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Abstract

When designing model-based fault-diagnostic systems, the use of con-
sistency relations (also called e.g. parity relations) is a common choice.
Different consistency relations are sensitive to different subsets of faults,
and thereby isolation can be achieved. This report presents an algo-
rithm for finding a small set of submodels that can be used to derive
consistency relations with highest possible diagnosis capability. The
algorithm handles differential-algebraic models and is based on graph
theoretical reasoning about the structure of the model. An important
step towards finding these submodels, and therefore also towards find-
ing consistency relations, is to find all minimal structurally singular
(MSS) sets of equations. These sets characterize the fault diagnosabil-
ity. The algorithm is applied to a large nonlinear industrial example,
a part of a paper plant. In spite of the complexity of this process,
a small set of consistency relations with high diagnosis capability is
successfully derived.
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Chapter 1

Structural Analysis

1.1 Introduction

When designing model-based fault-diagnostic systems, using the prin-
ciple of consistency based diagnosis [7, 12, 8], a crucial step is the con-
flict recognition. As shown in [4], conflict recognition can be achieved
by using pre-computed consistency relations (also called e.g. analytical
redundancy relations or parity relations). With properly chosen consis-
tency relations, different subsets of consistency relations are sensitive
to different subsets of faults. In this way isolation between different
faults can be achieved.

The systems considered in this report are assumed to be modeled
by a set of nonlinear and linear differential-algebraic equations. To
find consistency relations by directly manipulating these equations is
a computationally complex task, especially for large and nonlinear sys-
tems. To reduce the computational complexity of deriving consistency
relations, this report proposes a two-step approach. In the first step,
the system is analyzed structurally to find overdetermined submodels.
Each of these submodels are then in the second step transformed to
consistency relations. The benefit with this two-step approach is that
the submodels obtained are typically much smaller than the whole
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model, and therefore the computational complexity of deriving consis-
tency relations from each submodel is substantially lower compared to
directly manipulating the whole model.

The main contribution and the focus of the report is a structural
algorithm for finding these submodels. Instead of directly manipulat-
ing the equations themselves, the proposed algorithm only deals with
the structural information contained in the model, i.e. which variables
that appear in each equation. This structural information is collected
in a structural model. In addition to finding all submodels that can be
used to derive consistency relations, the algorithm also selects a small
set of submodels that corresponds to consistency relations with the
highest possible diagnosis capability.

In industry, design of diagnosis systems can be very time consum-
ing if done manually. Therefore it is important that methods for
diagnostic-system design are as systematic and automatic as possi-
ble. The algorithm presented here is fully automatic and only needs
as input a structural model of the system. This structural model can
in turn easily be derived from for example simulation models.

Structural approaches have been studied in other works dealing
with fault diagnosis. In [11] a structural approach is investigated as
an alternative to dependency-recording engines in consistency based
diagnosis. Furthermore a structural approach is used in the study of
supervision ability in [3] and an extension to this work considering
sensor placement is found in [13].

In Section 1.2 and 1.3, structural models and their usefulness in
fault diagnosis are discussed. Then in Chapter 2, a complete descrip-
tion of the algorithm is given. The algorithm is then in Chapter 3
applied to a large nonlinear industrial process, a part of a paper plant.
In spite of the complexity of this process, a small set of consistency
relations with high diagnosis capability is successfully derived.

1.2 Structural Models

The behavior of a system is described with a model. Usually the
model is a set of equations. A structural model [3] contains only the
information of which variables that are contained in each equation.
Let Morig denote the structural model obtained from the equations,
describing the system to be diagnosed.
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This structural model will contain three different kinds of vari-
ables: known variables Y, e.g. sensor signals and actuators; unknown
variables Xu, for example internal states of the system; and finally
the faults F. To gain isolability it is sometimes necessary to decouple
faults, i.e. to eliminate faults. A fault is decoupled by considering the
fault variable as an unknown variable, i.e. include the fault in Xu. The
differentiated and non-differentiated version of the same variable are
considered to be different variables. The time shifted variables in the
time discrete case are also considered to be separate variables.

