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Abstract

One of the features of the SAAB Variable Compression engine (SVC) is its
possibility to change the compression by tilting the top of the engine. Due to
the change in geometry, the standard equation used to calculate the cylinder
volume as function of crank angle may not give sufficiently accurate result.

A new cylinder volume function, that is specially designed for the SVC,
is derived and described. It is written on the form V (θ, v) = Vc(v)+Vd(θ, v),
where θ is the crank angle, v the tilt angle, Vc the clearance volume, and
Vd the volume displaced by the piston. It is shown that the biggest rela-
tive deviation between the standard volume function and the SVC volume
function is approximately 6%. It is also shown that by adjusting the crank
angle input to the standard volume function so that the TDC coincide with
the actual TDC, that is V (θ, v) = Vc(v) + Vstd(θ − θTDC), the relative error
caused by using the standard volume function is reduced by a factor 10.
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Nomenclature

θ Crank angle
v Tilt angle
rc Compression ratio
Vc Clearance volume
Vd Displaced volume
B Cylinder bore
l Piston pin
a Crank rod
r Tilt radius
x Vertical distance between crank and tilt axis
y Horizontal distance between crank and tilt axis

SVC SAAB Variable Compression
TDC Top dead center
BDC Bottom dead center
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1 Introduction

SAAB Automobile AB has developed a new type of engine, called the SAAB
Variable Compression engine (SVC), with which it is possible to vary the
compression ratio. The advantage is a gain in efficiency, since an increase
in compression ratio also increases the efficiency. The compression ratio is
limited by knock, which can severely damage the engine. A compromise
between demands on efficiency and knock intensity has to be made. When
designing an engine with fixed compression ratio, the compression ratio is
set to a low value at low loads to avoid heavy knock at high loads. With an
SVC engine it is possible to optimize the efficiency at every operating point.

The standard function used to calculate the cylinder volume as function
of crank angle is:

V (θ, rc) = Vc(rc) +
πB2

4
(l + a − s(θ))

where s is the distance between the crankshaft and the piston pin, i.e.

s(θ) = a cos θ +
√

l2 − a2 sin2 θ

Due to the change in engine design, this function may not give sufficiently
accurate results. A new function that is suited for the SVC engine has to
be derived.

2 Geometry

A simple sketch of the SVC engine is shown in figure 1. What makes the SVC
engine unique is that the top of the engine can be tilted and thereby change
the compression ratio. The top of the engine moves around an axis placed
at some distance from the crank axis (figure 2). When the top is tilted, the
cylinder is further away from the crank axis, and the consequence is that the
piston does not reach as high up in the cylinder as it does when the top is
not tilted. Thereby the clearance volume increases. Since the piston stroke
is almost unaffected by the tilt, the compression ratio is decreased.

3 Position of the piston

The displaced cylinder volume depends on the motion of the piston inside
the cylinder. When the piston moves downwards, the volume increases and
when it moves upwards it decreases. The situation is depicted in figure 3.
In the figure, the position of the piston is represented by P2. P1 is the point
were the crank rod is connected to the piston pin. P3 is the point were a
line that goes through the tilt axis and is perpendicular to the direction of
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Figure 2: The cylinder is tilted to decrease the compression ratio.
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motion of the piston, crosses a line that is parallel to the direction of motion
of the piston and is centered in the cylinder.

The chosen coordinate system has its origin at the crank axis, the first
and second base vector points in the same direction as the crank rod at a
crank angle of π/2 and 0 respectively. In this coordinate system the position
of point P2 is

P2 = P1 +
( −l cos α

l sinα

)
(1)

and P1 is

P1 =
(

a sin θ
a cos θ

)
(2)

The angle α is not known and is to be determined. Another way to write
P2 is

P2 =
(

x′

0

)
+

( −s1 sin v
s1 cos v

)
(3)

where s1 is the distance from the point
(

x′ 0
)T to P2. Equation 1 and 3

gives enough information to solve for α and s1. Since(
a sin θ − l cos α
a cos θ + l sinα

