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Abstract

The POLYBOX example is a standard example within the AI-field of model-
based diagnosis research. Here, this example is discussed in the perspective of
structured hypothesis tests (SHT). Even though the SHT framework was pri-
marily developed for handling systems with noise, it has here been shown that
it can perform very well in also noise-free systems. In the POLYBOX example,
it manage to always give a complete and logically sound diagnosis statement,
i.e. a complete and correct list of the possible fault modes. On the contrary,
the established FDI framework (i.e. structured residuals) only manage to give
a subset of the possible fault modes.

1 Introduction

The POLYBOX example is a standard example within the AI-field of model-
based diagnosis research, e.g. see [1]. Here, this example is discussed in the
perspective of structured hypothesis tests (SHT). A comparison with the es-
tablished FDI framework structured residuals will at several places be done.
Structural residuals is the most common framework for fault diagnosis within
the FDI community. From now on, when we write write FDI framework, we
really mean structured residuals.

The system consists of five components: three multipliers M1, M2, and
M3, and two adders A1 and A2. The components are connected according to
Figure 1. The observations consists of one sample of all inputs a, b, c, d, and e,
and the outputs f and g, i.e. a vector of 6 elements.

When using SHT, the first step is to decide the set of fault modes that we
want to consider. A fault mode is basically a certain type of fault. There are
single fault modes, where only one component is faulty, or multiple fault modes,
where more than one component is faulty. Each fault mode is associated with
a model of the system, assumed to be valid when the corresponding fault mode
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Figure 1: The Polybox example.

is present in the system. Below, first the single fault modes for the POLYBOX
example are defined, and then also the multiple fault modes are defined.

2 Single Fault Modes

For each fault mode, we use an abbreviation. The complete list of single fault
modes is:

NF no-fault
A1 arbitrary fault in component A1
A2 arbitrary fault in component A2
M1 arbitrary fault in component M1
M2 arbitrary fault in component M2
M3 arbitrary fault in component M3

Note that also the fault-free case NF is a fault mode.

2.1 Models for Single Fault Modes

NF:
In the fault free case, we have the NF fault mode present, and the model de-
scribing the system is then

f =ac + bd (1)
g =bd + ce (2)

A1:
When the fault mode A1 is present, the system will behave according to

f =ac + bd + ff (3)
g =bd + ce (4)

The constant ff is an unknown constant and we assume here that ff 6= 0. That
is, with this fault modeling principle, we chose to use the single fault exoneration
assumption (made in the FDI framework). However, as we will see below, in
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Section 2.2, the single fault exoneration assumption can be avoided by using
another fault modeling principle. Note here that we have made no assumptions
about how the fault in component A1 occurs, only that the fault will cause the
first equation of the fault free model to not be valid anymore.

A2:

f =ac + bd (5)
g =bd + ce + fg (6)

M1:

f =ac + ft + bd (7)
g =bd + ce (8)

M2:

f =ac + bd + fu (9)
g =bd + fu + ce (10)

M3:

f = ac + bd (11)
g = bd + ce + fw (12)

Now to fit this into the framework of hypothesis testing, we view this as
only one model M(θ) with θ as a free parameter. This means that θ =
[ff fg ft fu fw], i.e. θ is a constant vector with 5 scalar elements. Depending on
the specific fault, θ then takes different values. Further, the set of all possible
θ-values is Θ = R5.

2.2 Alternative Definitions of Fault Modes

In the above definitions of the fault modes, it is implicitly assumed that a single
fault always affect the component, i.e. the single fault exoneration assumption.
However, with another modeling strategy, it is possible to use SHT without the
single fault exoneration assumption. Consider for example fault mode A1.

When the fault mode A1 is present, the system will behave according to

f =ac + bd + Bfff (13)
g =bd + ce (14)

where Bf is now a binary variable and ff an unknown arbitrary constant. When
a fault in component A1 is present, Bf = 1, and otherwise Bf = 0. There are
no constraint on the constant ff . It is for example possible that ff = 0, which
means that the fault is ”invisible”. Thus, this is a way to relax the single fault
exoneration assumption, if this is desirable.