A structural model can be represented by an incidence matrix [2,
6]. The rows correspond to equations and the columns to variables. A
cross in position (i, j) tells that variable j is included in equation i.

Example 1.1 A simple example, showed in Figure 1.1, is a pump,
pumping water into the top of a tank. The water flows out of the
tank through a pipe connected to the bottom of the tank. The known
variables are the pump input u, the water level in the tank yh and the
flow from the tank yf. One fault denoted fi is associated to each known
variable. The actual flows to and from the tank are denoted Fi, and
the actual water level in the tank is denoted h. Without knowing the
exact physical equations describing the analytic model the structural
model can be set up as follows:

equation unknown fault known
F1 F2 h ḣ fu fyh fyf ḟyf u yh yf

e1 X X X

e2 X X X

e3 X X X

e4 X X

e5 X X X

e6 X

(1.1)

Equation e1 describe the pump, e2 the conservation of volume in the
tank, e3 the water level measurement, e4 the flow from the tank caused
by the gravity, e5 the flow measurement and e6 a fault model for the
flow measurement fault fyf.
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Figure 1.1: A small system with a pump, pumping water into a tank.

1.3 Fault Diagnosis Using Structural Models

The task is to find submodels that can be used to form consistency
relations. To be able to draw a correct conclusion about the diagnos-
ability, i.e. detectability and isolability, from the structural analysis it
is crucial that for each of these submodels there is a consistency relation
that validates all equations included in the submodel. The common
definition of consistency relation does not ensure this. Therefore a
new definition of consistency relation for an equation set is introduced
that explicitly points out the submodel considered. Before consistency
relation for a set of equations E is defined some notation is needed.

Let x and y denote the vectors of variables contained in Xu and Y

respectively. Then E(x,y) denotes an equation set E that depends on
variables contained in Xu and Y.

Definition 1.1 (Consistency Relation for E). A scalar equation
c(y) = 0 is a consistency relation for the equations E(x,y) iff

∃xE(x,y) ⇔ c(y) = 0 (1.2)

and there is no proper subset of E that has property (1.2).

The idea to define consistency relations for an equation set E in
this way is to ensure the following: it is a sufficient explanation for an
inconsistency c(y) 6= 0 that any equation in E is not valid.



1.3. FAULT DIAGNOSIS USING STRUCTURAL MODELS 5

Definition 1.1 differ from the common definition of consistency re-
lation in two ways, the left implication in (1.2) and that there is no
proper subset of E that has property (1.2). Refer to the latter as the
minimality condition in Definition 1.1. The following example shows
the importance of the left implication in (1.2).

Example 1.2 Consider the model E = {y1 = x, y2 = x, y3 = x}.
The equation y1 − y2 = 0 is not a consistency relation for E, because
it is true even if e.g. y3 6= y1 = y2 and then it is impossible to find
a consistent x in E. However y1 − y2 = 0 is a consistency relation for
{y1 = x, y2 = x}.

The expression y1+y2−2y3 = 0 includes y3. The right implication
in (1.2) holds, but the opposite direction does not hold. The conclusion
is that also this expression is not a consistency relation for E or any
equation subset of E.

However (y1 − y2)
2 + (y2 − y3)

2 = 0 is a consistency relation for
E.

The next example explains the reason why it is important that
there is no proper subset of E that has property 1.2 in Definition 1.1.

Example 1.3 Let the model be M = {y1 = x1, y2 = x1, y3 =

x2, x1 = x2}. Each equation explains a behavior of a part of the
modeled system. Now, should there be a consistency relation for
E = {y1 = x1, y2 = x1, y3 = x2}? It is easy to find a relation that
satisfy (1.2), e.g. y1 − y2 = 0. To see why it is not good to call
y1 − y2 = 0 a consistency relation for E, we suppose that y1 − y2 6= 0

has been observed.

y1 − y2 6= 0 ⇔ ¬∃x1, x2(y1 = x1 ∧ y2 = x1 ∧ y3 = x2) ⇔
¬∃x1(y1 = x1 ∧ y2 = x1) ∨ ¬∃x2(y3 = x2)

