
will see in the Section 2.5, imply that it becomes difficult or impossible to isolate
different faults. Examples of how the submode relation can arise is given in the

following example.

Water Level Sensor

AN

Possible Leak

Figure 2.7: A water tank.

Example 2.13

Consider the water tank illustrated in Figure 2.7. Two types of faults can occur:
there may be a leakage and the water-level sensor may fail. The diameter of
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the leakage hole is assumed to be unknown but constant. For some reason,
it is interesting to distinguish between three types of sensor faults: a simple
calibration fault (i.e. a gain fault), a combination of a bias and a calibration
fault, and an arbitrary fault. The component fault-modes can therefore be
summarized as

component | component component

number % name ‘ fault-modes

1 Level Sensor | NF1, SCF, LSF, ASF
2 ‘ Tank NF2, L

where L is “Leakage”, SCF is “Sensor Calibration Fault”, LSF is “Linear
Sensor Fault”, and ASF is “Arbitrary Sensor Fault”. Thus the possible system
fault-modes are

NF =[NF1, NF?2|
L =[L, NF2]
SCF =[NF1,SCF]
LSF =[NF1, LSF)
ASF =[NF1, ASF]
L&SCF =[L, SCF]
L&LSF =[L, LSF]
L&ASF =[L, ASF]

The fault-complete model Mq(6) of the tank is

(t) =u(t) — Ah(x(t))
y(t) =ga(t) +m+ f(t)

where the state x(t) is the water level, and u(t) is the flow into the tank. The
leakage flow is determined by the leakage area A times the nonlinear function
h(z(t)). The sensor signal y(t) is affected by different faults via the constants k
and m, and the signal f(¢). The parameter vector 6 becomes 6 = [A, g, m, f(t)],
and 61 = A and 02 = [g,m, f(t)].

The single fault-modes are defined by the following models:

MNr ={MO) | A=0Ag=1Am=0AVtf(1)
Mp(A) ={M@O) | A>0Ag=1Am=0AVtf(t)
Mscr(g) ={MO) | A=0Ag#1Am=0AVLf()

Muysr(lg m]) ={M(0) | A=0A (g #0Vm#0)AVL.f(t) =0}
Masr(f(t)) ={M@O) | A=0Ag=1Am=0A f(t) #0}

0}
0}
0}

Ei

From these models it is easy to also derive the models for the multiple fault-
modes.
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When we have the models for all system fault-modes, we can identify the
following relations:

Z Z Z

F
F x* SCF < LSF < ASF
F <" L&SCF < L&LSF < L&ASF

Even though most of these relations can be avoided, it is usually very difficult
to avoid that NF is a submode of most other fault modes. ™

2.5 Isolability and Detectability

In this section we define and discuss isolability and detectability. The diagnosis
statement is assumed to be expressed using the set representation. From now
on, we skip the bold-face notation for system fault-modes. We start by defining
what is meant by detecting and isolating a fault.

Definition 2.10 (Detected Fault) Assume a fault 0 € ©p, is present. Then
the fault 6 is detected using a diagnosis system §(x), if NF ¢ S.

Definition 2.11 (Isolated Fault) Assume a fault 0 € O, is present. Then
the fault 6 is isolated using a diagnosis system 6(x), if S = {F1}.

Note that Definition 2.11 means that fault isolation implies fault detection.
Related to the above definitions, we also define the terms false alarm, missed
detection, missed isolation:

Definition 2.12 (False Alarm) Assume that no faults are present, i.e. 0 €
Onp. Then the diagnosis statement S represents a false alarm if NF ¢ S.

Definition 2.13 (Missed Detection) Assume that a fault 0 € Op, is present.
Then the diagnosis statement S represents a missed detection if NF € S.

Definition 2.14 (Missed Isolation) Assume that a fault 6 € O, is present.
Then the diagnosis statement S represents a missed isolation if S # {F}.

Next we define isolability and detectability for a given diagnosis system. We
restrict the definitions to deterministic systems. This means that the system
output y is completely determined by initial conditions zg, the input u, faults 6,
and disturbances ¢. This further means that S = §([y, u]) = §([y(xo, u, ¢, 0), u]),
i.e. also the diagnosis statement is deterministically determined by [z¢, u, ¢] and
f. However, it is possible to generalize the definitions to the stochastic case.

The goal is to define what we mean when saying “the fault mode F} is
isolable from the fault mode F5” but we start with a simpler problem, namely
what we mean by “the fault-state 0 is isolable from the fault-state 65”:
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Definition 2.15

(Fault-State Isolability Under [z¢,u,¢] in a Diagnosis System)

Given a fized [xo,u,d] and a diagnosis system &, we say that the fault state
01 € Op, is isolable from 62 € O, under [zg,u, @] if

Fre S =0(y(zo,u,¢.01),u) N & S = (y(xo,u,¢,01),u)
and
Fy e S =6(y(xo,u,¢,02),u)

Note that the definition is not symmetric, i.e. a fault 6; can be isolable from
02, without that 6, is isolable from 6.

Next, when defining what we mean by “F} is isolable from F5”, we have
several choices. We can consider a single pair of fault states or all fault states
in the fault modes. We can consider a single [xo, u, ¢], given or not given, or all
possible [z, u, ¢]. All together, we end up with no less than six different defini-
tions of fault isolability for a given diagnosis system. These six are illustrated
in Table 2.1.

Complete Isolability Partial Isolability
Vo 360
Uniform Isolability F} is uniformly and F is uniformly and
V[zo, u, ¢ completely isolable partially isolable from
[} from Fy Fy
Und F} is completely F1 is partially isolable
naer Efo’ u, ] isolable from F5 under from F5 under
[l‘(),u, ¢] [Z(),U,¢]
S0, u, d] F1 is completely F1 is partially isolable
0 isolable from Fjy from Iy

Table 2.1: Definitions of fault-mode isolability.

If written out, the definitions from Table 2.1 become:

Definition 2.16

(Uniform (Complete) Fault-Mode Isolability in a Diagnosis System)
Given a diagnosis system §, we say that Fy is uniformly and completely isolable

from Fy if

V[mo,u,qb] Vo, € ®F1 Vo, € ®F2 .

Definition 2.17

((Complete) Fault-Mode Isolability in a Diagnosis System Under [z, u, ¢])
Given a fized [xo,u, @] and a diagnosis system 0, we say that Fy is completely

isolable from F» under [z, u, @] if

V0, € OF, V03 € OF, .

01 is isolable from 0y under [xg,u, @]

01 is isolable from 0o under [xo,u, @]
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Definition 2.18
((Complete) Fault-Mode Isolability in a Diagnosis System)
Given a diagnosis system §, we say that Fy is completely isolable from Fy if

Fxo, u,d| V01 € Op, Vs € Op, . 07 is isolable from 0o under [xg,u, ¢]

Definition 2.19
(Uniform Partial Fault-Mode Isolability in a Diagnosis System)

Given a diagnosis system §, we say that Fy is uniformly and partially isolable
from Fy if

V|zo,u, ] 301 € Op, 02 € Op, . 61 is isolable from by under [zg,u, ]

Definition 2.20

(Partial Fault-Mode Isolability in a Diagnosis System Under [z, u, ¢])
Given a fized [xo,u, @] and a diagnosis system &, we say that F is partially
isolable from Fy under [z, u, @] if

30, € O, 302 € OF, . 0 is isolable from 0 under [xg,u, @]

Definition 2.21 [Partial Fault-Mode Isolability in a Diagnosis System] Given
a diagnosis system &, we say that I is partially isolable from F5 if

Axo,u, @] 01 € O, 03 € O, . 01 is isolable from 02 under [xg, u, P

Note the implications between the different isolability properties. These are
indicated by arrows in Table 2.1.

The most weak property is partial fault-mode isolability. However not partial
fault-mode isolability is quite strong; if we find that Fj is not partially isolable
from Fy, then F} is not isolable from F5 in any other sense.

Next we define isolability also as a property of the system:

Definition 2.22 [[Uniform] Complete/Partial Fault Mode Isolability] A fault
mode Fy is [uniformly] and completely/partially isolable from fault mode Fy if
there exists a diagnosis system § in which fault mode Fy is [uniformly] com-
pletely/partially isolable from fault mode F.

We have here skipped the case isolability under [xq, u, ¢].
A special case of isolability is detectability. As with isolability, we can define
detectability as a system property or not.

Definition 2.23 [Fault Mode Detectability [in o Diagnosis System]] A fault
mode Fy is [uniformly] completely/partially detectable [in a diagnosis system 6]
if Fy is isolable from NF [in the diagnosis system 0.

The isolability and detectability properties of a set of fault modes can be
quite difficult to analyze by only using the definitions 2.16 to 2.23. However,
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these properties are still important so therefore, we need some tools (i.e. the-
orems) by which isolability and detectability can be analyzed from more easily
identified properties of the diagnosis system and the fault modes. Some tools,
applicable in the general case, are presented in the next section, and some tools,
applicable for linear systems, are presented in Chapter 8.

2.6 Submode Relations between Fault Modes and
Isolability

Submode relations between fault modes, as defined in Section 2.4, can severely
limit the possibility to perform fault isolation. This is formally explained by the
following theorem:

Theorem 2.1 Assume it holds that Fy <* F5, then
a) F1 is not completely isolable from Fj
b) Fy is not completely isolable from Fy
c¢) if 6(x) is an ideal diagnosis system, i.e.
v €S < M,(0) can explain data x

and M(0) is a correct model, then Fy is not partially or completely isolable
from Fy in 0(x).

Proof: For the (a)-part, assume that Fj is completely isolable from F». Then
from Definition 2.18 and 2.22 we know that there exists a diagnosis system and
a [z, u, @] such that for all 61 € O, and all s € Op,, it holds that

01 present = Fi€SANF ¢S (2.8a)
0 present =— Fr, €S (2.8b)

Assume that 0 is present. Since Fy <* Fy, we know that there is a 85 € Op, (or
possibly in the limit) such that M2 (63) = M;(01). This means that the output
y from the plant when 6 is present equals the output when 6 is present. That
is, the diagnosis statement when 63 is present, equals the diagnosis statement
when 6 is present. Therefore, when 65 is present, we have, according to (2.8a),
that F» ¢ S. However, from (2.8b) we have that 5 present implies Fy € S.
This contradiction proves the (a)-part of the theorem.

For the (b)-part, assume that F» is completely isolable from Fj. Then we
know that there exists a diagnosis system and a [zg, u, ¢| such that for all 85 €
Op, and all §; € O, it holds that

Oy present — F,eSAF ¢S (2.9)
01 present — F €S8 (2.10)
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The relation Fy <* F, implies that there exists 0] € O, and 65 € Op, (or
possibly in the limit) such that M2(63) = M1(61). These two 0} give the same
diagnosis statement S. From (2.9) we have that F} ¢ S and from (2.9), F; € S.
This contradiction proves the (b)-part of the theorem.

For the (c)-part, assume that Fy is partially isolable from Fb in an ideal
diagnosis system §. Then from Definition 2.21 we know that there exist [z, u, ¢],
01 € OF, and 02 € O, such that (2.8) holds.

Assume that 6; is present. With the same reasoning as for the (a)-part,
we can then conclude that there is a 05 € ©p, which gives exactly the same
diagnosis statement as 601, i.e. F» ¢ S. Therefore, when 65 is present, we have
that F» ¢ S. However, from the assumption of ideal diagnosis system and
correct model, we know that 65 present implies F» € S. This contradiction
proves the (c)-part of the theorem.

Note that since not isolability implies not uniform isolability, this theorem also
proves that F; <* Fy implies that F; is not uniformly completely/partially
isolable from F5.

The next theorem shows that when a fault mode is not related by the
submode-relation to another fault mode, then we are able to prove at least
partial isolability.

Theorem 2.2 If it holds that Fy £* F» and the model M(0) is correct, then
Fy is partially isolable from Fy in an ideal diagnosis system.

Proof:  The relation F; £* F, means that there is a 1 € ©, such that for
all 62 € O©F, it holds that

M2(92) 75./\/11(91) (2.11)

Assume that 6; is present. Then the assumption of correct model and ideal
diagnosis system implies that F; € S. The relation (2.11) means that there
must exist a [xo,u, P| such that Ms(f2) can not explain the data for any 6s.
This further means that F» ¢ S. Thus, we have shown that there exists a
[0, u, ] and a 01 such that F; € S A Fy ¢ S. From the assumption of correct
model and ideal diagnosis system it also holds that for all 65 € Of,, Fy, € S.
This proves that F} is partially isolable from F5. n

The following example illustrates some of the isolability properties and also
how Theorem 2.1 and 2.2 can be used.

Example 2.14

Consider a valve whose position x(t) is controlled by the signal u(¢) and mea-
sured with a sensor with output y,(t). Three system fault-modes are considered:
NF (no fault), AF (actuator fault), and SF (sensor fault). The fault modes
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are described by the following models:

MnF: Mar(f(t)) : Msp :
(t) = u(t) z(t) =u(t) + f(t) z(t) =u(t)
ys(t) = z(1) ys(t) =z(t) ys(t) =0

We also know that the input signal is limited as 1 < u < 2.

By studying the models representing the different fault modes, we realize
that the following relations hold:

NF <* AF
NF #4* SF
AF £* NF
AF £* SF
SF £* NF
SF x* AF

Now we will use these relations together with Theorem 2.1 and 2.2, and assuming
an ideal diagnosis system. Doing so we obtain the following facts:

NF not isol. from AF (Th. 2.1), AF not compl. isol. from NF' (Th. 2.2)
NF part. isol. from SF (Th. 2.1)
AF part. isol. from NF (Th. 2.1)
AF part. isol. from SF (Th. 2.1)
SF part. isol. from NF (Th. 2.1)
SF not isol. from AF (Th. 2.1), AF not compl. isol. from SF' (Th. 2.2)

By some more studying the models representing the different fault modes, it
can be realized that some isolability properties are actually stronger than this.
All isolability properties have been collected in the following table:

NF AF SF
NF - not uniformly completely
AF uniformly partially - uniformly partially
SF | uniformly completely not, -

The entries in the table shows the isolability of the fault mode of the row from
the fault mode of the column. For example, the first row says that NF is not
isolable from AF and NF is uniformly and completely isolable from SF'. n

Note that the isolability is not a symmetric property. For instance, in the
example above, N F' is not isolable from AF but AF is uniformly and partially
isolable from NF.

From Theorem 2.1 and 2.2 it is clear that to facilitate isolation, we want to
avoid that the fault modes are related with the submode-relation. One reason for
the presence of submode-relations between the fault modes, is that faults have
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been modeled by too general fault models. That is, too general fault models
implies that it becomes difficult (or impossible) to isolate between different
faults. When designing a model-based diagnosis-system, this fact implies that
the following advice is of high importance:

To facilitate fault isolation, fault models should be made as specific
as possible.

In practice this means for example that when a fault can be modeled as a
deviation in a constant parameter, then the fault should not be modeled with
an arbitrary fault signal. Also, when parameters 6; are known to be limited in
range, this information should be incorporated into the fault model.

2.6.1 Refining the Diagnosis Statement

When fault modes are related by the submode relation, they are in accordance
with Theorem 2.1 not isolable from each other. This means that if A <* B
and the fault mode present in the system is A, then if the diagnosis statement
contains A, it is very likely to also contain B, i.e. S ={A,B,...}.

Now from another point of view, assume that we encounter a diagnosis state-
ment S = {A, B}. This in principle means that both A and B can explain the
data. However, since A <* B, i.e. A is more restricted than B, it is much more
likely that the data has been generated by a system with fault mode A present.
It is possible to extend the diagnosis system with this kind of reasoning, and in
that case the fault statement would become the single fault mode A. In general,
all fault modes in the diagnosis statements which are “supermodes” of other
fault modes in the diagnosis statement, should be neglected. In this way we can
produce a refined diagnosis statement S which becomes

S={FeS|VFaeS Fy# F — F, £ F} (2.12)

For example, N F is likely to be related to all other fault modes F; as NF <* F;.
Because of this, even though NF' is the present fault mode, it will never be
the only fault mode in S. From a slightly different viewpoint, this was also
discovered in Section 2.3.1. However, if the refined diagnosis statement (2.12)
is used, it becomes S = {NF'}.