In other words, when using the SHT framework, it is possible to chose
whether one wants to make the exoneration assumption or not. As has been
demonstrated here, this choice is done by using different fault modeling princi-
ples. However, in this report, the modeling principle described in Section 2.1
will be used and thus, the single fault exoneration assumption is used.
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3 Multiple Fault Modes

Only multiple fault modes with two faulty components are considered. The
multiple fault modes are abbreviated as for example A1&A2 for the fault mode
with both the A1 and the A2 components faulty.

The models for the multiple fault modes are:
A1&A2:

f =ac + bd + ff (15)
g =bd + ce + fg (16)

A1&M1:

f =ac + ft + bd + ff (17)
g =bd + ce (18)

A1&M2:

f =ac + bd + fu + ff (19)
g =bd + fu + ce (20)

A1&M3:

f =ac + bd + ff (21)
g =bd + ce + fw (22)

A2&M1:

f =ac + bd + ft (23)
g =bd + ce + fg (24)

A2&M2:

f =ac + bd + fu (25)
g =bd + fu + ce + fg (26)

A2&M3:

f =ac + bd (27)
g =bd + ce + fw + fg (28)

M1&M2:

f =ac + ft + bd + fu (29)
g =bd + fu + ce (30)

M1&M3:

f =ac + ft + bd (31)
g =bd + ce + fw (32)
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M2&M3:

f =ac + bd + fu (33)
g =bd + fu + ce + fw (34)

The set of all fault modes considered is:

Ω = {NF, A1, A2, M1, M2, M3, A1&A2, A1&M1, A1&M2,

A1&M3, A2&M1, A2&M2, A2&M3, M1&M2, M1&M3, M2&M3} (35)

4 Basic Idea of Structured Hypothesis Tests

With the fault modes defined above, the diagnosis problem can be stated as
follows:

Given measured data, which different models, defined by the differ-
ent fault modes, can explain the measured data?

This means, that the task of diagnosis is to investigate which of the differ-
ent models that match the measured data. Because of model errors and mea-
surement noise, a formalized decision procedure for this is naturally based on
hypothesis testing. To construct the diagnosis system by combining a set of
hypothesis tests is the basic idea of structured hypothesis tests. The hypothesis
tests used are ”binary”, i.e. the task is to test one null hypothesis against one
alternative hypothesis, see e.g. [2, 3].

Let Fp denote the present fault mode. To describe the k:th hypothesis test,
introduce the set Mk. The null hypothesis and the alternative hypothesis can
then be written

H0
k :Fp∈Mk ”some fault mode in Mk can explain meas. data”

H1
k :Fp∈MC

k ”no fault mode in Mk can explain meas. data”

The convention used here and also commonly used in hypothesis testing litera-
ture, is that when H0

k is rejected, we assume that H1
k is true. This implies that

the present fault mode can not belong to Mk, i.e. it must belong to MC
k . Fur-

ther, when H0
k is not rejected, we will not assume anything1. In this way, each

hypothesis test contributes with a piece of information regarding which fault
modes that can be matched to the data or not. This piece of information, i.e.
the decision reached by each hypothesis test, is called a subdiagnosis statement.

How a set of different hypothesis tests are used to diagnose and isolate faults
is illustrated by the following example.

Example 1

Assume that the diagnosis system contains the following set of three hypothesis
tests:

H0
1 : Fp ∈ M1 = {NF, F1} H1

1 : Fp ∈ MC
1 = {F2, F3}

H0
2 : Fp ∈ M2 = {NF, F2} H1

2 : Fp ∈ MC
2 = {F1, F3}

H0
3 : Fp ∈ M3 = {NF, F3} H1

3 : Fp ∈ MC
3 = {F1, F2}

1Sometimes it is possible to assume something also when H0
k is not rejected, see [4].
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Then if only H0
1 is rejected, we can draw the conclusion that Fp ∈ MC

1 =
{F2, F3}, i.e. the present fault mode is either F2 or F3. If both H0

1 and H0
2

are rejected, we can draw the conclusion that Fp ∈ MC
1 ∩ MC

2 = {F2, F3} ∩
{F1, F3} = {F3}, i.e. the present fault mode is F3.

The decision reached by the whole diagnosis system is called the diagnosis
statement. From the example above, it is clear that to find the diagnosis state-
ment from the subdiagnosis statements, a simple intersection operation can be
used.