Note that ¬∃x2(y3 = x2) is false regardless of y3 and therefore

y1 − y2 6= 0 ⇔ ∀x1(y1 6= x1 ∨ y2 6= x1) ⇒ y1 6= x1 ∨ y2 6= x1

These calculations imply that the consistency relation y1 − y2 = 0

can never infer anything about y3 = x2. The minimality condition in
Definition 1.1 implies that e.g. y1 − y2 = 0 is a consistency relation
only for {y1 = x1, y2 = x1}. This is the minimal set of equations
that must be used to derive y1 − y2 = 0. Accepting the minimality
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condition in Definition 1.1 implies that there is no consistency relation
for E at all.

1.3.1 Basic Assumptions

Basic assumptions are needed to guarantee that the subsets found only
by analyzing structural properties are those subsets that can be used
to form consistency relations. Before the basic assumptions are pre-
sented, some notation is needed. Let E be any set of equations and X

any set of variables. Then define varX(E) = {x ∈ X|∃e ∈ E : e contains
x} and equE(X) = {e ∈ E|∃x ∈ X : e contains x}. Also, let varX(e)

and equE(x) be shorthand notations for varX({e}) and equE({x}) re-
spectively. If g is any equation, function or variable, let g(i) denote
the i:th time derivative of g. Then define varX(E) = {undifferentiated
x|∃i(x(i) ∈ varX(E))}, e.g. varXu∪Y({y = ẋ}) = {y, x}. Finally, the
number of elements in any set E is denoted |E|.

The first assumption is a technical requirement used to ensure that
Algorithm 2 later described in Section 2.1 will terminate.

Assumption 1.1. The model Morig has the property

∀E ⊆ Morig : |E| ≤ |varXu∪Y(E)|. (1.3)

The meaning of condition (1.3) is that each subset of equations in-
clude more or equally many different variables, considering derivatives
as the same variable. If condition (1.1) is not fulfilled and there are
no redundant equations, the model would normally be inconsistent.

The first example illustrate that there are models that does not
satisfy Assumption 1.1. Furthermore, the example shows two methods
that can be applied to transform a model into one or several models
that satisfy Assumption 1.1.

Example 1.4 Consider the model

e1 : ẋ = 0

e2 : x + ẍ = 0

e3 : y = x.

Since for example |varXu∪Y({e1, e2})| = 1 < 2 = |{e1, e2}| does not
fulfill the inequality (1.3), the model does not satisfy Assumption 1.1.
However, e1 and e2 can be merged into one equation. Differentiating e1
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and substitute the result in e2, will produce x = 0. This expression is
equivalent to the equations e1 and e2. In this way, we have transformed
a model that does not satisfy Assumption 1.1 to an equivalent model
that does satisfy Assumption 1.1.

A second approach to transform a model, when Assumption 1.1
fails to hold, is to remove equations that make the assumption to fail.

In this example it is possible to consider {e1, e3} in the first anal-
ysis and then {e2, e3}. By using this method we find the consistency
relations ẏ = 0 and y + ÿ = 0 for the two subsets respectively. These
two consistency relations are equivalent to y = 0.

The next example shows when the model is inconsistent and As-
sumption 1.1 is not fulfilled.

Example 1.5 A slightly modified model is

e1 : ẋ = 1

e2 : x + ẍ = 0

e3 : y = x.

As before, in the previous example, the model does not satisfy As-
sumption 1.1. In this case x is over determined. The equations e1 and
e2 are inconsistent. The equation e1 implies that x is strictly increas-
ing, while e2 expresses an oscillation of x. Hence a model that does
not satisfy Assumption 1.1 can be inconsistent.

From now on all models considered are assumed to satisfy Assump-
tion 1.1.

As mentioned earlier, the structural model contains less informa-
tion than the analytical model. The next assumption makes it possible
to draw conclusions about analytical properties from the structural
properties.