2.7 Conclusions

This chapter has introduced a general theoretical framework for describing and
analyzing diagnosis problems. In contrast to other existing frameworks, e.g.
the residual view, this framework is not limited to any special type of faults.
We have shown how common types of fault modeling techniques fits into the
framework, e.g. faults modeled as arbitrary signals, deviations in constants,
and abrupt changes of variables. Also multiple faults are naturally integrated
so that no special treatment is needed. The important term fault mode has been
defined and it will be frequently used in all the following chapters of the thesis.
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A general architecture for a diagnosis system has been introduced and a re-
lation to methods based on propositional logic is indicated. We have introduced
the idea that the output from a diagnosis system can be several possible faults.

Using the framework, many conceptually important terms have been de-
fined, e.g. fault, fault diagnosis, fault isolation, detected fault, isolated fault,
fault isolability, fault detectability, etc. The meanings of the terms isolability
and detectability have been shown to have quite many nuances. A submode
relation between fault modes have been defined. It has been shown that this
relation has important consequences for isolability and detectability. An impor-
tant conclusion is that fault models should not be made too general since then,
it becomes difficult to isolate faults from each other.
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Appendix

2.A Summary of Example

This section contains a summary of the sensor-bias example given in Sections 2.1
and 2.2.

Notation Summary

S} set of all fault states
o, fault state space for fault mode
0 fault state
D fault state space of component i
Dy, fault state space of component ¢ and component fault-mode v
0; fault state of component ¢
free fault state parameter for fault mode ~
) complete system model
~(0) = M, (6,) system model for fault mode 7

Sensor-Bias Example

The system is described by the following equations:

z=f(z,u) (2.13a)
y1 =hi(z) + by (2.13b)
y2 =ha(x) + by (2.13¢)
by >0 (2.13d)
by >0 (2.13e)

The constants b and by represents sensor bias faults and it is assumed that only
positive biases can occur.

The system contains two components: sensor 1 and sensor 2. The component
fault-modes are summarized in the following table:

component component component component

number ¢ name fault-modes fault-state
1 Sensor 1 NF1, Bl by
2 Sensor 2 NF2, B2 by

The fault mode Bl is a positive bias in sensor 1 and B2 is positive bias in
sensor 2. The set of component fault-modes implies that there are four possible
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system fault-modes:

NF =[NF1, NF?2]

B1 =[B1, NF2]

B2 =[NF1, B2
B1&B2 =[B1, B2

The fault state of the system is described by the vector § = [by ba]. The
parameter spaces for b; and by are defined by

by €D' = Dy UDE,
by €D? = D%, UD%,

DJIVFl ={0}

D]2VF2 ={0}
Dy, ={z > 0}
D%, ={z > 0}

The parameter spaces for 0 are defined by

00 =D xD?=ONrUOp; UOps UOp1eB2
ONF ={0|b1 € Dy gy Aby € D3 pn} = {0]b1 = 0 A by = 0}
Op1 ={0|b1 € DLy Aby € DXy} = {0]b1 > 0N by =0}
Oz ={0|b1 € DNy A2 € D%y} = {0]b1 = 0A by > 0}
Op1eB2 ={0|b1 € DEy Aby € D3y} = {0]by > 0A by > 0}

The model M(6) = M([by bs]) is defined by (2.13).
The models associated with the four fault modes are

M(0)lpcony = MNF

M(0)]pcon, = MB1(b1)
M(0)ocon, = Mp2(b2)
M(0)locopiin = MB1es2([b1 b2])



Chapter 3

Structured Hypothesis
Tests

In this chapter, we will see how classical hypothesis testing can be utilized for
model based diagnosis and especially fault isolation. The literature is quite
sparse on this subject but some related contributions can be found in (Riggins
and Rizzoni, 1990; Grainger, Holst, Isaksson and Ninnes, 1995; Bagh, 1995;
Basseville, 1997).

The formalism from the previous chapter will be used to define a new general
approach called structured hypothesis tests. As its name indicates, the approach
uses a structure of several hypothesis tests. Structured hypothesis tests may be
seen as a generalization of the well known method structured residuals (Gertler,
1991), but have the additional advantage that it is theoretically grounded in
classical hypothesis testing and also propositional logic.

As a result of this, the model of the system can be fully utilized in a system-
atic way. This implies that it is possible to diagnose a large variety of different
types of faults within the same framework and same diagnosis system. For exam-
ple both faults modeled as changes in parameters and faults modeled as additive
signals are easily handled. Further, the approach is quite intuitive and very sim-
ilar to the reasoning involved when humans are doing diagnosis. Several other
principles for diagnosis can be seen as special cases, e.g. parameter estimation
(Isermann, 1993), observer schemes (Patton et al., 1989), structured residuals
(Gertler, 1991), and statistical methods (Basseville and Nikiforov, 1993).

The basics of structured hypothesis tests is given in Sections 3.1 and 3.2,
and exemplified in Section 3.3. Design and analysis of the hypothesis tests
is shortly mentioned, but the most of this discussion is left to Chapter 4. Sec-
tion 3.4 discusses incidence structures and decision structures, which are related
to the residual structure. This relation is then investigated in Section 3.5, which
discusses the relation between structured hypothesis tests and the method struc-
tured residuals.

47
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3.1 Fault Diagnosis Using Structured Hypothe-
sis Tests

Using the principle of structured hypothesis tests, each of the individual tests
0r are assumed to be hypothesis tests. Then the diagnosis system consists of a
set of hypothesis tests, §; to d,, and the decision logic. Except for this general
connection to hypothesis testing, structured hypothesis tests has also a closer
connection to the method intersection-union test, that can be found in statistical
literature, e.g. (Casella and Berger, 1990).

The classical, statistical or decision theoretic, definition of hypothesis test
is adopted, e.g. see (Berger, 1985; Lehmann, 1986; Casella and Berger, 1990).
This means that a hypothesis test is a procedure to, based on sample data, se-
lect between exactly two hypotheses characterized by § € ©g and 0 € ©F. This
is in contrast to “multiple hypothesis testing” that is often found in literature,
e.g. (Basseville and Nikiforov, 1993). Note that when using hypothesis testing,
we can have a probabilistic (statistical) or a deterministic view. Therefore, the
method structured hypothesis tests is valid either we have probabilistic knowl-
edge, in terms of probability density functions of e.g. the signal z (described in
Section 2.1.1) or measurement noise, or not.

As before, the test §x(x), now a hypothesis test, is a function of v and y and
Sk = 0x(z) = dk([u y]). The null hypothesis for the k:th hypothesis test, i.e.
HY?, is that the fault mode, present in the process, belongs to a specific set M},
of fault modes. The alternative hypothesis H} is that the present fault mode
does not belong to M. This means that if hypothesis H,g is rejected, and thus
H,i is accepted, the present fault mode can not belong to My, i.e. it must belong
to M ,? . In this way, each individual hypothesis test contributes with a piece
of informations about which fault modes that can be present. As before, the
decision logic then combines this information to form the diagnosis statement.

Let F, again denote the present system fault-mode. Then for the k:th hy-
pothesis test, the null hypothesis and the alternative hypothesis can be written

H,g : F, € My, 7some fault mode in M}, can explain the measured data”

H.:F,eM ©  7no fault mode in M}, can explain the measured data”

An alternative is to use the definition of the sets ©, to describe the hypotheses.
This is done via the sets ©) which are defined as

o= J o, (3.1)

YEM,

The hypotheses can now be expressed as

HY:0€0) "some value of § € O can explain the measured data”

H.:0¢ 6} 7"novalue of § € ©) can explain the measured data”
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The convention used here and also commonly used in hypothesis testing liter-
ature, is that when H ,8 is rejected, we assume that H} is true. Further, when
Hg is not rejected, we will for the present not assume anything. This latter
fact will be slightly modified in Section 3.2, where we discuss how we also can
assume something when Hp is not rejected.

How the hypothesis tests are used to diagnose and isolate faults is illustrated
by the following example.

Example 3.1

Assume that the diagnosis system contains the following set of three hypothesis
tests:

HY:F,e M, ={NF,F\} H{:F,cM{ ={F,, F;}
HY:F,€ My={NF,F,} H;:F,cM§ ={F,F;}
HY:F,c My={NF,F3} Hj:F,c M ={F,F}

Then if only HY is rejected, we can draw the conclusion that F, € M =
{Fy, F3}, i.e. the present system fault-mode is either Fy or F3. If both HY
and HY are rejected, we can draw the conclusion that F, € M{ N MY =
{F3, Fs} N {F1, F3} = {F3}, i.e. the present system fault-mode is F3. m

We see that in this context, it is natural to let the diagnosis statement be
represented by sets as was introduced in Section 2.3.1.

For the two possible decisions of a hypothesis test ., we use the notation
SY and Si. This means that

g — St=MS if H? is rejected (H} accepted) (3.2)
F S =0 if HY is not rejected ’
where €2 denotes the set of all fault modes. We will in Section 3.2 below, relax
the definition of S,g such that it may be a subset of €2, i.e. S,g C ). Depending on
how S) and S} are defined, a diagnosis system based on structured hypothesis
tests can be either speculative or conclusive.

All together, the diagnosis-system architecture presented in Section 2.3, and
the use of hypothesis tests, is closely related to human reasoning about diagnosis.
A human being naturally speculates around a set of different hypotheses and
then his/her diagnosis statement is composed of individual conclusions of how
well his/her observations match the different hypotheses. An example of such
reasoning is: “if it is the fuse that is broken, then no lamps in this room would
be lighted”. Then he/she may observe that there are lighted lamps and thus
the hypothesis “the fuse that is broken” must be rejected.

Much of the engineering work involved in constructing a diagnosis system is
to use the model M(6) to construct the individual hypothesis tests. The design
of the hypothesis tests will be discussed in more detail in the next section and
also in Chapter 4.
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3.2 Hypothesis Tests

For each hypothesis test 0, we need to find a test quantity and a rejection
region. The sample data x for each hypothesis is plant inputs v and outputs y.
The sample data can further be all such data up to present time or a subset of
this data. The test quantity is a function Ty (z) from the sample data x, to a
scalar value which is to be thresholded by a threshold Jx. Thus d; will have a
structure according to Figure 3.1.

r—-———>">"""""""">">">">”"”"”“"“"~>"”/"”/"”/"”/7= |
| O (@) |
| |
“ 1 7| Test Quantity T »| Thresholding__; 5
y_|_> Calculation Ji ISk
| |
| |

Figure 3.1: Hypothesis test dx(x).

The test quantity Tk (x) is in many texts instead called a test statistic. How-
ever, the name test statistic indicates that Ty (z) is a random variable which in
general may not be a desired view. The test quantity Ty (z) may for example
be a residual generator' or a sum of squared prediction errors of a parameter
estimator. In many applications, a deterministic view is taken and Ty (z) is seen
just as a function of the data and not as a random variable.

Formally the hypothesis test dj is defined as

{S; if Ty () > Ji

S = 6u(x) =
E= 0 =0 00 ) < gy

(3.3)
The rejection region of each test is thereby implicitly defined.

The definition (3.3) means that we need to design a test quantity Ty (z) such
that it is low or at least below the threshold if the data x matches the hypothesis
Hg, i.e. a fault mode in M} can explain the data. Also if the data come from
a fault mode not in My, Ty(x) should be large or at least above the threshold.
Using traditional terminology, the fault modes in M} are said to be decoupled.

How well the hypothesis test meets these requirements is quantified by the
power function B () defined as

Br(0) = P(reject HY | 0) = P(Ty(x) > Ji | 0)
We want the power function to be low for § € 9 and large for § ¢ ©%. To be
able to make the assumption that H} is true when Hg is rejected, we need to
design the hypothesis tests such that the significance level «, defined as

a = sup Br(6)
0oy

Here residual generator refers to specific filters used in the fault diagnosis literature, e.g.
(Gertler, 1991), to indicate faults.
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has a small value. This implies that the threshold J; must be set relatively
high. This in turn means that the value of §x(0) does not necessarily become
large for all values 6 ¢ @2. For instance, if the present fault mode is F; and
F;, € M,?, then for some § € Op,, the probability to reject HY may be very
small. This is the reason why we up to now, have assumed that S? = Q, i.e. we
can not assume anything when HY is not rejected.

Now if it actually holds that the power function is large for all § € OF,, then
we do not take any large risk if we assume that F; has not occured when HY is
not rejected. If this is the case, F; should be excluded from S?. The relation
between the power function and the decisions SY and S} is further investigated
in Section 4.7.2.

How the test quantities Tj(x) are constructed depends on the actual case,
and only for some specific classes of systems and fault models, general design
procedures have been proposed, e.g. linear systems with fault modeled as inputs
(Nyberg and Frisk, 1999).

To develop the actual hypothesis tests, we first need to decide the set of
hypotheses to test. One solution is to use one hypothesis test for each fault
mode. In this case, the set of hypothesis tests can be indexed by v € Q, i.e. 5,
and becomes

HY: F, € M, (3.4a)
H):F,e M’ (3.4Db)
vEN (3.4¢)

3.2.1 How the Submode Relation Affects the Choice of
Null Hypotheses

The choice of null hypotheses is not a completely free choice but restricted by
the submode relation defined in Section 2.4. The restriction can be expressed
as:

If A <* B, then the null hypotheses F,, € {A, B} and F,, € {A} are
good choices but F,, € {B} is not.

The motivation is that if the null hypothesis is F},, € {B}, then the test quantity
is low for F,, = B but since A <* B, the test quantity will be equally low for
also F,, = A. Consider for example the fault modes “sensor bias” SB and NF.
With the discussion of Example 2.13 in mind, we can expect that NF <* SB
and therefore we should never use F,, € {SB} as a null hypothesis but instead
F, e {NF,SB}.

3.3 Examples

This section contains two examples that illustrates how hypothesis tests and
especially test quantities can be constructed.
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3.3.1 Faults Modeled as Deviations of Plant Parameters

Consider a process which can be modeled as

y(t) = 91u1(t) + 92U2(t) + 93’&3@)

The fault state vector is 6 = [f; 02 03]. Four fault modes are considered:

NF 0=[111]

F 0y #£1, 0y =05=1
j28 s £1, 01 =05=1
F O3 £1, 01 =0, =1

To diagnose this system, we use four hypothesis tests whose null hypotheses
are defined by the sets My:

My = {NF}

M, = {NF, F}
M, = {NF, F,}
M; = {NF, F3}

The null and alternative hypotheses become
HY: F, € My
H}:F, e Mf
for £k =0,1,2,3. Then we have that S,i = MkC and Sg is chosen as Sg =0
As test quantities, we use the functions

N N

To(x) = (v— Q)Q = (y —ur —ug — u3)2 (3.5a)
t=0 t=0
al 2 N 2
Ti(x) = Héiln 2 (y - gj) = n;ilnz (y —O1uy —ug — ug) (3.5b)
Toh(z) = mm (y y = mmz —uy — Oaun — U3)2 (3.5¢)
N N ,
Ts5(x) = n;in ( Z — UL — Uy — 93U3) (3.5d)
® =0 t=0

Note that these functions are in principle parameter estimators and that Ty (x)
is the sum of squared prediction errors. It is obvious that the functions (3.5)
are small when the present fault mode belongs to the corresponding set Mj.
For example if Fy is the present fault mode, then Tj(x) will produce a good
estimate of 6; which implies that the simulation error and T (z) will become
small. Also, for at least “large” faults and large inputs, the functions (3.5) are
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large when the present fault mode does not belong to the corresponding set Mj,.
For example if F is the present fault mode, and the fault is “large”, then Ty(x),
Ts(x), and T3(z) will all become large. All this means that the functions (3.5)
satisfy our requirements on test quantities.