When developing the actual hypothesis tests, we first need to choose the set
of hypotheses to test. This choice can however not be done arbitrarily. One has
to take into account special relations between the fault modes. This is shortly
described next.

5 Relations Between the Fault Modes

By studying the models for the different fault modes we can realize that some
fault modes can not be isolated from each other, since their corresponding mod-
els are in principle equivalent. This kind of relations between fault modes can
be formalized by studying observation sets defined as follows:

Definition 1 (Observation Set) The observation set of a fault mode Fi is
denoted OFi and defined by

OFi = {x | x ∈ M(θ) ∧ θ ∈ ΘFi}
where the model M(θ) is the set of possible observations x for a fixed θ, and
ΘFi is the set of θ-values corresponding to fault mode Fi.
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Figure 2: The observation sets and their relations in the polybox example.

The relations between the observation sets for the polybox example is illus-
trated in the Venn diagram in Figure 2. From the Venn diagram, we can see
that for example the following relations hold:

OA1 = OM1 (36)
ONF ⊆ OA1&M1 (37)
OA1 ⊆ OM2&M3 (38)
OA1 ∩ OA2 = ∅ (39)

and more...
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For example the relation OA1 = OM1 tells us that A1 can be obtained as a
special case of M1, namely when ft = ff .

Next we study the closures of the observation sets. The motivation for this
is that if continuous models are considered, then it is impossible to distinguish
between the closure of a set and the set itself. Let the notation A ⊆∗ B denote
the relation A ⊆ B̄, where B̄ is the closure of the set B. Then, for example the
following relations will hold:

ONF ⊆∗ OA1 (40)
ONF ⊆∗ OA1&A2 (41)

OM1&M2 ⊆∗ OM1&M3 (42)
OA1&M1 ⊆∗ OM1 (43)

and more...

For example the first relation ONF ⊆∗ OA1 tells us that the fault mode NF can
(almost) be obtained as a special case of the fault mode A1, namely when ff is
very small.

By noting that⊆ implies⊆∗, and only concentrating on these latter relations,
we get an equivalence relation defined by the following sets:

{NF}⊆∗ (44a)
{A1, M1, A1&M1}⊆∗ (44b)
{A2, M3, A2&M3}⊆∗ (44c)
{M2}⊆∗ (44d)
{A1&A2, A1&M2, A1&M3, A2&M1, A2&M2, M1&M2, M1&M3, M2&M3}⊆∗

(44e)

All fault modes in such a set are related via the relation ⊆∗. This means that by
only studying the observed variables of the system, and considering continuous
models and variables, it is not possible to distinguish (isolate) between these
fault modes.

6 Hypothesis Tests

The hypothesis tests are only shortly described here. The hypothesis tests used
in SHT are generally described in Sections 3.1 and 3.2 in my PhD thesis.

Based on the relations defined by (44), it is possible to construct four different
hypothesis tests:

H0
0 : Fp ∈ {NF} (45)

H1
0 : Fp 6∈ {NF} (46)

H0
1 : Fp ∈ {NF, A1, M1, A1&M1} (47)

H1
1 : Fp 6∈ {NF, A1, M1, A1&M1} (48)

H0
2 : Fp ∈ {NF, M2} (49)

H1
2 : Fp 6∈ {NF, M2} (50)
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H0
3 : Fp ∈ {NF, A2, M3, A2&M3} (51)

H1
3 : Fp 6∈ {NF, A2, M3, A2&M3} (52)

Each hypothesis test consists of a null hypothesis and an alternative hypothesis.
For example, in the first hypothesis test, the null hypothesis H0

0 is Fp ∈ {NF},
meaning that the present fault mode Fp is in the set {NF} (i.e. Fp = NF ).
The alternative hypothesis H1

0 is that the present fault mode Fp is not in the
set {NF}, i.e. Fp ∈ (Ω− {NF})

The first of these hypothesis tests does not help us in the isolation task, but
can be useful for detecting the faults. However, here we will assume that we use
only the last three hypothesis tests, namely number 1,2, and 3.

If we want to construct the hypothesis tests, we have to define a test quantity
(also called test statistic) and a threshold for each hypothesis test. However,
for the discussion here, this is not necessary. It is in fact only important to
have knowledge about how the different fault modes are defined, in terms of the
models from Sections 2 and 3, and how they are related.