Assumption 1.2. There exists a consistency relation c(y) = 0 for H

iff
∀X ′ ⊆ varXu (H), X ′ 6= ∅ : |X ′| < |equH(X ′)| (1.4)

According to Assumption 1.2, the unknown variables in H can be
eliminated if and only if it holds that for each subset of variables in
H the number of variables is less then the number of equations in H

which contain some of the variables in the chosen subset.
The Assumptions 1.1 and 1.2 are often fulfilled. For example all

subsets of equations found in the industrial example in the end of the
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report satisfy Assumption 1.2. Even though the ”only if” direction of
Assumption 1.2 is difficult to validate in an application, the results of
the report can still be used to produce a lower bound of the actual
detection and isolation capability.

If all subsets of the model fulfill Assumption 1.2, the structural
analysis will find all subsets that can be used to find consistency rela-
tions.

Still there are sometimes inconsistencies that rely on smaller sub-
models than the structural analysis finds.

Example 1.6 The model

y = x2 (1.5)

satisfy Assumption 1.1 and Assumption 1.2. Nevertheless consistency
for y = x2 can be checked using y ≥ 0. It is not necessary to eliminate
x in this example, because (1.5) forces y ∈ R+ ∪ {0}.

The conclusion is that the structural method in this report handle
the cases when elimination of all unknown variables is possible.

Still there are inconsistencies that can not be revealed when As-
sumption 1.2 is not fulfilled. Here follows an illustrating example.

Example 1.7 The model

e1 : x1 + x2 = y1

e2 : x1 + x2 = y2

e3 : x1 − x2 = 0,

(1.6)

satisfies Assumption 1.1 and (1.4). However, it is not possible to make
a consistency relation for {e1, e2, e3}. Hence, Assumption 1.2 is not
fulfilled for {e1, e2, e3}. The linear dependence of x1 and x2 in the
first and second equations, makes it impossible to validate the third
equation.

Furthermore {e1, e2} does not satisfy (1.4) even though y1−y2 = 0

is a consistency relation for {e1, e2}.
The structural analysis will find the submodel that fulfill prop-

erty (1.4) in this case {e1, e2, e3} and when the consistency relation is
to be calculated, it will be clear that the consistency relation found is
a consistency relation only for {e1, e2}.

If the model consists of {e1, e2}, then no consistency relations are
found with structural analysis.
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This model does not satisfy Assumption 1.2 because of the linear
dependence in e1 and e2.

Finally, a theorem is presented that guarantee that all sets with
the structural property (1.4) have to include known variables, if the
Assumptions 1.1 and 1.2 are fulfilled.

Theorem 1.1. Let H ⊆ Morig, where Morig satisfies Assumption 1.1.
If H satisfies Assumption 1.2, then varY(H) 6= ∅.

Proof. From the fact that H satisfies Assumption 1.2 it follows that

|H| = |equH(varXu (H))| > |varXu (H)| ≥ |varXu (H)| (1.7)

According to (1.3) it holds that

|H| ≤ |varXu∪Y(H)|. (1.8)

Suppose that varY(H) = ∅. This implies also that varY(H) = ∅ and
hence

varXu∪Y(H) = varXu (H) (1.9)

Finally (1.7), (1.8) and (1.9) implies a contradiction.
Hence, varY(H) 6= ∅. �

1.3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be used to derive
consistency relations will be transformed to the task of finding the
subsets of equations that have the structural property (1.4). To do
this, two important structural properties are defined [10].

Definition 1.2 (Structurally Singular). A finite set of equations
E is structurally singular with respect to the set of variables X if |E| >

|varX(E)|.

Definition 1.3 (Minimal Structurally Singular). A structurally
singular set is a minimal structurally singular (MSS) set if none of its
proper subsets are structurally singular.

For simplicity, MSS will always mean MSS with respect to Xu in
the rest of the text if nothing else is mentioned. The next theorem tells
that it is sufficient and necessary to find all MSS sets to parameterize
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structural property equation sets
structurally singular {e1, e2}, {e1, e2, e3}, {e1, e2, e4},

{e1, e2, e3, e4}, {e3, e4}, {e1, e3, e4}, {e2, e3, e4}

MSS {e1, e2}, {e3, e4}

condition (1.4) {e1, e2}, {e3, e4}, {e1, e2, e3, e4}

Table 1.1: Equation sets of (1.10) and their structural properties.

all different sets that can be utilized to form consistency relations. The
task of finding all submodels that can be used to derive consistency
relations has thereby been transformed to the task of finding all MSS
sets.