3.3.2 Faults Modeled as Arbitrary Fault Signals
Consider a process which can be modeled as
z(t+1) = Az(t) + B(u(t) + fu(t))
y1(t) = Crz(t) + f1(t)
y2(t) = Crz(t) + fa(t)
where the signals f,, f1, and f5 represent an actuator fault and faults in sensor

1 and 2 respectively. The fault state vector is 6 = [f.(t) f1(t) f2(t)]. Four fault
modes are considered:

NF 6=1000]

F, 0 =[fu(t) 00], fu(t)#0
By 0=10 f1(t) O], fi(t)#0
Fy 0 =100 f2(t)], f2(t) £0

To diagnose this system, we use the two hypothesis tests
H):F,c€ M, ={NF,F\} Hi:F,cM{={F,, F}
HY:F,e€ My={NF,F,} Hj:F,cM{={F, F}

To calculate the test quantities, we first use the following two observers

T(t +1) = Az(t) + Bu(t) — K(y1(t) — 91(1)) (3.6a)
g1(t) = Crz(t) (3.6b)
B(t+1) = Az(t) + Bu(t) — K (y2(t) — 2 (t)) (3.7a)
Go(t) = Ca(t) (3.7b)

Then the test quantities can be defined as

Ti(x) = ly2(t) — G2()]
Ta(x) = |y (t) = G1.(1)]

These test quantities Tg(x) are zero or small if the present fault mode belongs to
the corresponding sets M. For example, if Fj is the present fault mode, then
the observer (3.7) will produce a good estimate g2 () since the calculation of
§2(x) is not affected by a fault in sensor 1. This means that T (z) will become
small. Also when F} is present, it can be shown that T5(z) will become large or
at least non-zero. This means that Ty (x) and Th(z) serves well as test quantities.
This configuration of observers, in which each observer is fed by only one of the
output signals, is called a dedicated observer scheme (Clark, 1979).
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3.4 Incidence Structure and Decision Structure

This section describes the concept of incidence structure and decision struc-
ture which can be seen as generalizations of the well known residual structure
(Gertler, 1998). We here introduce a distinction between the incidence structure,
describing how the faults affects the test quantities, and the decision structure,
describing how the fault decision depend on the thresholded test quantities. We
will also see that the decision structure relates to structured hypothesis tests in
the same way as the residual structure relates to the isolation method method
structured residuals (Gertler and Singer, 1990).

3.4.1 Incidence Structure

To get an overview of how faults in different fault modes ideally affect the test
quantities, it is useful to set up an incidence structure. With ideally, we mean
that the system behaves exactly in accordance with the model and all stochastic
parts have been neglected, e.g. no unmodeled disturbances exists and there is
no measurement noise. An incidence structure is a table or matrix containing
0:s, 1:s, and X:s. The X:s will be called don’t care. An example of an incidence
structure is

|NF P F F
Ti@) |0 0 1 0
o) |0 0 1 1 (3:8)
Tsz) |0 X 0 1

A 0 in the k:th row and the j:th column means that if the system fault-mode
present in the system, is equal to the system fault-mode of the j:th column, then
the test quantity Ty (z) will not be affected, i.e. it will be exactly zero. A 1
in the k:th row and the j:th column means that for all?> faults belonging to
the fault mode of the j:th column, Ty (x) will always be affected, i.e. it will be
non-zero. An X in the k:th row and the j:th column means that for some faults
belonging to the fault mode of the j:th column, Tj(x) will under some operating
conditions be affected, i.e. it will be non-zero.

As said above, although a distinction has not been made between incidence
structures and decision structures in previous literature, the basic idea of using
incidence structures (or residual structures) is not new. However, compared to
previous works involving incidence structures, a major difference is that we have
here added the use of don’t care.

The incidence structure is derived by studying the equations describing the
process model and how the test quantities Ty (z) are calculated. This is illus-
trated in the following example:

2As noted in (Wiinnenberg, 1990), we may have to relax the requirement to almost all
faults; e.g. when faults are modeled as arbitrary signals, we can not require that faults that
are solutions to the differential equation Tk (z) = 0, affects test quantity.
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_ thomg™ )
/ \cmf

air mass-flow P

manifold pressure

engine speed
Figure 3.2: A principle illustration of an Sl-engine.

Example 3.2

Consider Figure 3.2, containing a principle illustration of a spark-ignited com-
bustion engine. The air enters at the left side, passes the throttle and the
manifold, and finally enters the cylinders. The engine in the figure have sen-
sors measuring the physical variables air mass-flow, throttle angle, and manifold
pressure.

The air flow 7 past the throttle can be modeled as a non-linear function of
the throttle angle o and the manifold pressure p:

m = (1 — cosa)®(p) (3.9)

where the d®(p)/dp = 0 for supersonic air-speeds which occurs for all p < 53kPa
(Heywood, 1992). The throttle angle « is always between 0 and /2.

Three system fault modes are considered: no fault NF, air mass-flow sensor
fault M, and manifold pressure sensor fault P. For both M and P, the faults
are modeled as an arbitrary signal added to the sensor signals:

The =11 + fin (3.10a)
ps =p+ fp (3.10D)

where the index s indicates sensor signals. As test quantity, we can use
T(x) = T([rhs, s, ps]) = ms — (1 — cos as)P(ps) (3.11)

To see how the faults affects the test quantity, we can substitute (3.9) and (3.10)
into (3.11):
T(x)=m+ fi, — (1 —cosa)®(p+ fp) =
= fin + (1 —cosa)®(p) — (1 — cosa)®(p + py)

We see that a fault in M will always affect T'(x). Also, a fault in P will affect
T'(z) if and only if p > 53kPa or p + py > 53kPa.
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This means that the incidence structure for the test quantity 7'(z) becomes

| NF M P
Tx) |0 1 X

(3.12)
]

Let sp; denote the entry in the £:th row and the j:th column of an incidence
structure. Then the interpretation or semantics of 0:s, 1:s, and X:s can be
formalized as

By =F; — Ti(z) =
By =F; — Ti(z) #

0 if s =0 (3.13a)
0 if sp; =1 (3.13b)
where F),, as before, denotes the present system fault-mode. Note that the
implication, denoted by the arrow, is not symmetric. Note also that the inter-
pretation of X is implicitly contained in these two formulas.

In the next section, we will also define interpretations of 1:s, 0:s, and X:s
for the decision structure. To the author’s knowledge, no such strict interpre-
tation has been defined in previous literature. The motivation for these strict
definitions, is that we can discuss relations to for example propositional logic
and hypothesis testing. In addition, these interpretations of 1:s, 0:s, and X:s
alone, also defines the function of the whole diagnosis system.

By using the formulas (3.13), it is possible to formally describe the inter-
pretation of a whole incidence structure. We will exemplify this below, by
giving the interpretation of the incidence structure (3.8), but note first that
F, ¢ {Fo} = F, € Q — {F>}. The symbol <= will be used to denote tau-
tological equivalence. Now, the interpretation of the incidence structure (3.8)
becomes

T, =0 — F, € {NF, F,, F3}
Ty #0— F, = F2

Ty =0« F, e {NF,F1}
Ty #0 — F, € {Fy, F3}

Ty =0 — F, € {NF, Fy}
Ty #0 — F, = Fj

Ty #0— F, = F2

T, =0— F, € {NF,F,, F3}
Ty #0 — F, € {Fy, F3}
Ty=0— F, e {NF,F1}
Ty #0 — F, € {F1, Fs}

Ty =0— F, € {NF,Fy, F,}

rrereet

By using if-and-only-if relations, these formulas can be written on a slightly
shorter form:

Ty =0« F, € {NF,Fy, F3}
T, =0 F, e {NF,F}
Ty =0 — F, € {NF, Fy}
Ty # 0« F, = Fj

Ty #0 < F, = F2

Ty #0 < F, € {Fy, F3}

Ty #0 — F, € {F, F3}

Ty =0— F, € {NF,Fy, F,}

1111

As seen, the if-and-only-if relation can only be used with rows, in the incidence
structure, which have no X:s.
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3.4.2 Decision Structure

The incidence structure corresponds to the case where ideal conditions holds.
If this were the case, we could derive the diagnosis statement S by using the
incidence structure, the formulas (3.13), and the values of the test quantities
Ti(x). In practice, the model is not perfect, unmodeled disturbances affects the
process, and there is measurement noise. All this means that the formulas (3.13)
are not valid and can therefore not be used to form the diagnosis statement.

In practice, we have to relax the assumptions of ideal conditions and the
formulas (3.13) can be replaced by a formulation based on the use of thresholds,
i.e hypothesis testing. Doing this, we obtain a decision structure. Still letting
sj; denote the entry in the k:th row and the j:th column, the new interpretation
or semantics of 0:s, 1:s, and X:s becomes

FE,=F — Ti(z) < Jg if 54, =0 (3.14a)
Fp = Fj — Tk(a:) Z Jk if Skj = 1 (314b)

or by using the terminology of hypothesis testing:

F, = F; — not rej. Hy if s =0 (3.15a)
F,=F; — reject Hy if sp; =1 (3.15b)

The implications are not completely true, but we assume that they holds. This
corresponds to the basic assumptions, discussed in Section 3.2, that when H}
is rejected, we assume that H]} holds. However, there is a conflict between
the two rules (3.15a) and (3.15b). To make the assumption that (3.15a) holds
reasonable, the significance level o, of all tests must be low. This means that the
thresholds must be chosen relatively high. Further, this violates the assumption
that (3.15b) holds. To achieve reasonable assumptions, some or probably most
1:s from the incidence structure must be replaced by X:s. It might seem that
another choice is to replace 0:s by X:s, but the problem with this is that for
all small faults, the assumption of (3.15b) still not becomes reasonable. We
will see later that representing a diagnosis system with a decision structure, is
equivalent to a representation using the sets My, Sp, and Sj.

An example of a decision structure is obtained by considering the incidence
structure (3.8) which can be transformed to, for instance the following decision
structure:

|NF K, F, F
G(z) [0 0 X 1 (3.16)

Because the decision structure is related to the whole hypothesis tests and not
only the test quantities, we use J; to label the rows instead of T}.

The process of replacing 1:s with X:s is further illustrated by the following
example:
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Example 3.3
Consider again Example 3.2. When the fault mode M is present, we have that

T(x) = fim +v

where v is a signal that represents model errors, disturbances, and measurement
noise. Even for fault mode NF, which implies f,;, = 0, the test quantity T'(x)
will not be zero. This means that the threshold J must be raised above zero.
Then for small fy;,, T'(x) will not reach the threshold.

If the incidence structure (3.12) would be used as decision structure, we
would have the rule

M-—-T)>J

However, according to what was said above, the implication will not hold for
a small f,;,. This means that to obtain the decision structure, the 1 in (3.12)
must be replaced by an X, i.e.

|NF M P
5|0 X X

A decision structure together with the formulas (3.14) can be used to derive
the diagnosis statement. Consider for example the decision structure (3.16),
which have the interpretation

Ty < Jy «— F, € {NF, Fy, F3}
Ty < Jy — F, € {NF,Fi}

Ty > Jy — F, = F3

T3 < J3s — F, € {NF, F,

T, >J; — F,=F2

Ty > Jy — F, € {Fy, Fs}
Ty < Jy — F, € {NF,F\,F5}
T3 > J3 — F, € {Fy, F3}

1t

Now if Th < Ji, To > Ji, and T3 > Ji, we know by using the rules, that F}, €
{F», F3} and F,, € {Fy, F5}. This means that F5 must be the present fault mode.
It is clear that there must be a strong relationship between this procedure, i.e.
forming the diagnosis statement S by using the decision structure, and how the
diagnosis statement S is formed by using the individual diagnosis statements
Sk.

The relationship between the decision structure and the sets S,g and S} is as
follows. A 0 in the k:th row for §; and the j:th column means that the set SP
contains the fault mode of the j:th column and S} does not contain this fault
mode. A 1 in the k:th row and the j:th column means that the set S contains
the fault mode of the j:th column and Sg do not contain this fault mode. An
X in the k:th row and the j:th column means that both Sg and S} contain the
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fault mode of the j:th column. For example, the sets Sg and S} for the decision
structure (3.16), are

SY ={NF,F\, F, F3} St ={F,}
S) ={NF, F\, F>} Sy ={Fy, F3}
S§ ={NF,Fy, F;, F3} Sy ={Fy, F3}

In this way, the decision structure can be seen as an overview of a diagnosis
system based on structured hypothesis tests. In accordance with the formu-
las (3.15), we can read out that when the result of a test is SY, then the fault
modes with 0:s and X:s in the decision structure, are the possible present fault
modes. When the result is S}, then the fault modes with 1:s and X:s are the
possible present fault modes.

Still in accordance with the formulas (3.15), we can from a decision structure
also read out which tests that will respond, i.e. which null hypothesis that
will be rejected, when a particular fault mode is present. For the decision
structure (3.16), we know that if NF is the present fault mode, then no tests
will respond, because the corresponding column has only zeros. Also, if F3 is
the present fault mode, then test §; will not respond, test do will respond, and
test d3 may respond.

3.5 Comparison with Structured Residuals

This section contains a comparison between the well known isolation method
structured residuals (Gertler, 1991) and structured hypothesis tests. Isolation
with structured residuals is based on a residual structure which in principle is
a combined incidence and decision structure.

A residual structure contains only 0:s and 1:s and an example is

| A o 3
71 0 1 0
T2 0 1 1
T3 1 0 1

(3.17)

A minor notational difference between the residual structure and the decision
structure is that usually r; is used to label the rows instead of §; and also
that the column related to the case no fault is usually not included in the
residual structure. Further, when using structured residuals, faults are usually
modeled as arbitrary fault signals. These fault signals f; are then used to “label”
the columns instead of fault modes. Usually one fault signal is used for each
component which means that, as long as only single fault-modes are considered,
there is a one-to-one correspondence between the fault modes F}; and the fault
signals f;.

The residual structure can be interpreted as an incidence structure in accor-
dance with the formulas (3.13). In addition, the residual structure is also used
to form the diagnosis statement. That is, it is interpreted as a decision structure
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in accordance with the formulas (3.14) and (3.15). Thus a 1 in the k:th row
and the j:th column means that we assume that for all faults belonging to the
fault mode of the j:th column, Ty (z) will be above the threshold J;. However
this assumption is mostly far from the truth. In reality, a 1 in the k:th row and
the j:th column means that for some faults belonging to the fault mode of the
j:th column, Ty (x) will under some operating conditions be above the threshold
Ji. Thus a more correct interpretation would be obtained by replacing most 1:s
with X:s.

Usually it is required that the residual structure must be isolating, which
means that all columns must be distinct. This together with the fact that there
are only 1:s in the residual structure, implies that the fault statement always
contain at the maximum one fault mode. That is, a diagnosis system using the
principle of structured residuals with an isolating residual structure, is always
conclusive (remember the definition from Section 2.3.3). This is illustrated in
the following example:

Example 3.4

Consider the following two structures

|NF P F, F |NF R F, F
m]0 0 1 0 H(x) |0 0 X 0
0 0 1 1 S(z) [0 0 X 1
rs |0 1 0 1 s3) [0 X 0 X

Assume that the left structure is a residual structure and the right is a decision
structure for the same set of test quantities and thresholds. Then Table 3.1 con-
tains a comparison between the diagnosis statement generated from the residual
structure and the diagnosis statement generated from the decision structure.