)
=

(
x′ − s1 sin v

s1 cos v

)

s1 is given directly by the second component

s1 =
1

cos v
(a cos θ + l sinα)

which inserted into the first component gives the following expression

cos α − tan v sin α =
a

l
(a sin θ − x′ + a tan v cos θ)

The left hand side of the last equation can be rewritten to

cos α − tan v sinα =
cos(v + α)

cos v

which gives

cos(α + v) =
a

l
(cos v sin θ + sin v cos θ) − x′

l
cos v =

a

l
sin(θ + v) − x′

l
cos v

The angle α can be solved from the equation above:

α = arccos
(

a

l
sin(v + θ) − x′

l
cos v

)
− v (4)

The point x′ can be determined from the position of P3. P3 can be
described in two ways:

P3 =
( −x + r cos v

y + r sin v

)
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P3 =
(

x′ − s2 sin v
s2 cos v

)

where s2 is the distance from the point
(

x′ 0
)T to P3. By combining

these two equations, s2 can be eliminated and x′ determined:

x′ = tan v (y + r sin v) − x + r cos v (5)

The calculations described in this section can be summarized in the
following model for the position of the piston:

P2(θ, v) =
(

x′

0

)
+

a cos θ + l sinα

cos v

( − sin v
cos v

)

α = arccos
(

a

l
sin(v + θ) − x′

l
cos v

)
− v

x′ = −x + r cos v + tan v (y + r sin v)

3.1 Change of base

The part we are interested in is the position of the piston. The movement of
the piston follows a straight line, and therefore we should be able to reduce
the number of coordinates from two to one. This can be done by introducing
a new coordinate system, whose first base vector is perpendicular to the
direction of movement and second is parallel. If the base of the original
coordinate system is called e and the new one is called f, then

f =
(

cos v sin v
− sin v cosv

)
e = Te

The position of the piston is

P2 = Aee = AeT
−1f

In the new base P2 will therefore be described as:

P2f (θ, v) =
(
x′(v) − s1 sin v s1(θ, v) cos v

) (
cos v − sin v
sin v cos v

)
f =

= x′(v)
(

cos v
− sin v

)
+ s1(θ, v)

(
0
1

)

Now the change in piston position as function of crank angle is described
by only one coordinate, i.e. the second row, but we still have some infor-
mation left in the first row. Since we would like to be able to compare the
position of piston relative to the cylinder even though the tilt angle has
changed, we would like to get rid of x′ since it varies with the tilt. By
placing the origin of the new coordinate system in a point that is fixed to
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the cylinders, we can accomplish this. A suitable point would be P3 as we
already now its position.

P3(θ, v) =
(

x′

0

)
+ s2(v)

(− sin v
cos v

)

where s2 is

s2(v) =
y + r sin v

cos v

In the new base P3 is

P3f = x′
(

cos v
− sin v

)
+ s2

(
0
1

)

and the difference between P2f and P3f is

P2f − P3f = (s1 − s2)
(

0
1

)

The first row no longer contains any information since it is zero. The distance
between the piston and P3 is thus s1 − s2.

To summarize the change of coordinate system, the new system is tilted
an angle v compared to the old one and has its origin in the point P3. The
position of the piston in the new coordinate system is:

P ◦(θ, v) = s1 − s2 =
1

cos v
(a cos θ + l sinα − y − r sin v)

3.2 Top and bottom dead center

The position of top and bottom dead center changes with tilt angle, and
does not in general coincide with a crank angle of 0 and 180◦ respectively.
The crank rod and piston pin have the same direction at TDC and BDC.
The situation at TDC is shown in figure 4, where the angle β is equal to
−θTDC .

From figure 4 we get,

x′

sin γ
=

a + l

sin
(

π
2 − v

)
which gives that the angle γ

γ = arcsin
(

x′

a + l
sin

(π

2
− v

))

It can also be seen in the figure that

β +
π

2
= π − γ −

(π

2
− v

)
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Figure 4: Piston at TDC

and thus

θTDC = arcsin
(

x′

a + l
cos v

)
− v

The position of BDC can be determined with the same method as TDC.