7 Incidence/Decision Structure

Related to the decision function of the hypothesis tests, we can set up the
Incidence/Decision Structure (see Section 3.4 in my PhD thesis). This is closely
related to the fault signature matrix used in the FDI community. However, we
here use a distinction between the incidence structure, describing how faults
ideally affect the test quantities, and the decision structure, describing how the
diagnosis statement is derived using the individual hypothesis tests.

The main difference to the standard fault signature matrix, is that the inci-
dence/decision structure includes X:s, which makes it possible to make correct
conclusions in a noisy environment. Other reasons to include X:s are that faults
can compensate each other (discussed in [5]), and that for example nonlineari-
ties can make faults ”invisible” in some operating conditions. In the paper [5],
a fourth reason is discussed, namely that some faults are possibly not affecting
the system at all (the single fault exoneration assumption). This reason is how-
ever not valid when using SHT, since this is taken care of by choosing different
fault-modeling principles (as discussed in Section 2.2).

When studying the incidence/decision structures, we assume that we use test
quantities that are ”well-designed”. That is, in the noise-free case we assume
that the test quantity is zero if the measured data can be explained by the
null hypothesis and non-zero otherwise. Then the incidence structure for each
hypothesis test and thereby also the sets Mk are determined from the relations
between the fault modes.

Assume we want to design a hypothesis test with the desired null-hypothesis
H0

k : Fp ∈ Mk = {Fi1, F i2, . . . , F in}. This may be possible, but depending on
the relations between the fault modes, it is sometimes necessary to add some
fault modes to the set Mk.

The following theorem tells us the relation between the fault mode relations
and the incidence structure. It is here assumed that the desired null hypotheses
only contain one fault modes. However the extension to more complex null
hypotheses is trivial.
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Theorem 1 ([6]) Given a hypothesis test with a desired null-hypothesis H0
k :

Fp ∈ M ′
k, and a well-designed test quantity, the actual set Mk and the incidence

structure are uniquely determined by the knowledge of the relations OF1 ⊆ OF2

and OF1 ∩ OF2 = ∅ as follows:
The entry in the column corresponding to fault mode Fj is

0 if OFj ⊆
⋃

Fi∈M ′
k

OFi

1 if OFj ∩
⋃

Fi∈M ′
k

OFi = ∅

X if OFj ∩
⋃

Fi∈M ′
k

OFi 6= ∅ and OFj 6⊆
⋃

Fi∈M ′
k

OFi

Now first assume that the polybox-system operates in a noise-free environ-
ment. Then from the relations in the Venn-diagram in Figure 2 and Theorem 1,
we get the following incidence structure:

NF A1 A2 M1 M2 M3 A1&A2 A1&M1 A1&M2 A1&M3 A2&M1 A2&M2 A2&M3 M1&M2 M1&M3 M2&M3
δ1 0 0 1 0 1 1 1 0 1 1 1 X X 1 1 X
δ2 0 1 1 1 0 1 X X 1 X X 1 X 1 X 1
δ3 0 1 0 1 1 0 1 X X 1 1 1 0 X 1 1

The X:s in this table origins from the case when faults compensates each other.
In a noisy environment, we have, because of reasons explained in [6], have

to replace all the 1:s with X:s and we thus obtain the decision structure

NF A1 A2 M1 M2 M3 A1&A2 A1&M1 A1&M2 A1&M3 A2&M1 A2&M2 A2&M3 M1&M2 M1&M3 M2&M3
δ1 0 0 X 0 X X X 0 X X X X X X X X
δ2 0 X X X 0 X X X X X X X X X X X
δ3 0 X 0 X X 0 X X X X X X 0 X X X

8 Diagnosis Examples

This section will discuss the different diagnosis statements obtained from SHT
compared to the FDI framework (i.e. structured residuals). If we assume a
noise-free environment, we can use the SHT framework and build our diagnosis
statements based on the first incidence structure in Section 7 (containing 0:s,
1:s, and X:s). For different combinations of rejected and accepted hypotheses,
the diagnosis statement becomes as shown in Table 1. For example, the first
row in this table tells us that when no null hypotheses are rejected (i.e. all
three are accepted), the diagnosis statement will be {NF, A1&M1, A2&M3},
meaning that all these three fault modes can explain what we observe. The cases
marked with a ”*” are those included in [5]. The diagnoses within parentheses
are non-minimal, as defined in e.g. [5].