The leftmost column lists all possible results of thresholding the test quantities.
For example, the second row 001 means that 77 < Jy, 1o < Jo, and T3 > Js.
Note the diagnosis statements S = {}, meaning that no fault modes can explain
the behavior of the system. ™

Struct. res. Struct. hyp. tests

1 2 3 8 S

0 0 0 {NF} (NF, Fy, F>)
00 1 {m} (P}

o1 0 { {Fy, F3}

0 1 1  {F} {Fs}

1o o { {F2}

Lo 1 { {}

1 1 0 {F2} {F2}
111§ {

Table 3.1: The diagnosis statement using structured residuals compared to
structured hypothesis tests.
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Diagnosis System
—

Y using Structured SS”“C*"“’: Filter ﬁﬁ“*m
_ | Hypothesis tests

Y

Figure 3.3: A diagnosis system using structured residuals as a filtered version
of structured hypothesis tests.

As seen in Example 3.4, the “unnatural” 1:s, in the residual structure, make
the diagnosis statement empty in many situations, where the diagnosis state-
ment from structured hypothesis tests is not empty, e.g. study the third row.
This difference is fundamental. The diagnosis system using structured hypoth-
esis tests is in general speculative, i.e. it gives possible fault modes that can
explain the system behavior. As we said above, a diagnosis system using struc-
tured residuals, is on the other hand conclusive.

Regardless of what diagnosis method that is used, it may be the case that
several different fault modes can explain the system behavior. This information
is contained in the behavior of the thresholded test quantities also when using
structured residuals. However the diagnosis system neglects this information
and in principle says that no faults can explain the system behavior. This in
turn, is usually interpreted as no faults are present and no alarm is therefore
generated. All this means that structured residuals can be viewed as a filtered
version of structured hypothesis tests. This view is illustrated in Figure 3.3.
The filter filters out useful information that could have been utilized in some
way. On the other hand, there may be situations where we want to limit the
information from the diagnosis system, which in that case would motivate such
a filter.

As was said above, the empty diagnosis statement is usually interpreted as
no faults are present. For example, in the fault free case, it might happen
that one test quantity is above the threshold by mistake. A diagnosis system
using structured residuals would in this case not generate an alarm but on
the contrary, structured hypothesis tests would generate an alarm. It might
therefore be argued that structured residuals is more robust to false alarms than
structured hypothesis tests. This conclusion is however not fair since structured
hypothesis tests is more powerful than structured residuals in the sense that
the diagnosis statement contains more information. In addition, the same level
of robustness can be achieved in also structured hypothesis tests by raising the
thresholds.

As mentioned above, the interpretation of the 1:s is in most cases unreal-
istic. This implies that it may often happen that some test quantities, that
according to the residual structure should reach the thresholds, are below the
threshold. The effect is serious since it can happen that wrong fault is isolated.
To compensate for this, it is often required that the residual structure should be
strongly isolating. This means that when a test quantity is not above the thresh-
old, even though it should, there should be no other column that matches the
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thresholded test quantities. For example, consider the residual structure (3.17),
and assume that fault f3 is present. Especially for small faults, it can very well
happen that Ty < Ji, T» < Jo, and T5 > J3. However, this last fact conflicts
with the rule (3.14b) and this has the consequence that the thresholded test
quantities matches the column for fault fi. Thus the residual structure (3.17)
is not strongly isolating. Note that in the framework of structured hypothesis
tests, we do not need to introduce requirements of a strongly isolating decision
structure as a way to compensate for an unrealistic interpretation of the 1:s.

We end this section by discussing the last major difference between struc-
tured residuals and structured hypothesis tests. As seen in Section 3.4.2 above,
there is a one-to-one correspondence between the representation based on the
decision structure and a representation based on hypothesis tests, i.e. the sets
SY and Si. When using structured hypothesis tests, the interpretation of the
1:s corresponds well to standard conventions within general hypothesis testing
literature. This makes it easy to relate to other traditional areas of fault diag-
nosis, e.g. statistical views, logic based methods. The structured residuals on
the other hand, have an interpretation of 1:s that is not compatible with these
standard conventions.

Concluding Remarks

We have concluded that in the method structured residuals, the 1:s in a residual
structure, are interpreted as the 1:s in the decision structure, using the method
structured hypothesis tests. This interpretation is however unrealistic since it
claims that even small faults results in that the test quantity becomes above the
threshold. The “unnatural” 1:s in structured residuals has three main conse-
quences, which were all discussed above: (1) useful information is unnecessarily
neglected, (2) the “ad-hoc” compensation of strongly isolating residual structure
must be used, and (3), the thresholded test quantities can not be interpreted as
standard hypothesis tests.

3.6 Conclusions

This chapter has refined the general diagnosis-system architecture from Chap-
ter 2 by saying that the tests 0 are hypothesis tests. We have formalized the
procedure of how the diagnosis statement is formed from the real-valued test
quantities (or residuals). This is achieved by using a standard interpretation
of the functionality of each hypothesis tests. The formation of the diagno-
sis statement is then obtained in accordance with the function of the general
diagnosis-system architecture from Chapter 2.

We have seen that the choice of null hypothesis in each hypothesis test is
not a completely free choice, but is restricted by the submode relation between
fault modes. Structured hypothesis tests can be used with arbitrary types of
faults and this has been indicated in some examples. This topic will be further
investigated in the next chapter where the design of the test quantities will be
discussed.



Section 3.6. Conclusions 63

In contrast to structured residuals, we have introduced a distinction between
the incidence structure, describing how faults ideally affect the test quantities,
and the decision structure, describing how the faults affect the formation of the
diagnosis statement. By doing so, we have been able to define meanings of the
0:s, 1:s, and X:s, present in the incidence/decision structure. We have motivated
that an introduction of X:s (don’t care) in the incidence/decision structure is
necessary since only using 0:s and 1:s often places unrealistic requirements on
the test quantities (or residuals).
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Chapter 4

Design and Evaluation of
Hypothesis Tests for Fault
Diagnosis

In the previous chapter, the diagnosis-system architecture structured hypothesis
tests was proposed. To get a complete diagnosis system, the engineer has also
to construct the individual hypothesis tests. In fact, this is a large portion of
the total engineering work involved when constructing a diagnosis system. The
question is how to use the model of the system, including the fault models, to
design the best possible individual hypothesis tests. The topic of this chapter
is to try to find some answers this question.

Design of hypothesis tests has been extensively discussed in general hypothe-
sis testing literature, e.g. see (Lehmann, 1986). In this chapter we try to collect
some general principles that are particularly useful for the purpose of model
based diagnosis. We will see that the general framework of hypothesis test-
ing brings structure to the field. Links between several different methods will
become clear, for example: the likelihood principle from statistics vs residual
generation, adaptive thresholds vs likelihood ratio, and parameter estimation
methods vs residual generation.

Since the goal is to find “good” or “best” test quantities, we have to know
what “good” or “best” means. Therefore we also discuss measures to evaluate
hypothesis tests. Although many specific cases will be exemplified, the general
principles, of how to design and evaluate the hypothesis tests, are valid for all
kinds of fault models.

We start in Sections 4.1 to 4.4 to discuss general principles for test-quantity
design. Three main principles are identified: the prediction, the estimate, and
the likelihood principle. Then the issue of robustness is approached via normal-
ization in Section 4.5. In Section 4.6, the measures for evaluating hypothesis
tests are discussed. These measures are then used in Section 4.7 to select the
parameters Ji, Sy, and S{ of a hypothesis test. The evaluation measures are
also used in Section 4.8 to compare the prediction and the estimate principle.

65
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4.1 Design of Test Quantities

From the previous chapter, we realize that the assumption (or conclusion) we
make when performing a hypothesis test d, can be written

5 e {M,gf if Thy(z) > Ji

9) if Ty (x) < Jy, (4.1)

where F), denotes the present fault mode. In (4.1), we have again assumed that
Sg = . As said before, the test quantity Tx(x) should be designed such that if
the data x come from a system, whose present fault mode belongs to M kc , then
Ty () should be large. On the other hand, if the data = matches the hypothesis
HY, ie. a fault mode in My can explain the data, then T} () should be small.
This can be restated by using the notation of the model (2.6):

The test quantity Tj(x) should be small if the data x matches any
of the models M (), v € My, and large otherwise.

Thus the test quantity can be seen as a measure of the validity of some models
M., (6).

Several principles for constructing such measures exists and we will here
discuss three of them: the prediction principle, the estimate principle, and the
likelihood principle. These principles should be sufficient to solve most diagnosis
problems. Note that although these principles are different, it can very well
happen that, in some specific cases, the derived expressions for Tj(z) equal
each other.

4.1.1 Sample Data and Window Length
One way to define the sample data x is as a matrix:

Ju(t=N) ut-N+1) ... u(?)

XO= |yt N yt-N+1) ... y@® (4.2)

This corresponds to the use of a finite time window and as seen, the data x
becomes a function of time ¢. This time window can be a sliding window,
which means that consecutive data sets are overlapping. Another choice is to
let consecutive data sets be non-overlapping.

The time window can also be infinite, at least conceptually. This corresponds
to that N = oo in (4.2). In reality this means that all available data are
used from the time-point when the diagnosis started (i.e. the window length
is actually growing). An example of when an infinite time window is desirable,
is when recursive techniques are used to calculate the test quantities. Another
example is general residual generation which can be seen as a special case of the
prediction principle. This will be further discussed in Section 4.2.2.

Theoretically, the optimal choice of window length is always infinite. This
since it makes no sense to throw away any data, no matter what kind of data we
have. However, if computational aspects are considered, it is often advantageous
to use a finite window length.
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4.2 The Prediction Principle

We will now discuss the prediction principle. In addition to giving general
methods that can be used for test-quantity design, one purpose of this section
is also to show how some well known approaches to fault diagnosis fit into the
general framework proposed in this thesis.

Using the prediction principle, the calculation of the test quantity is based
on a model validity measure Vj(#,x) which in turn is based on a comparison
between signals and /or predictions (or estimates) of signals. Typically an output
signal y is compared with an estimate g, but it is also possible to for example
compare two estimates of the same signal.

To get a more precise definition, recall first the definition of @2:

ey = J o,

YEMj,

Consider now the case where ©Y consists of several values §. Using the prediction
principle, the test quantity can be written as

Ti(z) = ergg}) Vi (0, x) (4.3)
k

The function Vi (0, z), where 0 is fixed, is a measure of the validity of the model
M(8), for a fixed 0, in respect to the measurement data x. The test quantity
Ty (x) then becomes a measure of the validity of any the models M., (0), v € My,
where 6 is assumed free.

If ©Y consists of only one value fp, the test quantity becomes

Tk(l‘) = Vk(oo, CL’) (44)

and thus no minimization is needed.

To calculate (4.3), we need in principle to perform a parameter estimation.
The prime interest here is fault isolation but it is obvious that this parameter
estimation means that fault identification implicitly becomes a part of fault
isolation. Note that the term decoupling in principle corresponds to estimation.
The faults (or fault modes) that are decoupled are the fault modes described
by the parameters we estimate.

Note that although the model validity measure Vi (0, z) in (4.3) is indexed
by k, meaning that it is specific for the hypothesis test Jy, it is often possible
(and also quite elegant) to use the same V(,z) for all hypothesis tests. In
that case, the only thing that differs test quantities in different tests, is the set
@2 over which the minimization is performed. This approach will be discussed
more in Chapter 5.

In adaptive model based diagnosis, we need to use adaptive test quantities.
This means that the set of parameters we need to estimate is expanded to
include also the unknown or uncertain parameters that we want to adapt to.
Another case where the set of estimated parameters needs to be expanded, is
when disturbances must be handled. From Section 2.1.1, we remember the
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parameter ¢ which describes the disturbances, and decoupling of disturbances
is therefore achieved by replacing (4.3) with

Te(z) = min  Vi(0, 6,
k() petin %(0, ¢, x)

where ® is the space of possible disturbances.

In general, one could think of several types of model validity measures, but
the characteristic property of the prediction principle is that we let Vi (6, x)
be based on comparisons between signals and/or predictions of signals. One
choice is to compare an output y(t) with its prediction y(t|0,x), derived from
an assumption of a specific # and the measured data x. That is, the model
validity measure becomes the prediction error y(t) — y(t|0, z). The principle to
use the prediction error to calculate the test quantity is very natural and a so
common choice, that we will denote it by its own name name: the prediction
error principle. From now on, the focus will be mostly on this principle.

To reduce the sensitivity to noise and unmodeled disturbances it is advan-
tageous to weight together several prediction errors. One possibility is to use
a mean of some measure of prediction errors. This means that the function
Vi(0, ) becomes

N
Vi0,2) = = 3 lly(e) (116, )] (15)

For notational convenience, we have here assumed unit time. The measure || - ||
can for example be the quadratic norm. Another possibility is to first apply the

sum operation and then the measure || - ||. Then the function V4 (6, x) becomes
N

Vi(0,2) = | Y () = 9(t16, ) || (4.6)
t=1

It is also possible to use a measure dependent on time and/or the data
itself. One reason would for example be that the model accuracy varies with
the operating point of the system. Another case is when recursive parameter
estimation is used. Recursive techniques implies that an infinite time-window
is used and old data is by means of a time-dependent measure usually weighted
less. These issues are thoroughly discussed in the general system identification
literature, e.g. (Ljung, 1987).

The following four examples illustrates the prediction error principle for
different types of fault modeling.

Example 4.1

Consider a system that can be modeled as

y(t) = gu(t) + b+ v(¢) v(t) € N(0,0) 6 = [b,g]
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Assume that we want to consider three fault modes:

NF g=1,b=0 “no fault”
F, g=1,b#0 “bias fault”
F, g#1,b=0 “gain fault”

Further we want to design a test quantity for the hypotheses
H°:F, € {NF, F}
H':F,=F,

For these hypotheses, ©° becomes ©° = {[b,g] | g = 1}. By using the formu-
las (4.3) and (4.5), we get

N
T(z) = min —Z ly(t) — 4(t]0, z)|| = m ! Z 7(t|b, a?)) (4.7

" peet N N &
The estimate §(¢|b) (we have skipped the argument ) can be obtained as
g(t[b) = u(t) +b

Inserting this expression into (4.7) means that the test quantity becomes

= }: ) — u(t) — b)? (4.8)

The minimization is simple since it can be shown that the minimizing value of
b is

1 X
:Ntzzly(t)*

The test quantity (4.8) will be small under H® and thus the bias fault is decou-
pled in T'(z). n

The following example illustrates how the prediction error principle can be
applied to a change detection problem.

Example 4.2

Consider a signal y(¢) which can be modeled as

y(t) = o(t) +alt)

where v(t) is independent and N(0,0). The function a(t) is a(t) = up = 0 in
the fault free case, but can contain an abrupt change to an unknown value p;
if a fault occurs.
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Assume that we want to consider three fault modes:

NF “no fault”
F, “an abrupt change in a(t) at the time ¢.5”
F, “an abrupt change in standard deviation o at the time t.;”

This means that the fault-state vector can be described as 8 = [ten, i, o].

Further we want to design a test quantity for the following hypotheses:

Ho:F, € {NF,F,}
H,:F, e {F,}

By using the general expression (4.3), the test quantity becomes

N
T(x) = min V(0,2) = min (y(t) — g)(t|tch,u))2
0ceo [ten,u] =1
where
. 0 ift<ten
ttops 1) =
Yy(t[ten, 1) {u st

The test quantity can further be rewritten as

ten N
T@) = min (Y (y(®)? +min > (y(t) - w)?)
= R —

The next example illustrates how test quantities can be designed in the case
where one fault is modeled as an arbitrary input and another fault is modeled
as a constant parameter. Also illustrated is how the submode relation from
Section 2.4 affects the design.