Theorem 1.2. Let H ⊆ Morig, where Morig fulfills Assumption 1.1.
Further, let H and all MSS sets Ei included in H fulfill Assumption 1.2.
Then there exists a consistency relation c(y) = 0 for H(x,y) where
|H| < ∞ iff H =

⋃
i Ei.

Before Theorem 1.2 is proven, two example illustrates the impor-
tance of this theorem.

Example 1.8 The structural model

equation x1 x2 y1 y2

e1 X X

e2 X

e3 X X

e4 X

(1.10)

fulfills Assumption 1.1 and assume that Assumption 1.2 is fulfilled for
all submodels. Equation sets of (1.10) and their structural properties
are shown in Table 1.1

Note that the sets that satisfy condition (1.4) are these sets that can
be used to derive consistency relations according to Assumption 1.2.

Neither all supersets to MSS sets fulfill condition (1.4), nor all
structurally singular sets fulfill condition (1.4). Instead Theorem 1.2
state that the union of families of MSS sets are the sets that satisfy
condition (1.4).

In this small example is

{e1, e2} ∪ {e3, e4} = {e1, e2, e3, e4}
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which satisfy condition (1.4).

To prove Theorem 1.2, a couple of definitions and Lemmas are
needed. For readers who are not interested in the proofs, it is possible
to directly go to Chapter 2.

1.3.3 Some Basic Graph Theoretic Concepts and Re-
sults

Structural models can naturally be represented also as bipartite graphs
[2, 3]. This view is utilized especially when proving theorems and in
Section 2.3.

Let G = (E, X) be a bipartite graph with the nodes partitioned as
E ∪ X. There is an edge {e, x} with e ∈ E and x ∈ X if and only if
x ∈ varX(e). A matching in G is a subset of edges, such that no two
edges share a common node in E or X. A complete matching of E into
X is a matching in G such that every x ∈ X is an endpoint of an edge.
A matching in G can equally well be a complete matching of X into E.
A matching in G that firstly is a complete matching of E into X and
secondly is a complete matching of X into E is a perfect matching in
G [5].

The following theorem is often refereed to as Hall’s theorem [6].

Theorem 1.3 (System of Distinct Representatives). Let V =

{V1, V2, · · · , Vm} be a set of objects and S = {S1, S2, · · · , Sn} a set
of subsets of V. Then a complete matching of S into V exists iff
∀S ′ ⊆ S : |S ′| ≤ |

⋃
Si∈S′ Si|.

Note that Theorem 1.3 can be used in two ways. The following
two corollaries are immediate from Theorem 1.3.

Corollary 1.4. There is a complete matching of E into X iff ∀E ′ ⊆ E :

|E ′| ≤ |varX(E ′)|.

Corollary 1.5. There is a complete matching of X into E iff ∀X ′ ⊆
X : |X ′| ≤ |equE(X ′)|.

1.3.4 Theory Towards Proving Theorem 1.2

This section aims to prove Theorem 1.2. The proof is divided into
several Lemmas as shown in Figure 1.2.
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Theorem 1.6

Lemma 1.7

Lemma 1.8

Lemma 1.9

Lemma 1.10 Lemma 1.11

Theorem 1.2

Figure 1.2: Logical dependence of Lemmas and Theorems towards
proving Theorem 1.2.

Theorem 1.6. For all e ∈ E there exists a perfect matching in
(E\{e}, varXu (E)) if and only if E is an MSS set.

Proof. ⇒) From the hypothesis that there exist a perfect matching
in (E\{e}, varXu (E)) for any e ∈ E, it follows that E is structurally
singular, because |varXu (E)| = |E\{e}| < |E|.