θBDC = π − v + arcsin
(

x′

l − a
cos v

)

4 Cylinder volume

The cylinder volume consists of a compression volume and the volume dis-
placed by the movement of the piston, that is

V (θ, v) = Vc(v) +
πB2

4
(P ◦(θTDC(v), v) − P ◦(θ, v)) (6)

where Vc is the compression volume. The size of the compression volume
depends on the tip angle. When the tip angle increases, the compression
volume also increases.

Vc(v) = Vc(0) +
πB2

2
(P ◦(θTDC(0), 0) − P ◦(θTDC(v), v)) (7)

When the engine is at its upright position, that is v = 0, the compression
ratio should have a specified value. This will be used as a reference for the
calculation of rc for other tilt angles. Using the definition of compression
ratio

rc =
Vmax

Vmin
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Figure 5: An engine cylinder with piston

the compression volume at upright position can be calculated from:

Vc(0) =
πB2

4 ((rc)v=0 − 1)
(P ◦(θTDC(0), 0) − P ◦(θBDC(0), 0)) (8)

The definition is also useful when determining the compression ratio at dif-
ferent tip angles:

rc(v) = 1 +
πB2

4Vc
(P ◦(θTDC(v), v) − P ◦(θBDC(v), v)) (9)

5 Motion of the piston

In many calculations, not only the volume but also its differential with re-
spect to crank angle is of great importance. The change in cylinder volume
depends on the movement of the piston according to:

dV

dθ
=

πB2

4
d

dθ
P ◦(θ, v)

where
dP ◦

dθ
=

1
cos v

(
a sin θ − l cos α · dα

dθ

)

In section 3 the angle α was calculated to

α = arccos
(

a

l
sin(v + θ) − x′

l
cos v

)
− v (10)
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To simplify the reading and writing, a new variable named f is introduced.
It is defined as:

f =
1
l

(
a sin (θ + v) − x′ cos v

)

The derivative of α can now be written:

dα

dθ
=

−1√
1 − f2

· df

dθ

where
df

dθ
=

a cos (θ + v)
l

6 Program package

The software for calculating the cylinder volume consists of four files; tilt.m,
SVCvolume.m, SVCdata.m, and stdvolume.m. These are presented in Ap-
pendix A

The function SVCdata initiates the global variable ENGINE which is used
in all the other functions. ENGINE is a structure containing the geometry of
the SVC engine. All data is in SI-units.

SVCvolume calculates the volume and its differential as function of crank
and tilt angles for an SVC engine. It also calculates the compression ratio
and clearance volume or crank angle at TDC and BDC, as function of tilt
angle. Type help SVCvolume in Matlab to get some more information.

If the desired output from SVCvolume is volume or its differential, the
crank angle and tilt angle should be passed as input. Usually, the com-
pression ratio is known but not the tilt angle and there is no obvious way
to calculate the tilt from the compression. The function tilt uses linear
interpolation to find the tilt angle for a given compression ratio.

stdvolume calculates the cylinder volume according to the standard vol-
ume function. It uses the global variable ENGINE as well. The standard
model for calculating cylinder volume is

V (θ, rc) = Vc(rc) +
πB2

4
(l + a − s(θ))

where s is the distance between the crankshaft and the piston pin, that is

s(θ) = a cos θ +
√

l2 − a2 sin2 θ

The compression ratio can either be passed as input or be included in EN-
GINE.
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7 Comparative study

The Matlab functions described in the previous section were used to study
the behavior of an SVC engine. First the compression ratios were calculated
as function of tilt angles. The result, shown in figure 6, is according to the
information given by SAAB. At a tilt of 4◦ the compression should be 8 and
at 0◦ it should be 14. It is obvious that the latter requirement was to be
fulfilled since this point was used as a reference.