Example 4.3

Consider a system that can be modeled as

x(t+1) = ax(t) + u(t)
y(t) = =(t) + f(t)

Assume that we want to consider three fault modes:

NF a=05 no fault
F, a#0.5, f(t)=0 a fault in the dynamics
Fr  a=0.5, f(t) #0 an arbitrary sensor fault
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This definition of fault modes implies that the three fault modes are related
as NF <* F, < Fy. According to the discussion in Section 3.2.1, the only
possible choices of My, are then {NF}, {NF, F,}, and {NF,F,, Fs}. The last
one is useless for fault isolation and therefore we decide to design test quantities
for two hypothesis tests with the hypotheses

HY:F,e{NFF} H}:F,=F
HY:F,=NF H}:F, e {Fy,F,}

The test quantity for the first test becomes

N

Ti(e) = min < 3" ((t) — g(la) NZ )= ay(t— 1) — uft — 1))?

t=1

where @ is the least square estimate of a. For the second test, the set ©9 contains
only one element. Thus, the test quantity using the formula (4.4) becomes

2

Now assume that the present fault mode is F, and Hj is accepted but HY
is not rejected, i.e. 17 < Jy and T > Jo. This will imply that the diagnosis
statement becomes

S:{NF,Ff,Fa}ﬂ{Ff,Fa}:{Ff,Fa}

Z —0.5y(t — 1) — u(t — 1))?

@>

That is, both Fy and F, can explain the process behavior. However, it is
quite unlikely that the arbitrary fault signal f(¢) behaves in such a way that the
process output matches the model Mg, (0). Therefore, using a refined diagnosis
statement in accordance with Section 2.6.1, we may draw the conclusion that
the fault mode F, is the one present in the process. [

The following example shows how traditional in-range monitoring can be
fitted into this framework using the prediction principle.

Example 4.4

Assume that under a no-fault situation, a state x is limited in range, ¢; < x < ¢p,.
Assume further that z is measured using a sensor y as y(t) = x(¢). If no more
models are available, a prediction of y(¢) can in any case be written

g(tle) = ¢ g <c<ecp
By using the general expression (4.3), the test quantity becomes

T(z)= min V(cz)= min [y(t)=75(tlc)]

This shows that traditional in-range testing can be seen as a special case of the
prediction error principle. [ |
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The above example is also a clear illustration on how knowledge of range lim-
itations of # should be incorporated into the fault model to improve diagnosis
performance. More specifically, without the knowledge ¢; < ¢ < ¢y, the sensor
y can not be diagnosed.

4.2.1 The Minimization of Vj (0, z)

The procedure to compute (4.3), i.e. to minimize Vj(6,x), has not been ad-
dressed so far. The technical details are not going to be discussed here, but the
interested reader is referred to general literature on optimization, e.g. (Luenberger,
1989), and system identification, e.g. (Ljung, 1987). In many cases the mini-
mization procedure required in (4.3) is quite straightforward. However, in some
cases, the computational load of doing the actual minimization in (4.3) can be
quite heavy. One solution can be to use a two-step approach:

1. Find a # that minimizes another function V4 (6, x), i.e.

6 = in Vi (6,
arg min K (6, %)

2. Calculate the test quantity as

Te(x) = Vir(6, %) (4.9)

The point with this two-step approach is that Vj(6,x) can be chosen such
that it is much easier to minimize compared to Vj(x). Further, let Vi (0, x) be
chosen such that the minimizing value é, under H,g, is close to the value that
minimizes V (), x). Then in the case HY holds, it is reasonable to assume that

in Vi(0,x) ~ Vi (6
0121@% k(,X) k( aX)

This means that if we use the test quantity Tx(x) = Vi (ék,x), we can expect
approximately the same result compared to if (4.3) was used.

Example 4.5

Consider a system that can be modeled as

y1=u+fi (4.10)
Y2 =2u+ fi+ f2 (4.11)

Assume that we want to consider three fault modes:

NE  fi(t) =0, f2(t) =0
i fit) £0, f2(t) =0
F2 fl(t) = 0, fg(t) ;:_é 0
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Further we want to design a test quantity for a hypothesis test with the hy-
potheses

Ho: F, € {NF,F1}
Hy Fp S {FQ}

Let y = [y1 y2]” and also let the predictions of y; and ya be §1(f1) = u+ f1 and

Ja( fl) = 2u + fl. Then using the prediction error principle, the test quantity
can be constructed as

T(w) = minV (f1,2) = min (y = y(f1))" (v = 9(f1)) =

:n}iln (11 *ﬂl(f1))2+ (y2*3}2(f1))2 (4.12)

The minimizing value of f; is fl = f1+ f2/2. This implies that

T(f)z(yl—u—fl—%)QJr(y2—2u—f1—%)2=
2
:(U+f1_U_fl_%)2+(2U+f1+f2_2u_fl_%)2:%

Even though the minimization required in (4.12) is very simple, let us now
consider a test quantity using the two-step approach. The estimate f; is first
found as

fi= argﬁ}inv(flaﬂf) = argn}in (v1 *?91(]?1))2 = argn}in (u+ fr —u-— f1)2

It is obvious that this will result in that fl = f1. The test quantity then becomes

Tostep(®) = V(f1,2) = V(f1,2) = (y1 —u— fl)2 + (y2 — 2u — f1)2 =
=0+ f3=1f3

Under Hp, the minimizing value of V(f1,z) equals the minimizing value of
V(f1,x). Under Hp it also holds that T'(z) = To-step (). m

From the above example it is clear that for # ¢ ©°, it can happen that

T(x) = ergg}) V(0,2) < Tostep(z) =V (0, 2) (4.13)

and the difference can be significant. Note that this is acceptable as long as
T (z) = Tostep() or, as in the example, T'(z) = Ty.gtep(z) for € . Moreover,
this is actually an advantage of the two-step approach, since we want the test
quantity to become as large as possible for § ¢ ©°. Thus the two-step approach
has the potential to improve the test quantities.
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4.2.2 Residual Generation

The term residual generation, as it is most often used in fault diagnosis lit-
erature, is a special case of the prediction error principle. Also the following
restrictions are made:

e The faults are modeled as arbitrary inputs which are zero in the fault free
case.

e A new value of the test quantity is calculated at every sample time-point.
Also continuous time is often considered.

e A sliding time window is used and the length is finite or infinite.

When using residual generation, the test quantity is called residual (or resid-
ual generator). Linear residual generation is illustrated in the following two
examples and will be further studied in Chapters 7 and 8.

Example 4.6

Consider a system that can be modeled as

Yy = (u+ f1) (4.14)

gt +1

Yo = (u+ f1) + fo (4.15)

gt +2
Assume that we want to consider three fault modes:

NF  fi(t) =0, fo(t) =0 no fault
Fi fi(t) Z0, f2(t) =0 actuator fault
F,  fi(t) =0, fa(t) #0 fault in sensor 2

Further we want to design a test quantity for a hypothesis tests with the hy-
potheses

Hy : Fp S {NF,Fl}
H1 : Fp € {FQ}
A linear residual generator that can be used as a test quantity is

@'+ 2 -+ Dy

4.16
qfl +3 ( )

It will now be shown how the same test quantity can be obtained by using the
general expression (4.5) for the prediction error principle.

We use the two-step approach and this means that we first have to estimate
the parameter (now a signal) f1(¢). From the model (4.14), the fault signal fi(¢)
can be estimated as

fl = argn}iln (y1 (u+ fl))2 =(g '+ Dy —u (4.17)

g1
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With this estimate and by using the general expression (4.5), the test quantity,
using an infinite window length, can be formed as

Ty(x) = V(fi,2) ENW — ga(tlf1)

By means of the estimate (4.17), the prediction error can be expressed as

i) wt )= -
_ —y — ——(u e — T
Y2 — Y2{J1) =Y2 T lt2 1 Y2 q_1+2y1
Then choose the measure || - || as
o0
> ena ()
n=0
where
1 _q ' +2
chq - 71+3
This means that
-1 g !
. 2 g +2 +1
n t = () =
ZC q y2 —Ja( |f1)) — +3(Z/2() _1+2y1( ))

We have thus shown how the residual generator (4.16) can be obtained in the
framework of the prediction error principle. Note that the sign of T7(z) can be
negative and thus, it is the absolute value of T3 (x) that should be thresholded.
|

Example 4.7

Assume that we have a non-linear model

& =f(x,u) (4.18)
y1 =hi(x,u) + f1 (4.19)
Y2 =ha(z,u) (4.20)

Here f is a signal modeling a fault in sensor 1. Then assume that an observer
for & can be constructed as

b= f(@,u) + K (y2 — ha(d,u)) (4.21)
Then

r=y2— 2 =y2 — ha(&,u) (4.22)



76  Chapter 4. Design and Evaluation of Hypothesis Tests for Fault Diagnosis

is a residual generator which will be insensitive to faults in sensor 1. This means
that the corresponding null hypothesis is described by My, = {NF, Fy } where F;
is the fault mode for fi; # 0. Obviously, r is also a test quantity that is naturally
constructed with the prediction error principle in accordance with formula (4.5).

According to the expression (4.3), the parameter fi should be implicitly es-
timated when calculating the test quantity. This is not the case for the test
quantity (4.22). However, it is possible to derive the expression (4.22) by us-
ing (4.3) and the two-step approach. First let f; be estimated as

fi = argﬂ}in(yl — )% = argﬁ}in(yl — hi(w,u) + f1)? = y1 — ha(&,0)

Then in accordance with the formula (4.5), the test quantity becomes

CUE ool = = 0P| _ | = haEu) = f]
T(x)_V(flax)_b’ y|_ y2_g2 ‘_ yg—hg(j,u) ‘_
= yl_hli’ﬁ)h;(yg,;hl(x’m = yg—hog(j,u) = |y2 — ha(@,u)| = ||

4.3 The Likelihood Principle

When the probability density functions of the noise is known, or can be as-
sumed to be known, it is possible to use the likelihood principle. The likelihood
principle is based on the likelihood function which is defined as

Definition 4.1 (Likelihood Function) Let f(x|0) denote the probability den-
sity function of the sample X = [X1, Xa, ... X,]. Then, given that X = x is
observed, the function of 0 defined by

L(O|x) = f(x|0) (4.23)
s called the likelihood function.

Given a model, it is possible to set up a likelihood function which become
a measure for how well the measured data matches the model. Recall from
Section 4.1 that this is exactly what we want when constructing test quantities.
This is also the reason why likelihood functions are a common choice for test
quantities in general statistical hypothesis testing. Thus, using the likelihood
principle, the measure V4 (6, x) in (4.3) corresponds to L(f|x). In contrast to
the prediction error principle, the likelihood function becomes large when mea-
surement data matches the model and small when the data does not match the
model. When using the likelihood principle, the null hypothesis H,g is rejected
if Ty,(z) < Ji. Note that > has been changed to <, compared to previous cases.

If the set © consists of only one element, then the likelihood function (4.23)
can be used directly as a test quantity. When 62 consists of several elements, we
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have to use optimization in accordance with (4.3). However, since the likelihood
function becomes large when measurement data matches the model, the mini-
mization must be replaced by maximization. The test quantity then becomes

Tr(x) = gxézé)g L(0]x) (4.24)

This principle is usually called the mazimum likelihood principle. The two-step
approach described in the context of the prediction principle is of course possible
to use also for the maximum likelihood.

Often it is assumed that the data are independent and identically distributed
such that

N
£xl9) = [ £tailo)

Here x; means x(t;). This means that the likelihood function becomes

L(0|x) = Hf 2;10)

and thus, much simpler to calculate.
A further simplification is obtained by using the log-likelihood function de-
fined as
1(0|x) =1n L(O|x)

If the assumption about independent data is used, we get

N
1(6)x) = In L(4]x) = 1ang:Z|9 > I f(xil0)
=1

Note that since the logarithm function In(z) is monotone, a hypothesis test
based on the log-likelihood function [(f|x) is equivalent to a test based on the
basic likelihood function L(6|x).

Example 4.8

Consider again Example 4.1 but instead of (4.7), we use the likelihood principle
to obtain the test quantity. Let x; denote y(i) — u(¢) which means that x; ~
N (b,o0). The test quantity then becomes

(mi _Qb) }

N
1
T'(x) = max L(f|z) = max exp{—
() = s 0w) = i [T oot

060

The log-likelihood version of this test quantity becomes

T (z) = grel%xl 0)z) = malen exp{f

1
:ml?fo In V21 — TZ
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Note that the last expression contains a constant term. This term can be ne-
glected and the remaining expression is then equivalent to.

N
. L 9 2
g, 20
=1
Now note that it happens to be the case that this expression is equal to the
expression obtained in Example 4.1. This means in this particular problem, the
prediction error principle and the likelihood principle are equivalent. n

The drawback with the likelihood principle, compared to the prediction error
principle, is that to make the calculations tractable, we must usually assume
that the data are independent and normally distributed. On the other hand
the likelihood principle is very universal. It can for example easily handle faults
that are modeled as an increase in the variance of a signal.

4.4 The Estimate Principle

Both the prediction error end the likelihood principle are based on the idea that
the test quantity should be a model validity measure. A somewhat different
approach to construct the test quantity is the estimate principle. We have seen
that in both the prediction error and the likelihood principle, it is common
that a parameter estimation is involved. The idea of the estimate principle is
to construct a test quantity that more directly uses the estimated parameter.
Note however that the principle goal of that the test quantity should be a model
validity measure, is still the same.

One solution is to estimate a component fault state 6; and then compare it
with the nominal value 69. This means that the set DY, . must contain only one
element, i.e. DY = {0%}. First consider the case where the set ©f consists of
only one element. Then a test quantity can be constructed as

Te(z) = [|0; — 09| 0; = arg min V'(0;,z) (4.25)
0,€D*
where V'(0;, z) is some model validity measure. This is a common solution used
in literature, e.g. (Isermann, 1993). The measure || - || can for example be the
quadratic norm.
When the set ©9 consists of more than one element, the test quantity can
be constructed as

Tie(z) = ||6; — 60 0; = in_ V'(6, 4.26
k() = || il agigeeglglgéi (0, ) (4.26)

where ©; = {0 | 6; € D',0;2; € D4 }. That is, in addition to estimate the
parameter 6; we also have to estimate the free parameters in @2, i.e. the ones
corresponding to faults that are decoupled. For an illustration of this technique,
see the test quantity (4.49) in Section 4.8.1.
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Note that compared to when using the prediction and likelihood principle,
one extra parameter must be estimated. That is, in addition to all parameters
that we want to decouple, we also need to estimate the parameter that is used
in the test quantity. This implies that decoupling might be more difficult for
the estimate principle.

We will see later in Section 4.5 that test quantities based on estimates may
imply that the test quantity under Hy is dependent on u. In that case, it must
be normalized which is also described in Section 4.5.

The estimate principle has both advantages and disadvantages compared
to the prediction error end the likelihood principle. Test quantities based on
estimates can have very good performance for the fault mode corresponding to
the estimated parameter. However for other fault modes, the performance might
be quite bad and also highly dependent on the input signal. This is investigated
more in Section 4.8.

4.5 Robustness via Normalization

When constructing test quantities, a goal is that they should be insensitive to
uncontrolled effects such as changes in inputs w and state x, disturbances d,
model errors, etc. Sometimes, the constructed test quantities meet these goals
but often they do not. The reasons why the test quantities become sensitive to
uncontrolled effects are

e Approximate decoupling. Because of fundamental limitations it is some-
times impossible to completely decouple disturbances and effects of faults
(i.e. the faults belonging to fault modes in the null hypothesis).

e Model Errors. Most unmodeled disturbances, incorrect model structure,
and unmodeled noise etc. implies that the performance of the test quanti-
ties is degraded. The most serious problem is usually that the significance
level is raised.

e Modeled noise. Even though noise terms are included in the model, it
is mostly impossible to avoid that the noise is going to affect the test
quantities.