Now assume a noisy environment. Then the SHT framework can be used
with the last decision structure from Section 7. The diagnosis statement be-
comes as shown in Table 2.

In the FDI framework, only 1:s are used. The diagnosis statement then
becomes as shown in Table 3.
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δ1 δ2 δ3 diagnosis statement
0 0 0 NF, A1&M1, A2&M3
0 0 1 can not occur
0 1 0 can not occur
*0 1 1 A1, M1, (A1&M1), A2&M2, M2&M3
1 0 0 can not occur
*1 0 1 M2, A1&A2, A1&M3, A2&M1, M1&M3
1 1 0 A2, M3, A1&M2, (A2&M3), M1&M2
*1 1 1 A1&A2, A1&M2, A1&M3, A2&M1, A2&M2, M1&M2, M1&M3, M2&M3

Table 1: The diagnosis statement obtained with SHT using a decision structure
with 0:s, 1:s, and X:s.

δ1 δ2 δ3 diagnosis statement
0 0 0 Ω (i.e. all possible fault modes)
0 0 1 (can only occur when noise) A1, M1, M2, (A1&A2), (A1&M1), (A1&M2),

(A1&M3), (A2&M1), (A2&M2), (M1&M2), (M1&M3), (M2&M3)
0 1 0 (can only occur when noise) A1, A2, M1, M3, (A1&A2), (A1&M1), (A1&M2),

(A1&M3), (A2&M1), (A2&M2), (A2&M3), (M1&M2), (M1&M3), (M2&M3)
*0 1 1 A1, M1, (A1&A2), (A1&M1), (A1&M2), (A1&M3), (A2&M1),

A2&M2, (M1&M2), (M1&M3), M2&M3
1 0 0 (can only occur when noise) A2, M2, M3, (A1&A2), (A1&M2), (A1&M3),

(A2&M1), (A2&M2), (A2&M3), (M1&M2), (M1&M3), (M2&M3)
*1 0 1 M2, A1&A2, (A1&M2), A1&M3, A2&M1, (A2&M2), (M1&M2),

M1&M3, (M2&M3)
1 1 0 A2, M3, (A1&A2), A1&M2, (A1&M3), (A2&M1), (A2&M2), (A2&M3),

M1&M2, (M1&M3), (M2&M3)
*1 1 1 A1&A2, A1&M2, A1&M3, A2&M1, A2&M2, M1&M2, M1&M3, M2&M3

Table 2: The diagnosis statement obtained using SHT in a noisy environment,
i.e. a decision structure with only 0:s and X:s.

δ1 δ2 δ3 diagnosis statement
0 0 0 NF
0 0 1 (can only occur when noise)
0 1 0 (can only occur when noise)
*0 1 1 A1, M1, (A1&M1)
1 0 0 (can only occur when noise)
*1 0 1 M2
1 1 0 A2, M3, (A2&M3)
*1 1 1 A1&A2, A1&M2, A1&M3, A2&M1, A2&M2, M1&M2, M1&M3, M2&M3

Table 3: The diagnosis statement using the FDI framework, i.e. a decision
structure with only 0:s and 1:s.
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8.1 Comparison

We will now discuss the diagnosis statements given in Tables 1, 2, and 3; first
the noise-free case, and then the noisy case. The main goal of this investigation
is to find out which of the results that represents correct diagnoses.

8.1.1 Noise-free case

[0, 0, 0]:
For this case, i.e. when no null hypotheses are rejected, the diagnosis statement
is different in all the three cases. Since we have a noise-free environment, the
right diagnosis statement is {NF, A1&M1, A2&M3}. These are exactly the
fault modes that can result in the response [0, 0, 0]. The NF is obvious, and the
multiple fault modes because it is possible that faults compensate each other.
In other words, the SHT framework manage to give the correct result. The FDI
framework (with only 0:s and 1:s) has the no-compensation assumption and as
a result, only NF is contained in the diagnosis statement. If a decision structure
with only 0:s and X:s would be used, as in Table 2, the diagnosis statement
would be the set of all fault modes, which is not correct.

[0, 0, 1], [0, 1, 0], and [1, 0, 0]:
These responses can not occur in a noise-free environment.