0 0.5 1 1.5 2 2.5 3 3.5 4
8

9

10

11

12

13

14
Compression ratio

r c

v

Figure 6: Compression ratio as function of tilt angle

The variation in crank angle at top dead center and bottom dead center
is shown in figure 7. As can be seen, the variation is almost linear. The
TDC and BDC position can thus be determined from:

θ̂TDC = c1 + c2 · v
θ̂BDC = d1 + d2 · v

Using the method of least squares, c1, c2, d1, and d2 are identified as −11.1 ·
10−3 [rad], −0.512, 3.12 [rad] and −0.136 respectively.
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Figure 7: Bottom and top dead center as function of tilt angle

7.1 A comparison between the standard volume function and
the SVC volume function

In an SVC engine, the cylinder is not centered above the crankshaft and the
cylinder is often tilted, therefore the standard volume function will not give
accurate result. For example, the position of top dead center (TDC) and
bottom dead center (BDC) is different, as shown in Figure 7. Due to the
asymmetrical placement of the cylinder, θTDC is not zero even when v = 0,
and in addition the shape of the volume curve will change. In Figure 8, the
cylinder volume at v = 4◦ has been calculated in two ways, using the SVC
volume function and using the standard volume function. The choice of tilt
angle is due to that v = 4◦ is the highest possible tilt, and therefore will
have the greatest deviation from the standard volume function. The relative
error at this tilt angle is as big as 6%.

The greatest deviation in volume differential between the two models at
v = 4◦ is at crank angles close to TDC (Figure 9). Note that the bottom
picture shows the error, not the relative error.

The most significant difference between the outcome of the standard and
the SVC volume function is that TDC is not positioned at θ = 0 in the latter
case. By adjusting the crank angle with the deviation in TDC, the standard
volume function gives better results. As can be seen in Figure 7, it is a
almost linear relationship between TDC position and tilt angle. The crank
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Figure 8: Top: Volume as function of crank angle at v = 4◦. The solid line
is simulated with the SVC volume function and the dotted line simulated
with a standard volume function. Bottom: Relative difference between the
standard volume function and the SVC volume function, i.e. Vstd−VSV C
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angle input to the standard volume function can then be adjusted according
to:

θ′ = θ − θ̂TDC

The result from a simulation with such a crank angle input is shown in
Figure 10. As before, the simulation is done at a tilt angle of 4◦. No
changes are done on the crank angle input to the SVC volume function. As
can be seen, the error caused by using the simple model is much reduced.
The relative error in volume does not exceed 0.6% and the maximum error
in dV

dθ is reduced with a factor four.
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Figure 10: The crank angle degree has been adjusted to compensate for the
deviation in TDC from θ = 0, when simulating with the standard volume
function. Top: Relative difference in volume between the standard volume
function and the SVC volume function. Bottom: Difference in volume differ-
ential between the standard volume function and the SVC volume function.

7.2 The effect of pin-off

Even when the engine top is not tilted, the cylinder is not centered above
the crank axis. There is a pin-off between the cylinder and the crank axis.
This is very common in modern engines.

The effect of the pin-off is normally neglected when calculating the cylin-
der volume as function of crank angle, since it is makes the function more
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complicated. In figure 11 it is shown how much the pin-off effects the volume.
The ’maximum relative error’ is the maximum relative deviation between the
SVC volume function and the standard volume function at a tilt angle of
zero degrees. The crank angle input to the standard volume function has
been adjusted for the offset in top dead center, and the compression ratio is
determined for each pin-off. The maximum relative error is a measure of how
much the shape of the curve is changed when there is a pin-off. The pin-off
of the SVC engine is 2.2 [mm], which is 1.09% of the length of the crank
rod plus the piston-pin. This means that the maximum error caused by not
including the pin-off in the model but still compensating for the change in
TDC is 0.29%.
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Figure 11: The relative error in volume at no tilt caused by neglecting the
effect of pin-off. Relative pin-off is expressed in percentage of piston pin plus
crank rod, i.e. relative pin-off = 100 · pin-off

l+a .

8 Conclusions

Since the cylinders are not centered above the crankshaft and are often
tilted, volume calculations with the standard cylinder volume function will
not give accurate results. Comparing the standard volume function with
the SVC volume function at a tilt angle of 4◦, shows that the relative error
is as big as 6% at some crank angles. This is due to the different shape
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of the volume curve, the change in position of BDC, and most importantly
the change in position of TDC. By adjusting the crank angle argument with
the TDC offset, the standard volume function can be used with good result.
The maximum relative error in volume will then be about 0.5%, and the
error in volume differential will be reduced with more than a factor 4.