The discussion above is closely related to the issue of robustness. More
exactly, robustness can be defined as the ability of the test quantities to satisfy
some specific performance goals while the uncontrolled effects are present to
a certain degree. In connection with linear residual generation, methods to
achieve and analyze robustness have been extensively studied, e.g. see (Chen
and Patton, 1999)(Frisk and Nielsen, 1999). In many of these methods, the
robustness issue is hardly integrated as a part of the design process for the test
quantities. A somewhat different approach is to first design the test quantity
without robustness considerations and then afterwards consider robustness as
an additional design step by adjusting and compensating the originally designed
test quantity. It is interesting to note that there are experimental results showing
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the advantage of the latter robustness approach, e.g. (Hofling and Isermann,
1996), while the literature is very sparse on experimental experience with the
former robust method.

As a way to achieve and improve robustness by adjusting and compensating
already designed test quantities, we will here consider normalization. Normal-
ization is to compensate the test quantity for unmodeled effects by multiplying
it with a cleverly chosen variable that is a function of the measured data x. Here
we investigate normalization for the estimate principle, prediction principle and
the likelihood principle.

4.5.1 The Estimate Principle
The discussion here will be limited to an example.

Example 4.9

Consider a system which can be modeled as
y(t) = bu(t) + v(t)

where v(t) ~ N(0,0,). The nominal (i.e. corresponding to the no fault case)
value of b is bg. We will use the notation U, Y, and V to denote column vectors
of u, y, and v respectively.

Assume a test quantity based on the estimate principle:

1
uru

To(x) = (b—bo)?> b= Uty (4.27)
where b is the least square estimate of b. Consider the fault free case, i.e. b = by,
which means that

- 1 1

b—bo= U (U+V) =1 =bo =1+ 57UV = (4.28)
1 o
=—UTV ~ N(0,—== 4.29

where Np = UTU, and p is the mean power of u. We see that b—1 has a
standard deviation that is dependent on u. If the mean power of u varies, this
is undesirable since the significance level of a hypothesis test will then depend
on u. The solution is to use normalization and we multiply therefore (4.28) with
v/Np. Then we have that

V/Np(6 —1) ~ N(0,0,) (4.30)
The corresponding normalization for the test quantity (4.27) becomes
1
UTu
Thus, using (4.31) means that a fixed threshold will imply a fixed significance
level independent on u. ]

Ti(x) = Np(d —1)> b= Uty (4.31)
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In terms of robustness, a hypothesis test based on the normalized test quan-
tity (4.31) and with a fixed threshold, will satisfy the performance goal that
the significance level must not be above a certain level. This will hold for any
u. However, there is no guarantee that other performance goals, such as the
probability of T4(z) < J2 when a fault is present, are satisfied.

0 I I I I I
0 10 20 30 40 50 60 70 80 90 100

time [s]

Figure 4.1: An example of the use of an adaptive threshold, with the test
quantity (solid), the adaptive threshold (dashed), and as a comparison, the
fixed threshold (dotted).

4.5.2 The Prediction Principle and Adaptive Thresholds

The basic idea of adaptive thresholds is that since disturbances and other uncon-
trolled effects vary with time, also the thresholds should vary with time instead
of being fixed to a constant value. An example is shown in Figure 4.1. The
solid line represents the a test quantity, the dashed line is the adaptive thresh-
old, and the dotted line the fixed threshold. There is a fault occuring at time
t = 75 s, but because of disturbances, the test quantity is above zero also before
this time-point. To avoid false alarm, the fixed threshold has been set high.
This means that the fault is missed if the fixed threshold is used. The adaptive
threshold “adapts” to the disturbances and therefore follows the test quantity
as long as there are no faults. When the fault occurs, the residual crosses the
threshold and the fault is detected.

One technique for computing adaptive thresholds in connection with linear
residual generation, is presented in (Ding and Frank, 1991). Consider a system
which can be described as

y = (G(s) + AG(s))u+ Ga(s)d + G¢(s)f + v
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where AG(s) is a model error, u is the input, d is the disturbance, f is the fault,
and v is measurement noise. Consider then a residual described by

r=Hy,(s)y + Hu(s)u =
= Hy(s)(G(s)u + AG(s)u + Ga(s)d + Gs(s)f +v) + Hyu(s)u

If measurement noise v is neglected and it is assumed that the input v and the
disturbance d are perfectly decoupled, then in the fault free case, the residual
becomes

r = Hy(s)AG(s)u

It is seen that the size of the residual in the fault free case depends on the
absolute size of the model error AG(s) and the input u(¢). If § > ||AG(s)]|
denotes a known bound of AG(s), the adaptive threshold can be selected as

Jadp(t) = 0| Hy (s)u] (4.32)

This approach relies on that a bound on the model uncertainty can be deter-
mined with confidence. If this is the case, it is guaranteed that no false alarm,
caused by model uncertainties, will be generated.

Another approach is proposed in (Hofling and Isermann, 1996). This ap-
proach is more ad-hoc because the computation of the adaptive threshold is
determined by tuning some design parameters. On the other hand, it is proba-
bly more generally applicable because it can handle more kinds of disturbances,
i.e. not only model uncertainties. A generalized description of how the threshold
is computed is the non-linear expression

Jaap(t) = kHpp(s)(|Ha(s)u(t)| + ¢) (4.33)

where Hyp(s) and Hy(s) are linear filters, and k& and c¢ constants. The filter
H,(s) functions as a weighting, in the frequency domain, of model uncertainties.
For frequency ranges where the model uncertainty is high, the filter gain should
be high and vice versa. For example if the model is good for low frequencies
but uncertain for higher frequencies, the filter Hy(s) should be a high-pass
filter. The value of the constant ¢ is determined by the amount of other kinds
of disturbances, such as measurement noise, and makes the threshold become
greater than zero even though the input is zero. Finally Hpp(s) is a low-pass
filter for smothering of the threshold.

By using adaptive thresholds according to the principles described above, it
is possible to get a nearly fixed significant level, independent on changes in the
input signal. In this sense, the adaptive threshold is similar to the normaliza-
tion described for the estimate principle. Robustness is achieved in the sense
that a certain significant level can be guaranteed independently of the input.
Note however that if overall performance gains are desirable, these robustness
techniques are never a substitute for using better models.

Both kinds of adaptive thresholds, i.e. (4.32) and (4.33), can be written on
the more general form

Jadp = W (u,y) + 2 (4.34)
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where W (u, y) is some measure of the model uncertainty present for the moment.

To use an adaptive threshold is equivalent to mormalize the test quan-
tity. Consider the use of a test quantity 7'(z) in combination with the thresh-
old (4.34):

T(z)=T(x) > Jadp (reject Hy)
By using normalization, this relation can instead be written as

T(z)

T’ =
) = Wy e =

(reject Hy)

where T"(z) is the normalized test quantity. The new threshold becomes J = 1.
Two measures W (u,y) of the model uncertainty are implicitly given in the

expressions (4.32) and (4.33). Another alternative is to use a minimized sum of

prediction errors:

N
W (u,y) = min V(0,2) =min > (y(t) - §(t0))* (4.35)

Note that the minimization is over all possible §. The expression 4.35 might
seem to be difficult to calculate but if the same V' (6, z) is used for all hypothesis
tests, as was described in Section 4.2, then the calculation of 4.35 becomes easy.
This will be demonstrated in Section 5.8.

Now assume that co = 0. Then an adaptive threshold becomes

Jadp = gréig W(0,z) c1 (4.36)

With this adaptive threshold, the normalized version of a test quantity based
on the expression (4.3) becomes

min@e@g V(97 .17)

T (z) = > ¢ (reject Hp)

mingee V (0, x)

We will see that this expression has strong similarities with the likelihood ratio
described next.

4.5.3 The Likelihood Principle and the Likelihood Ratio

Now consider the likelihood principle and an adaptive threshold similar to the
one defined by (4.35) and (4.36):

Jadp = max LO|z) &1

Thus Hy is rejected if

T = Lo < Lo
() = max L(B]2) < max L(Bl) 1
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By using normalization, we get a new test quantity 7" (x) and Hy is now rejected
if

maxgeeo L(0|z)

T'(z) = < (4.37)

maxgeo L(0|)

The test quantity T"(x) is called the likelihood ratio test quantity (or statistic).
To emphasize that a maximization is involved, the term mazimum likelihood
ratio or gemeralized likelihood ratio is also used in the literature.

A number of different variations of the maximum likelihood ratio exists. One
variation is to switch the numerator and the denominator. Another is to make
the maximization in the denominator of (4.37) over ©! = 0° instead of ©. It
can be shown that in this case, it is equivalent to make the the maximization over
O (Lehmann, 1986). Further, the maximization is often replaced by supremum.
Two examples of variations are

SUDPgcg L(0|z)
supgecgo L(0|)
maxgeor L(0|z)

T($) = m (439)

T(x) = (4.38)

The likelihood ratio test quantity is widely used in statistics. The reason is
partly that it is the optimal test quantity in the case both the null hypothesis
and the alternative hypothesis are simple, i.e. ©° and ©! consists each of only
one element (Neyman-Pearson lemma). Optimality proofs also exists for many
other cases where HY is simple (P.H.Garthwaite, 1995). For many cases where
a theoretical justification is missing, the likelihood ratio has still been shown to
be very good in practice (Lehmann, 1986). However, there are also cases for
which the likelihood ratio is not good (Lehmann, 1986).

Commonly the mazimum log-likelihood ratio is used. This together with a
change detection application is illustrated in the following example:

Example 4.10

Consider a signal x(t) which can be modeled as
x(t) = v(t) + 0(t)

where v(t) is independent and N(0,c0). Before the change-time ¢.p, 6(t) = 0
and after the change time, 0(t) = p.

The following two hypotheses are considered:

Hy : “no change in mean p of x(t) occurs”

Hi: “an abrupt change in mean p occurs”

By using the assumption of independent data, the likelihood ratio test quantity
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on the form (4.38) becomes

T(x) = suppeo L(0]x)  supp,, ) Llten, pllz)

o Supyee, L(0|7) o L([N, 0]|x)
w0010 1120 SO LY, SO _ T, Fel)

1Y, f(2(i)|0) o TI, F((0)]0)

ch

Now by using the assumption of Gaussian data, and switching to the log-
likelihood ratio, we get the following test quantity:

N .
T'(@) = sup I Mozt /Ol _

el TLiey,, f(2(0)]0)

N N
= sup Z In f(x(i)|p) — Z In f(z(i)|0) =

[tensn] =t i=ten
N 1 N
=sup —5— Y (p—2z(i))p="supsup—-— » (u—2z(i))p=
[ten,u] 202 i=ton ten 20° i;ch
) N
p— 2 )
=53 stlfs%p —(N —ten + 1)p” + 20 Z z(7)

1=tlch

*

The equality marked with =* can be shown to hold in special cases, including
this one, but is not generally valid. ™

Note the relation between this example and Example 4.2, where a similar prob-
lem was solved by using the prediction error principle.

4.6 Evaluation of Hypothesis Tests Using Statis-
tics and Decision Theory

The basic concepts presented in this section are probably well known to statis-
ticians and decision theorists. However, because of their usefulness for fault
diagnosis problems, especially in the view of this thesis, they deserve some at-
tention. The performance measures used for evaluation here are risk functions
and power functions. There exists also other performance measures, e.g. the
ARL function (Basseville and Nikiforov, 1993).

When the null hypothesis H,S is true, we want to not reject Hy. The mistake
to reject H,g when H} is true is called a TYPE I error. Similarly, to not reject
H} when the alternative hypothesis H} is true is called a TYPE II error. In
fault diagnosis, there is a connection between these errors and the probability
of false alarm, missed detection, and missed isolation. We will not go into these
details here but this connection will be discussed in Chapter 6. At this point, it
is at least clear that to achieve low probabilities of false alarm, missed detection,
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and missed isolation, we need to keep the probabilities of the TYPE I and II
errors low.

Thus the probabilities of the TYPE I and IT is a kind of performance measure
for a single hypothesis test. However a more precise measure is the power
function or more generally a risk function from decision theory (Berger, 1985).
The risk function is obtained by first defining a loss function. A loss function
L(0,S;) should reflect the “loss” for a given specific fault state and a specific
decision Sy, of the hypothesis test d;. The loss function for the hypothesis test
0 can be defined as

0 if 6 € ©) and Sy, = S
0 if 0 ¢ ©f and Sj, = S}
cr(f) if 0 €0 and Sy = S}
011(9) if 6 ¢ @g and Sk = Sg

Li(8, Sk) = (4.40)

where the functions ¢;(6) and c¢r;(0) are chosen by the user to for example indi-
cate that some faults are more important to detect that other. In Section 6.1.1,
we will use the functions ¢;(0) and ¢y (6) to distinguish between significant and
insignificant faults.

From decision theory, the definition of risk function is as follows:

Definition 4.2 (Risk Function) The risk function R(6,0) of a decision rule
§(x) is

where Fy denotes expectation for a fixed 6.

With the loss function (4.40), the risk function R(8, dx) becomes

0-P(Sk = SY0) +cr(0)P(Sk, = SE|9)  if 0 € ©Y

R(0,5,) =
(6,0%) {cn(e)P(sk:S,3|9)+o-P(Sk:S;w) if 0 ¢ ©9

Recall from the previous chapter, the definition of power function:
Bi(0) = P(reject Hy | 0) = P(Tx(z) > Ji | 0)
By using the power function, the risk function can be written as

C](@)ﬂk(o) ifg e

011(9)(1 — ﬁk((g)) if ¢ @O (4-41)

R(0, ) = {

Thus to get a usable performance measure of d;, we need to define the functions
cr(6) and c;(#) and also know the power function G (#). Commonly a so called
0-1 loss is considered. This means that c;(6) = c¢1(0) = c.
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beta

Figure 4.2: Two power functions.

4.6.1 Obtaining the Power Function

Either we want to use the risk function (4.41) as a performance measure or
alternatively, the power function alone, we need the power function. As was
said in Section 3.2, the power function is also used to calculate the significance
level a.

The power function can in rare cases be derived analytically. Commonly
we need to assume independent data which is also Gaussian distributed. An
analytical derivation of a power function is demonstrated in the following ex-
ample.

Example 4.11

Consider again Example 4.9. To use (4.31) in a hypothesis test is equivalent to
using (4.30). Since the distribution of (4.30) b is known, it is easy do derive the
power function for a test based on the test quantity (4.31). In Figure 4.2 this
power function is plotted as a solid line. n

In cases where it is not possible to derive the power function analytically,
but the distribution of the measured data is known, we can use (Monte Carlo)
simulations. Another method is to estimate the power function §() by using
measurements on the real process. The method is similar to simulations but we
do not need to know or assume any distribution of the measured data. This
method can be described as follows:

1. To calculate 3(0) for a specific 6, we manipulate the process such that the
fault state 6 is obtained.
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2. Collect a number of measurement series z;, ¢ = 1,...N. Each z; is an
instance of z, i.e. a matrix of inputs u and outputs y from different times
in accordance with Section 4.1.1.

3. For each data series x;, calculate the value t; of the test quantity, i.e.
ti == T(Iz)

4. Collect all the N values t; in a histogram. This histogram is now an
estimation of the probability density function f(¢|6).

5. By using a fixed threshold Ji, 3(f) can now be estimated.

This procedure can be repeated for a number of different #:s, and thereby the
power function ((6) can be obtained as a sampled function of 6.

4.6.2 Comparing Test Quantities

The risk function alone can be used to compare different hypothesis tests. How-
ever it is needed that thresholds are defined. Thus to compare test quantities
we must first specify thresholds. When a 0-1 loss is chosen, the performance of
a hypothesis test can equally well be described by its power function. However
if a more general loss is used, we may have to consider the risk function.