[0, 1, 1], [1, 0, 1], and [1, 1, 0]:
For all these three responses, the SHT framework manage to give the correct
result. The FDI framework doesn’t manage to give the complete list of possible
fault modes for any of the three responses. If a decision structure with only 0:s
and X:s would be used, the list of possible fault modes would be to large (see
Table 2). However the minimal diagnoses are the same.

[1, 1, 1]:
The correct diagnosis statement is obtained from both the SHT and the FDI
framework, and also when all 1:s are replaced with X:s.

8.1.2 Noisy case

When there is noise present, the SHT framework uses a decision structure with
only 0:s and X:s.

[0, 0, 0]:
For this response, the diagnosis statement using the SHT framework, is that all
possible fault modes are possible explanations for what we observe, i.e. the set
Ω. The reason is that the faults could be small and then in a noisy environment,
it is impossible to distinguish these from the NF fault mode. The FDI framework
would still give only NF which in a noisy environment is the same as to implicitly
assume that all faults are large (and as before, don’t compensate each other).

[0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], and [1, 1, 0]:
In all these cases, the SHT framework give the correct diagnosis statement, when
we assume that faults can be small. The FDI framework gives only a subset of
the possible fault modes, because it implicitly assumes that all faults are large
and don’t compensate each other. Also interesting is that the FDI framework
gives the incorrect result of an empty set for the cases [0, 1, 1], [1, 0, 1], and
[1, 1, 0].

[1, 1, 1]:
The correct diagnosis statement is obtained from both the SHT and the FDI
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framework.

9 Conclusions

In this report, I have compared the performance of the SHT and the FDI frame-
work using the POLYBOX example. However, it should be noted that in my
point of view, the FDI framework is generally not a well defined framework.
Only at a few places in the literature (e.g. [5]) there is a formal definition of it,
and it is not clear if all people agree on the same definition. However, by adopt-
ing the definition in [5] of the FDI framework, which is in principle the same
definition as in my PhD thesis, it has been possible to make this comparison
with the SHT framework.

Even though the SHT framework was primarily developed for handling sys-
tems with noise, it has here been shown that it can perform very well in also
noise-free systems. In the POLYBOX example, it managed to always give a
complete and logically sound diagnosis statement, i.e. a complete and correct
list of the possible fault modes. On the contrary, the FDI framework only
managed to give a subset of the possible fault modes.

As described in [5], the problems with the FDI framework are the single-fault
exoneration and the no-compensation assumptions. In SHT we have a choice if
we should make the single-fault exoneration assumption or not. This is because
we have the powerful tool of fault modeling. Another reason to work with fault
models is the increased possibility to isolate different faults. For example, by
knowing that two different faults are acting in a different way, we can distinguish
between the two even though they are acting on the same component.

The no-compensation assumption is not made in the SHT framework. In
a noise free environment, it can be argued that this is not so important since
the faults that can compensate are ”singular”, and thus the ”probability” for
compensation is in principle zero. However in a noisy environment it can happen
that two faults approximately compensates each other, and because of the noise,
this can not be distinguished from the no-fault case.

In the POLYBOX example, the system is static and the faults very simple.
However, as has been shown in for example my works with the automotive
engine examples, the SHT framework also handles dynamic systems with also
more complex fault models.

Something that may not have been obvious in this report is why it is an
advantage to view the diagnosis system as a set of hypothesis tests. The main
reason for this is because when it comes to the design and analysis of the in-
dividual hypothesis tests, the established area of hypothesis testing provides
us with a theoretical framework for making decision in a noisy environment.
Also, a lot of theory exists which can be used for design and evaluation of the
hypothesis tests. An example of the latter can be seen in [7] or my PhD thesis
(Section 4.6 and Chapter 6).

Finally it should be mentioned that I also made a comparison between the
SHT and the FDI frameworks in my PhD thesis (see Section 3.5). There I came
to the conclusion that, in a noisy environment, the 1:s used in the fault-signature
matrix should not be used since it implies the assumption that even small faults
always result in that the test quantity is above the threshold, something that
of course not is true. Normally, the 1:s should therefore be replaced by X:s.
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It is interesting to see that the paper [5], came to the same conclusion but
with another main argument, namely the exoneration and the no-compensation
assumption.
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