The pin-off has a noticeable effect on the cylinder volume. Neglecting
the pin-off in the SVC function but adjusting for the change in TDC causes
a maximum relative error of 0.29% at a tilt angle of zero degrees.
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A Matlab code

A.1 SVCdata.m

function SVCdata
%
%
% Engine data for a SVCengine
% ---------------------------
%
% SVCdata
%
% SVCdata creates the global variable ENGINE, which contains
% the following information:
%
% ENGINE = struct...
% ’name’ = Engine name
% ’B’ = Cylinder bore
% ’l’ = Piston pin
% ’a’ = Crank rod
% ’x’ = Distance in x-direction between crank axis
% and tilt axis
% ’y’ = Distance in y-direction between crank axis
% and tilt axis
% ’r’ = Distance between tilt axis and cylinder
% center
% ’rc0’ = Compression ratio at upright position
%
% See also SVCvolume
%
%

global ENGINE
ENGINE = struct(...

’name’, ’SVC’, ...
’B’, 0.068, ...
’l’, 0.158, ...
’a’, 0.044, ...
’x’, 0.0847, ...
’y’, 0.0956, ...
’r’, 0.0825, ...
’rc0’, 14 );
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A.2 SVCvolume.m

function [out1,out2] = SVCvolume(arg1,arg2,choice)
%
%
% SVCvolume
% ---------
%
% [out1,out2] = SVCvolume(arg1,arg2,choice)
%
% SVCvolume calculates the volume and its differential,
% compression ratio and clearance volume or top and
% position of bottom dead center a SVC engine. The
% function uses a global variable ENGINE. If ENGINE is
% not predefined when the function is called, ENGINE is
% initialized by a call to SVCdata.
%
%
% Calculate volume as function of crank angle:
%
% [V,dV] = SVCvolume(crankangle,tiltangle)
% crankangle may contain a vector
% tiltangle should be a scalar
%
%
% Calculate compression ratio and clearance volume as
% function of tilt angle:
%
% [rc,Vc] = SVCvolume([],tiltangle,’rc’)
% tiltangle may contain a vector
%
%
% Calculate top dead center and bottom dead center as
% function of tilt angle:
%
% [TDC,BDC] = SVCvolume([],tiltangle,’tdc’);
% tiltangle may contain a vector
%
%
% See also stdvolume SVCdata
%
%
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global ENGINE
persistent Vc Pomax ang name
kf = pi/180;
if isempty(ENGINE)
SVCdata;

end

if nargin<2
disp(’Error: Too few arguments to SVCvolume’);
out1 = [];
out2 = [];
return;

end
if nargin==2
theta = arg1;
v = arg2;

if isempty(ang)|any(size(ang)~=size(v))|any(size(Vc)~=size(v))|...
~strcmp(name,ENGINE.name)

[Pomax,Vc] = comp(v);
ang = v;
name = ENGINE.name;

elseif ang~=v
[Pomax,Vc] = comp(v);
ang = v;

end

[Po,dPo] = pointo(theta,v*ones(size(theta)));
V = Vc + pi*ENGINE.B^2/4*(Pomax-Po);
dV = -pi*ENGINE.B^2/4*dPo;
out1 = V;
out2 = dV;

else
if strcmp(choice,’rc’);
v = arg2;
[junk,Vc,rc] = comp(v);
out1 = rc;
out2 = Vc;

elseif strcmp(choice,’tdc’);
v = arg2;
out1 = tdc(v);
out2 = bdc(v);

else
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disp(’Error: No match for choice in SVCvolume’);
out1 = [];
out2 = [];
return;

end
end

function [Pomax,Vc,rc] = comp(v)
global ENGINE

persistent Vc0 Pomax0 ang name

if isempty(ang) | any(size(ang)~=size(v))|~strcmp(ENGINE.name,name)
[Vc0,Pomax0] = volume0;
ang = v;
name = ENGINE.name;

elseif ang~=v
[Vc0,Pomax0] = volume0;
ang = v;