Consider first the case of a 0-1 loss and that we want to compare two test
quantities T1(z) and To(xz). A hypothesis test for each test quantity is con-
structed and the thresholds are chosen such the significance levels equal each
other. Both the power functions (1(f) (dashed) and (2(6) (solid) can then be
calculated and studied. In Figure 4.2, an example of two power functions are
plotted. The set O is assumed to be ©% = {1}. From this plot we can conclude
that the test based on (2(f) is better than the test based on (;(#). This is
because G2(0) > (31(0) for all 0 except § = 1.

Now assume that ¢;(0) and c¢;7(0) are not constants. Then for a case where
B2(0) > B1(0) for all 0, the decision theoretic view of studying the risk R(0, d)
is equivalent to only studying the power function. The reason is that for each
value 6, the functions ¢;(6) and c¢;() only affects as a scaling factor. However,
if it is the case that 82(8) > (1(0) for only some 6, we could not tell which
test is the best. Then other principles have to be used and the functions ¢;(6)
and cry(f) may then play a more important role. This will to some extent be
discussed in Chapter 6.

4.7 Selecting Parameters of a Hypothesis Test

Except for constructing the test quantity, we need to select the threshold. For
a complete hypothesis test d; we need also to define the decisions Sg and 5.
These “parameter” choices are discussed in this section.
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4.7.1 Selecting Thresholds

The selection of thresholds in each test, largely affects the performance of the
hypothesis tests and the diagnosis system. To analyze this, we will study how
the risk function is affected when varying the thresholds. The threshold Jj, will
be regarded as a design parameter of the hypothesis test and to denote the
hypothesis test, we will therefore use the notation dx(J;). The risk function
then becomes R(#,x(Jk)), i.e a function of two variables, § and J. If a 0-1
loss is used, the risk function will for a specific § and a threshold Jj indicate

the probability that test §, does not responds according to a desired response’.
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Figure 4.3: A risk function R(0,0;(Jx)) as a function of two variables, ¢ and
Jk.

Now assume that we use a 0-1 loss and consider a risk function R(8, §x(Jx))
for the test quantity (4.31) from Example 4.9. In Figure 4.3, this risk function
is plotted as a function of § and J. This plot should be compared with the
solid plot in Figure 4.2, which is the corresponding power function for one fixed
threshold. The “peak” and the “valley” visible in Figure 4.3, corresponds to
0 = 6y = 1 and thus the fault free case.

In Figure 4.4, the same risk function is plotted as a function of J for seven
different values of . The dashed line corresponds to the case § = 1 and because
a 0-1 loss is used, this is the probability of a TYPE I error, i.e. significance
level, as a function of the threshold. This means that this kind of plot is useful
to determine the significance level of a test. At the same time, we see how the
probability of a TYPE II error for different 6:s varies as the threshold changes.
The dash-dotted lines represents small faults, i.e. @ close to 1. It is obvious that

LAn exact definition of desired response will be given in Section 6.1.4.
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Figure 4.4: The same risk function R(6, 0 (J)) as in Figure 4.3.

for these small faults, the probability of a TYPE II error will be quite large for
any reasonable low significance level. As said in the previous section, it is easy
to make such a plot based on real measurement data. For an example of this,
see Figure 6.10 in Section 6.4.5.

1

> hanye)
5041 ~
< /!
Zo2F A D i
O Il Il 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 4.5: The risk R(6,01(J1)) as a function of the threshold level J;.

So far, we have studied how the risk function varies along one axis of the fault
state space ©. This usually corresponds to that only one fault mode, in addition
to NF, is considered. However, since it is mostly interesting to investigate the
performance for more than one fault mode, the risk function must be studied
along several axes. In Figure 4.5, the risk function, for a test d1, is plotted as
a function of the threshold for four different 6:s, which we denote 04, 05, 0¢,
and 6p. These four :s are assumed to belong to the fault modes Fa, F, Fgo,
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and Fp respectively. This could for example correspond to a row, in a decision
structure, like

| FA F Fo Fp
b0 0 X 1

For each threshold level, the plots show the probability of an undesirable
response. For example if the threshold Jipresn = 2, the probability of an un-
desirable response is at the maximum about 0.2. The tradeoff between false
alarms and missed detections are clearly visible in this plot. If F4 is the fault
mode N F, it is obvious that the threshold must be chosen above 3 to get a low
probability of “false firing” and also a false alarm of the whole system. On the
other hand, this will result in that test §; will with high probability miss that
0=0c.

Choice of Threshold

In this section we have mainly discussed how the choice of threshold affects
the performance the hypothesis test, and also how to represent this information
by plotting the risk function. However, we have not discussed which threshold
value to choose. This problem is difficult since the choice of threshold in each
test, is dependent on the choice of thresholds in the other tests. In addition,
the relation between the performance of a single hypothesis test and the whole
diagnosis system is quite complex, as we will see in Chapter 6.

If non-constant functions ¢;(#) and ¢;;(6) are defined, then an ad-hoc choice
can be to use the minimax principle (see Section 6.2.2). This corresponds to
selecting the threshold as

Ji = arg mjin max R(0,0,(J))

For example, consider again Figure 4.4. If ¢;(0) = 1, and ¢;;(0) is chosen as
crr(0) = 0 for the small faults (dash-dotted lines), and ¢;;(0) = 1 for the large
faults (solid lines), then the threshold, chosen with the minimax principle, would
be J = 1.6.

Another threshold choice (still a bit ad-hoc) is to choose the threshold such
that a specific significance level is obtained. For example, if the significance
level 0.025 is desirable in Figure 4.4, then the threshold should be chosen as
J = 0.2. If the thresholds are chosen such that all hypothesis tests get the
same fixed significance level, then the analysis of the diagnosis system becomes
particularly simple, as we will see in Chapter 6.

4.7.2 Specifying Hypothesis Tests

From the discussion around Figure 4.5, it should be clear that there is a close
relation between the the risk or power function and the decision structure or
equivalently the choice of Sg and S;. We will here describe how the power
function can be used to specify a hypothesis test d, i.e. to choose the sets My,
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S9 and S}. The basic principle is that if the power function S (6) is low for all
f belonging to a fault mode v, then we should choose M} such that v € Mj.
As said before, this also gives the set S ,i since S ,i =M kc . This means that S ,i
can be described as

St =Q—{y| V0 €0,.B(0) small} (4.42)

Further, if the power function () () is large for all 6 belonging to a fault mode
v, then we should choose Sg such that v ¢ Sg. This means that Sg can be
described as

Sp=Q—{v|V0 €O, B0 large} (4.43)

Remember that this also completely specifies the contents of the decision struc-
ture, i.e. where to put O:s, 1:s, and X:s. How small “small” is and how large
“large” is, depends on the actual case, but these sizes are related to the proba-
bility of taking wrong decisions for the diagnosis system. Also the significance
level ay is related to this probability and the sizes “small” and “large” should
therefore be chosen to be around o and 1 — ay, respectively.

B1(0) A

1f———— e

o) [e] > 0
Onr 04 OB Oc 0p

Figure 4.6: The power function.

Example 4.12

Assume we want to consider five fault modes:

NF 0=0NF
A 0=10a
B 0=0gp
C 0 =0c
D 0=0p

Further assume that we have designed a test quantity T (x) which together with
a specific threshold J; gives the (discrete) power function shown in Figure 4.6.



Section 4.7. Selecting Parameters of a Hypothesis Test 93

Then using the expressions (4.42) and (4.43), the sets SY and Si becomes
St ={NF A, B,C,D}—{NF,C} ={A, B,D}
SY={NF,A,B,C,D} —{A} = {NF,B,C, D}

S ——
Sy
>

Y '

NF SF LF

Figure 4.7: The power function.

Consider a specific fault mode 7. As has been said before, it is often difficult
or impossible to construct a power function that is large for all # belonging
to ©,. Still it may be the case that 3(6) is large for a subset © of ©,, i.e.
O C ©,. The set O, typically corresponds to “large” fault sizes. If Hy is not
rejected in a case like this, we would be tempted to draw the conclusion that
0 ¢ ©r, i.e. the fault is not large. If this kind of reasoning is desired, the fault
mode v can be splitted into two: y-small and y-large. This is further illustrated
by the following example:

Example 4.13

Assume we want to consider three fault modes:

NF 0=0 no fault
SF 0<f<e small fault
LF c>0 large fault

Further assume that we have designed a test quantity T (z) which together with
a specific threshold J; gives the power function shown in Figure 4.7. Then the
decision structure becomes

| N SF LF
61(x) | 0 X 1

Thus if HY is not rejected, the diagnosis statement becomes S = {NF, SF}, i.e.
a large fault has not occured. Also if HY is rejected, S = {SF,LF}, i.e. some
fault (small or large) has definitely occured. m
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4.8 A Comparison Between the Prediction Er-
ror Principle and the Estimate Principle

When constructing test quantities, it is often difficult to know which one of the
prediction, likelihood, or estimate principle that is the best choice. The definite
answer can of course be found by studying the risk functions for each specific
case, but it is nevertheless interesting to also have a more general discussion. We
will here discuss how a test quantity based on the estimate principle performs
compared to a test quantity based on the prediction error principle. This will
be done by studying an example.
Consider a system which can be modeled as

y(t) = blu|Psgnu + a + v (4.44)

where v(t) ~ N(0,0,) and sgnu is the sign of u, i.e. -1, 0, or 1. The nominal
(i.e. corresponding to the no fault case) values for the three parameters are
bo =1, ap = 0, and g = 1. The four fault modes considered are

NF b=1,a=0,p=1
By b#1,a=0,p=1
F, b=1,a=0,0#1
F, b=1,a#0,p=1

We will start by comparing the two test quantities

N
Ti(z) =Y (y—u)? (4.45)
To(x) = Np(b—bo)? b= UTU)'UTY (4.46)

where b is the least square estimate of b. The comparison study will be made
by using the power function, as was described in Section 4.6.2. In Example 4.9,
we saw that v/Np(b— bg) is N(0,0,) under Hy. This implies that T5(z)/o? is
x2(1)-distributed. Similarly it can be shown that T (x)/0? is x2(N)-distributed
under Hy. The knowledge of these distributions can be used to find thresholds
J1 and Jy such that a specific significant level is obtained.

To evaluate the test quantities (4.45) and (4.46), two tests are constructed,
91 based on T; (z) and 62 based on T»(x). The standard deviation o, is assumed
to be 0.2 and then the thresholds are chosen such that the significance level for
both tests becomes a = 0.0034.

4.8.1 Studying Power Functions

We will now compare the the test quantities in three different cases: when
fault mode Fy, is present, when fault mode Fi, is present, and when fault mode
Fy, is present and the test quantities are modified such that fault mode F, is
decoupled.
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Fault Mode F, Present

This case corresponds to that the power functions for the case a = ag, and
@ = g are studied, i.e. along the b-axis of the fault state space. This means
that the system model becomes linear and can be written as

y(t) =bu+wv (4.47)
Further, the power functions becomes functions of b, i.e. £51(b) and Ba(b).
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Figure 4.8: The power functions (;1(6) (solid) and £2(6) (dashed) for two tests
based on Tj(z) and Ta(x). The result for 9 different input signals u is shown.

The power function for ds can be obtained analytically in accordance with
Example 4.11. However the power function for §; can not be so easily obtained.
Instead, simulations have to be used. The power functions $1(b) and (2(b) for
9 different input signals u, estimated by means of simulations, are plotted in
Figure 4.8.

In the figure, it is seen that for all 9 different wu:s, the two power functions
are equal for large deviations from 6y but for many other values, 32(0) (dashed)
is greater than (;(6) (solid), i.e. Ta(x) is better than T} (z). In other words, the
estimate principle, with the estimated parameter the same as the one modeling
the fault, here outperforms the prediction error principle.

Fault Mode F, Present

Now consider the fault mode F,, which means that ¢ is a free variable while
bp =1 and ag = 0. The model (4.44) now becomes

y(t) = ul®sgnu + v
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Figure 4.9: The power functions 1 (y) (solid) and Sa2(¢) (dashed) for two tests
based on Ti(z) and T3(x). The result for 9 different input signals u is shown.

The two power functions G (@) for Ty (x) and Tz(x) respectively, are plotted
in Figure 4.9. As before 9 different input signals u have been considered. In
contrast to Figure 4.8, there are large differences between the different plots.
This holds for both power functions 31 (¢) and (2(¢). However, it is clear that
T>(x) is very sensitive to different w:s while 77 (z) is more robust. Also, in all
plots it no longer holds that B2(¢) > 51 (p) for all ¢. In most of the plots, 51 ()
is actually larger than ((¢). It is obvious that the overall performance of T; (x)
is much better than T5(x). Thus, in this case where the estimate principle uses
an estimate of a parameter not modeling the fault, the prediction error principle
outperforms the estimate principle.

The incidence structure for the two test quantities and for the fault modes
NF, Fy, and F_, is

| NF F, F,
Ti(z) | 0 1 1
To(z) | 0 11

From the discussion above it is clear that the 1 marked 1* is much “weaker”
than the other 1:s. However in a diagnosis system containing several hypothesis
tests, it is enough if the power function of a specific test is high in only one or a
few directions. For example, when using the two tests based on T (z) and T (x)
described here, it is enough if only T5(x) has high power for the fault mode
corresponding to ¢. The reason is that either H{ or Hi or both are accepted,
the diagnosis statement will become the same, namely S = {F3, Fi,}.
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Decoupling of F, and Fault Mode F; Present

Next we will investigate how the test quantities T7(z) and Ts(x) are affected
by decoupling of the fault mode F,. To do this, we construct two new test
quantities T14(x) and Th,(x) in accordance with (4.3) and (4.26) respectively:

N N
Tia(w) =min > (y(t) = §(t]a))” = min Y (y(1) —u(t) —a)®  (4.48)
N
Tou(z) = Np(b—1)2 b= aggraianz (y(t) — bu(t) — a)2 (4.49)

The least square estimate of a that minimizes (4.48) is

1 o 1
p=g—u=y ylt) =5 > ult)
t=1 t=1
The least square estimate of a and b that minimizes (4.49) is

- Y (ult) — @)(y(t) — p)

b= 4.50
SN (y(t) — )2 (450)

a=7—bau (4.51)
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Figure 4.10: The power functions (1,(b) (solid), B24(b) (dashed), B:1(b) (dash-
dotted), and F2(b) (dotted) for tests based on T14(x), Toq(x), T1(z), and To(x)
respectively. The result for 4 different input signals u is shown.

Tests using T1,(z) and To,(x) are constructed with the significance level
a = 0.0034 (the same as before). The parameter a is chosen as a = 1. The
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resulting power functions S (b) corresponding T, (), and Th,(z) are then esti-
mated via simulations. Included in the study are also T (z) and Tx(x), i.e. (4.45)
and (4.46), but here with data compensated for the non-zero a, i.e. ¥y =y — 1.
The power functions for Th,(x), Teq(x), Ti(x), and Ta(x) are plotted in Fig-
ure 4.10. Here 4 different input signals u have considered. We can see that the
estimate principle also for this case, i.e. including decoupling, outperforms the
prediction error principle. It should be remembered though, that the estimate
principle implies that one extra parameter must be estimated, and this can in
general be a substantial problem.

Also seen in the plots is that the dotted line is above the dashed, meaning
that the test quantity Th(x) performs better than Th,(x). However, this is
the expected result since one less parameter has to be estimated using Ts(x)
compared to To,(x). Theoretically this can be explained by comparing the
distribution of the estimate (4.50), i.e.

Oy

S (ult) — w)?

b~ N(b, )

with the distribution (4.28). It holds that

N
> (u(t) —u) <

t=1 t

N
(u(t))?

=1

and therefore the variance of b obtained via (4.50) and corresponding to Thq (),

is greater than the variance of b corresponding to To(x). This explains the

difference between the power functions (1,(b) and B24(b).

4.8.2 A Theoretical Study

To find a theoretical motivation to why the estimate principle is better than
the prediction error principle, we will here study a somewhat simplified case.
Consider the model (4.47) but assume that b > 0 and the no fault case corre-
sponds to b = by = 0. We will consider two test quantities: T3 (x) from (4.45)
and T4 () which we define as

Ty (x) = V/Npb=+/Np (UTU)"'UTY
Power functions for corresponding tests are plotted in Figure 4.11. The result
is the same as in Figure 4.8, i.e. the test quantity based on the estimate prin-
ciple, i.e. T4 (z), is better than the test quantity T (z) based on the prediction
principle.
Now consider the following theorem (Casella and Berger, 1990):

Theorem 4.1 If f(x|0) is the joint probability density function of X, and q(t|6)
is the probability density function of T(X), then T'(X) is a sufficient statistic
for 8 if, and only if, for every x in the sample space, the ratio f(x|0)/q(T(x)|0)
is constant as a function of 0 (i.e. independent of 6).
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Figure 4.11: The power functions 31 (b) (solid) and f2(b) (dashed) for two tests
based on T;(z) and T4 (x). The result for 9 different input signals u is shown.

With this theorem it can be shown that 73 (z), is a sufficient statistic for b.
Next consider the following theorem (Casella and Berger, 1990):

Theorem 4.2 Consider testing Hy : 0 € ©g versus Hy : 0 € @OC. Suppose a test
based on a sufficient statistic T with rejection region S, satisfies the following

three conditions:
a. The test is a level « test.
b. There exists a 0y € ©¢ such that P(T € S | 6p) = a.

c. Let g(t|@) denote the probability density function of T. For the same 0
as in (b), and for each §' € O, there evists a k' > 0 such that

te S ifg(tlo') > Kg(tlfo) and te S if g(t|o) < kK g(t6o)

Then this test is a UMP? level o test of Hy versus Hj.

The conditions (a) and (b) are trivially fulfilled and to show condition (c), we
must show that

g(J]b)
9(J10)

2A test with power function 8(#) is a UMP (uniformly most powerful) level « test if there
exist no other test with the same significance level o and with a power function 8’(0) such

that 3/(0) > 3'(0) for any 6.

V> J . gtlb) > g(t[0) (4.52)
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where J is the threshold of the test, and g(¢|b) is the probability density function
of TY(z) ~ N(v/Np b,0,). It is easy to realize that (4.52) holds and therefore
we have the result that a hypothesis test based on T4 (z) is a UMP test. This
means that there can not exist any test quantity better than T3 (x) for this
hypothesis test.

4.8.3 Concluding Remarks

Even though the discussion has mainly focused on specific examples, we are able
to summarize the following conclusions:

e Test quantities based on estimates can have very good performance for
the fault mode corresponding to the estimated parameter.

e For other fault modes, the performance might be quite bad and also highly
dependent on the input signal.

e Decoupling degrades the performance of both the prediction error principle
and the estimate principle but the relation that the estimate principle is
better than the prediction error principle still holds.

4.9 Conclusions

In Chapters 2 to 4, a new general framework for fault diagnosis has been pro-
posed. We have seen that we do not need separate frameworks for statistical vs
deterministical approaches to fault diagnosis. Both views are contained in the
general framework presented here.

The framework is also general with respect to what types of faults that can
be handled. Many papers in the field of fault diagnosis discuss decoupling of
faults modeled as additive arbitrary signals. It is realized that the principle of
decoupling has in this chapter been generalized to include decoupling of faults
modeled in arbitrary ways, e.g. as deviations of constant parameters or abrupt
changes of parameters.

For the design of test quantities, we have identified three different principles:
the prediction, the likelihood, and the estimate principle. For all three principles
we have discussed how robustness can be achieved by means of normalization.
The known techniques adaptive threshold and likelihood ratio tests are in fact
shown to be special cases of normalization. The importance of normalization,
when using the estimate principle, has been emphasized.

Statistics and decision theory is used to define measures to evaluate hypoth-
esis tests and test quantities. We have also discussed how these measures can be
used to select the threshold and the sets S° and S! of a hypothesis test. Finally
we applied the evaluation measures to compare the prediction and the estimate
principle in some cases. The conclusion was that the estimate principle is, in at
least one common case, superior to the prediction principle.



Chapter 5

Applications to an
Automotive Engine

In the field of automotive engines, environmentally based legislative regula-
tions such as OBDII (On-Board Diagnostics II) (California’s OBD-II Regula-
tion, 1993) and EOBD (European On-Board Diagnostics) specifies hard re-
quirements on the performance of the diagnosis system. This makes the area
a challenging application for model-based fault-diagnosis. Other reasons for
incorporating diagnosis in vehicles are repairability, availability and vehicle pro-
tection. The importance of diagnosis in the automotive engine application is
highlighted by the fact that up to 50% of the code in present engine-management
systems are dedicated to diagnosis.

Model-based diagnosis for automotive engines, has been studied in several
works, e.g. (Gertler, Costin, Fang, Hira, Kowalalczuk, Kunwer and Mona-~
jemy, 1995; Krishnaswami, Luh and Rizzoni, 1994; Nyberg and Nielsen, 1997b).
Although the techniques in these papers are not fully developed, it is obvious
that there is much to gain by using a model based approach to diagnosis of
automotive engines.

In this chapter, the framework, theory, and methods from the previous chap-
ters are demonstrated on a real application: the air-intake system of a turbo-
charged automotive engine. Design of diagnosis systems is discussed, as well as
theoretical issues and results of practical experiments. First, the modeling work
is presented in Sections 5.1 to 5.3. Then diagnosis of leakage is discussed in Sec-
tions 5.4 and 5.5. Finally, diagnosis of leakage and sensor faults is investigated
in Sections 5.6 to 5.8.

Diagnosis of leakage is an important problem. This is because a leakage can
cause increased emissions and drivability problems. If the engine is equipped
with an air-mass flow sensor, a leakage will result in that this sensor does not
correctly measure the amount of air entering the combustion. This in turn will
result in a deviation in the air-fuel ratio. A deviation in the air-fuel ratio is
serious because it causes the emissions to increase since the catalyst becomes
less efficient. Also misfires can occur because of a too lean or rich mixture.

101
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In addition, drivability will suffer and especially in turbo-charged engines, a
leakage will result in loss of horsepowers.

The above requirements imply that it is important to detect leaks with an
area as small as some square millimeters. For the engine management system,
it is also important to get an estimate of the size of the leakage. This is to
know what appropriate action that should be taken, e.g. give a warning to the
driver. Additionally if the size of the leak is known, it is possible to reconfigure
the control algorithm so that at least the increase in emissions, caused by the
leak, will be small. We will see that the diagnosis principles developed in this
chapter fulfills these requirements.

As said above, we will also discuss the diagnosis of sensors connected to the
air-intake system. For the same reasons as in the leakage case, this is also an
important diagnosis problem. Faults in the sensors degrade the performance of
the engine control system, which in turn is likely to cause increased emissions
and drivability problems. One of the interests is to investigate how to diagnose
both leakage and different types of sensor faults at the same time. For instance,
a leakage can easily be mis-interpreted as a air-mass flow sensor fault if not extra
care is taken. The presented solution to this problem is a good illustration of
the usefulness of the general principle of structured hypothesis tests and related
theory.

Note that the purpose of this chapter is not to present complete and good
designs of diagnosis systems, but rather to exemplify the techniques presented
in the previous chapters in a real application.

1 1 1 1 1 1
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80 b
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20 1 1 1 1 1 1
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time [s]

Figure 5.1: Engine speed and manifold pressure during the FTP-75 test-cycle
for a car with automatic transmission.
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5.1 Experimental Setup

All experiments in this chapter were performed on a 4 cylinder, 2.3 liter, turbo-
charged, spark-ignited SAAB production engine. It is constructed for the SAAB
9-5 model. The engine is mounted in a test bench together with a Schenck
“DYNAS NT 85” AC dynamometer. Both during the model building and the
validation, the engine was run according to Phase I4+1I of the FTP-75 test-cycle.
The data for the test cycle had first been collected on a car with automatic
transmission. This resulted in the engine speed and manifold pressure shown in
Figure 5.1. In addition, static tests were performed in 172 different operating
points defined by engine speed and manifold pressure.

m

Intercooler y
boost leak

I
F

Turbo

manifold leak

Pboost

Figure 5.2: The turbo-charged engine. Air-mass flows that are discussed in the
text are marked with gray arrows.

A schematic picture of the air-intake system is shown in Figure 5.2. Ambient
air enters the system and an air-mass flow sensor measures the air-mass flow
rate m. Next, the air passes the compressor side of the turbo-charger and then
the intercooler. This results in a boost pressure p, and a temperature T' that are
both higher than the ambient pressure and temperature respectively. Next, the
air passes the throttle and the flow myy, is dependant on py,, T, the throttle angle
«, and the manifold pressure p,,. Finally the air leaves the manifold and enters
the cylinder. This flow m.,; is dependant on p,, and the engine speed n. Also
shown in the figure are the two possible leaks: the boost leak somewhere between
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the air-mass flow sensor and the throttle, and the manifold leak somewhere in
the manifold.

Leaks were applied by using exchangeable bolts. One bolt were mounted in
the wall of the manifold and the other in the wall of the air tube 20 cm in front
of the throttle. The exchangeable bolts had drilled holes of different diameters
ranging from 1 mm to 8 mm.

Data were collected by a DAQ-card mounted in a standard PC. All data
were filtered with a LP-filter with a cutoff frequency of 2 Hz.

5.2 Model Construction - Fault Free Case

For the purpose of fault diagnosis, a simple and accurate model is desirable. In
this work, the air-intake system is modeled by a mean value model (Hendricks,
1990). This means that no within-cycle variations are covered by the model. The
automotive engine is a non-linear plant and it has been indicated in a pre-study
that diagnosis based on a linear model is not sufficient for the engine application.
This has also been concluded by other authors (Gertler, Costin, Fang, Hira,
Kowalczuk and Luo, 1991; Krishnaswami et al., 1994). This motivates the
choice of a non-linear model in this work.

A model is first developed for the case when no leakage is present. Because
there is no need for extremely fast detection of leakage, it is for the model
sufficient to consider only static relations. The model for the fault-free air-
intake system is described by the following equations

m = my, (5.1a)

Mp = Meyl 5.1b

These equations say that the measured intake air-flow is equal to the air-flow
past the throttle which in turn is equal to the air-flow into the cylinders. The
models for the air-flows my, and mey; are presented next.

5.2.1 Model of Air Flow Past the Throttle

The air-mass flow past the throttle my is described well by the formula for flow
through a restriction (Heywood, 1992) (Taylor, 1994):

CaAinProost U Pman

m (pboost )

mip = (52)
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where Ay, is the throttle plate open area, Cy the discharge coefficient, and

\Ij( Pman ) iS
Pboost
2 41
2K Pman o man n
k—1 Pboost Pooost
Pman : Pman > 2 w1
‘II( ) = lf Pboost - K+1
Pboost
Rt 1L
2.\ therwi
K | otherwise

Cy4A
Ky, = j/ﬁth (5.3)
and
Pboost Pman
T, oosaman:—\p—
ﬂ( Poost, P ) \/T Pboost
the flow model (5.2) can be rewritten as
mip = Kthﬂ(Ta pboost;pman) (54)

From m-, T-, ppoost-, and pmqen-data collected during the FTP-75 test-cycle, the
K, coefficient can for each sample be computed as

m

Kip =
B(Ta Pboost pman)

if dynamics is neglected and therefore m;, = m. This calculated Ky coefficient
is plotted against throttle angle in Figure 5.3. It is obvious that the throttle
angle by its own describes the Ky, coefficient well. From Equation 5.3, we see
that the K, coefficient is dependant on the throttle plate open area A;,. A
physical model of this area is

A = A1(1 — cos(apa + a1)) + Ao (5.5)

where A; is the area that is covered by the throttle plate when the throttle is
closed and Ay is the leak area present even though the throttle is closed. The
parameters ag and a; are a compensation for that the actual measured throttle
angle may be scaled and biased because of production tolerances.
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If values of C4A9/vVR, C4A1/VR, ag, and a; are identified from the data
shown in Figure 5.3, this results in a model of the K;; coefficient as function of
the throttle angle a. In Figure 5.3, this model is plotted as a dashed line and
we can see that the match to measured data is almost perfect except for some
outliers for low throttle angles. It should be noted the these outliers are very few
compared to the total amount of data. The reason for the outliers are probably
unmodeled dynamic effects. The good fit obtained means that it is possible
to assume that the discharge coefficient Cy is constant and independent of the
throttle angle. In conclusion, the Ky, coeflicient together with equation (5.4)
defines the model of the air-mass flow past the throttle.

1.2
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Kth coefficient

0.4r

0.5 0.6 0.7 0.8 0.9 1 11 12 1.3
throttle angle [v]

Figure 5.3: The Ky, coefficient for different throttle angles. It is obvious that
the throttle angle by its own describes the K;j, coefficient well.

5.2.2 Model of Air Flow into Cylinders

There are no accurate and simple physical models describing the flow from the
manifold into the cylinders. Therefore a black box approach is chosen. From the
mapping data, the air-mass flow is, in Figure 5.4, plotted against engine speed
and manifold pressure. The preliminary model of the air flow into the cylinder
Mgy consists of a linear interpolation of the data in Figure 5.4. It is assumed
that the manifold temperature variation do not affect the flow. In the indoor
experimental setup used, with the engine operating at approximately constant
temperature, there was no way to validate this assumption.
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Figure 5.4: The air flow out from the manifold into the cylinders as a function
of engine speed and manifold pressure.

When the engine operating point, defined by engine speed and manifold
pressure, leaves the range where mapping data is available, it is not possible
to do interpolation. Because the mapping range is chosen to match normal
operating, this happens rarely, but when it happens, the model will produce no
output data.

For the construction of the final model, also data from the test cycle were
used. To incorporate these data in the model, a parametric model including
four fitting parameters is introduced:

eyt = bo interpolate(n, Pman) + b11 + D2Dman + b3 (5.6)

The parameters b; were found by using the least-square method. The benefit
with this approach, i.e. to use of interpolation in combination with a parametric
model, is that it is possible to include both test-cycle data and mapping data
when building the model. In addition, the parametric model provides for a
straightforward way to adapt the model for process variations and individual-
to-individual variations. Also the throttle model, described in the previous
section, with its four parameters, has this feature.

5.2.3 Model Validation

The models (5.4) of my, and (5.6) of m,,; are validated during the FTP-75
test-cycle. Data were chosen from another test run, so the modeling data and
the validation data were not the same. The upper plot of Figure 5.5 shows the
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measured air flow m and the estimated air flow, for the two models respectively.
Only one curve is seen, which means that the estimated air flow closely follows
the measured. In the middle and lower plot, the difference between measured
and estimated air flow are shown for both models respectively. It is again seen
that both models manage to estimate the measured air flow well.
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Figure 5.5: The upper plot shows measured and estimated air-mass flow. The
other plots show the model error for my;, and me, respectively.

5.3 Modeling Leaks

When a leak occurs, air will flow out of or into the air-intake system depending
on the air pressure compared to ambient pressure. By using the measured air
flow m, and the values 77y, and riv¢,,; from the models (5.4) and (5.6) respectively,
the leakage air-flow can be estimated as

A77flboostLealc =m — Mih
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for boost leakage and
ATnmanLeak = mth - mcyl

for manifold leakage.

Figure 5.6 shows Ampoost and Amy,qy, for a case where a 6.5 mm boost leak
is present. In the lower plot it can be seen that Am,q, is almost zero, meaning
that no leak air is added or lost in the manifold. However in the upper plot it is
seen that measured air flow deviates from the estimate 1, which means that
air is lost somewhere between the air-mass flow sensor and the throttle. In the
lower plot, data are missing around time 200 s. The reason for this is tha