end

Pomax = pointo(tdc(v),v);
Pomin = pointo(bdc(v),v);
Vc = Vc0 + pi*ENGINE.B^2/4*(Pomax0-Pomax);
rc = 1 + 1./Vc * pi*ENGINE.B^2/4.*(Pomax-Pomin);

function [Vc0,Pomax0] = volume0
global ENGINE

Pomax0 = pointo(tdc(0),0);
Pomin0 = pointo(bdc(0),0);
Vc0 = pi*ENGINE.B^2/(4*(ENGINE.rc0-1)) * (Pomax0-Pomin0);

function thmax = tdc(v)
global ENGINE
xprim = tan(v).*(ENGINE.y+ENGINE.r*sin(v))-ENGINE.x+ENGINE.r*cos(v);
thmax = -v+asin(xprim/(ENGINE.l+ENGINE.a).*cos(v));

function thmin = bdc(v)
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global ENGINE
xprim = tan(v).*(ENGINE.y+ENGINE.r*sin(v))-ENGINE.x+ENGINE.r*cos(v);
thmin = pi-v+asin(xprim/(ENGINE.l-ENGINE.a).*cos(v));

function [Po,dPo] = pointo(theta,v)
global ENGINE

xprim = tan(v).*(ENGINE.y+ENGINE.r*sin(v))-ENGINE.x+ENGINE.r*cos(v);
f = ENGINE.a/ENGINE.l*sin(theta+v) - xprim/ENGINE.l.*cos(v);
alpha = acos(f)-v;
df = ENGINE.a/ENGINE.l*cos(v+theta);
dalpha = -1./sqrt(1-f.^2).*df;

Po = 1./cos(v).*(-ENGINE.y - ENGINE.r*sin(v) + ENGINE.a*cos(theta) + ...
ENGINE.l*sin(alpha)) ;

dPo = 1./cos(v).*(-ENGINE.a*sin(theta)+ENGINE.l*cos(alpha).*dalpha);

A.3 tilt.m

function v = tilt(rc)
%
%
% tilt
% ----
%
% v = tilt(rc)
%
% Tilt returns the tilt angle ’v’ for a given compression
% ratio ’rc’. The compression ratio should be in the range
% 8 to 14. Tilt uses interpolation to calculate the tilt
% angle.
%
% The function uses a global variable ENGINE. If ENGINE is
% not predefined when the function is called, ENGINE is
% initialized by a call to SVCdata.
%
% See also SVCdata
%
%

kf = pi/180;
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vv = [-0.5:0.1:8]*kf;
rcv = SVCvolume([],vv,’rc’);
v = interp1(rcv,vv,rc);

A.4 stdvolume.m

function [V,DV] = stdvolume(theta,rc);
%
%
% Cylinder volume and Cylinder volume differential
% ------------------------------------------------
%
% [V,DV] = stdvolume(theta,rc)
% V = Volume [m3]
% DV = dV/d(theta)
% theta = crank angle [rad]
% rc = compression ratio
%
%
% The function calculates the volume and its differential based on
% the standard volume function (ref. Heywood).
%
% Geometrical data are defined in global variable ENGINE. If ENGINE
% contains a field ’rc’, the compression ratio does not have to be
% passed as an inargument to the stdvolume function.
%
% See also SVCvolume
%
%

global ENGINE

l = ENGINE.l; % connecting rod length [m]
a = ENGINE.a; % crank radius [m]
B = ENGINE.B; % cylinder bore [m];
if nargin<2
if isfield(ENGINE,’rc’)
rc = ENGINE.rc;

else
disp(’Error: Unknown compression ratio [stdvolume]’);
V = [];
dV = [];
return;
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end
end

Vc=((B/2)^2)*pi*2*a/(rc-1); % Clearance volume [m^3]

s1= sqrt(l^2 - a^2*(sin(theta)).^2); % Hjälpvariabel
s = a*cos(theta) + s1; % Hjälpvariabel

V = Vc + pi*B^2/4*(l+a-s);
DV = pi*(B^2)/4*(a*sin(theta) + (a^2*sin(2*theta))./(2*s1));
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