The set E is also minimal if no subset of E is structurally singular,
i.e. ∀Ê ⊂ E : |varXu (Ê)| ≥ |Ê|. For each proper subset Ê of E, it is
always possible to choose an equation e, such that Ê ⊆ E\{e}. Since
there exists a perfect matching in (E\{e}, varXu (E)), according to the
hypothesis, it follows that there exists a complete matching of Ê into
varXu (E).

Let E = Ê and X = varXu (E) in Corollary 1.4, then

∀E ′ ⊆ Ê : |E ′| ≤ |varvarXu (E)(E
′)| = |varXu (E ′)|. (1.11)

Letting E ′ = Ê, the inequality (1.11) becomes |Ê| ≤ |varXu (Ê)|. The
conclusion is that Ê is not structurally singular and since Ê is an arbi-
trary chosen proper subset of E, it follows that E is an MSS set.

⇐) Take an arbitrary e ∈ E and let E ′ = E\{e}. It is sufficient to
prove that there exist a perfect matching in (E ′, varX(E)).

From the definition of MSS sets, it follows that ∀Ē ⊂ E : |Ē| ≤
|varX(Ē)|. Especially this is true for E ′ ⊂ E , i.e. ∀Ē ⊆ E ′ : |Ē| ≤
|varX(Ē)|. According to Corollary 1.4, there is a complete matching of
E ′ into varX(E ′).
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Since E is an MSS set and varX(E ′) ⊆ varX(E) it follows that

|E ′| ≤ |varX(E ′)| ≤ |varX(E)| < |E| = |E ′| + 1 (1.12)

This implies that |E ′| = |varX(E ′)|, hence the complete matching is a
perfect matching in (E ′, varX(E ′)). The inequality (1.12) also implies
that |varX(E ′)| = |varX(E)|, therefore varX(E ′) = varX(E). The per-
fect matching in (E ′, varX(E ′)) is also a perfect matching in (E ′, varX(E)).

�

Lemma 1.7. Assume that there is a path P between a pair of equa-
tions e1 and ek in G where k 6= 1. The equations included in the path
P are denoted EP and the variables included in the path P are denoted
XP. Then for all equation sets E ⊂ EP, it holds that

|E| ≤ |varXP
(E)|. (1.13)

Furthermore
|EP| = |XP| + 1 (1.14)

and
∀X ′ ⊆ XP, |X ′| 6= 0 : |X ′| < |equEP

(X ′)|. (1.15)

Proof. Let the path P be defined as e1−x1−e2− · · ·−xk−1−ek. Take
an arbitrary equation set E ⊂ EP. We will find a complete matching
of E into XP. Since E is a proper subset of EP, then there is an ej ∈ EP

such that ej /∈ E.
Assign xi to ei for all ei ∈ E, where i < j, and assign xi−1 to ei

for all ei ∈ E, where i > j. Corollary 1.4 implies that ∀E ′ ⊆ E : |E ′| ≤
|varXP

(E ′)| and especially |E| ≤ |varXP
(E)|. Hence (1.13) is proved.

The equation (1.14) follows from the fact that the starting point
and the ending point of P are equation nodes.

Finally, choose any X ′ ⊆ XP where |X ′| 6= ∅. Then it is clear that
∀xi ∈ X ′ : ei+1 ∈ equEP

(xi). Furthermore, for the smallest i such that
xi ∈ X ′ it follows that ei ∈ equEP

(xi). All |X ′| + 1 equations specified
are different equations and hence (1.15) holds. �

Lemma 1.8. Consider the sets H, E ⊆ H, and X ⊆ varXu (E). Assume
that:

∀X ′ ⊆ varXu (H), X ′ 6= ∅ : |X ′| < |equH(X ′)|, (1.16)

∀E ′ ⊆ E : |E ′| ≤ |varXu (E ′)|, (1.17)
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|E| = |X| + 1 ,and (1.18)

∀X ′ ⊆ X, |X ′| 6= 0 : |X ′| < |equE(X ′)|. (1.19)

Then there is a variable x ∈ varXu (E)\X and an equation e ∈ H\E

such that X ∪ {x} and E ∪ {e} satisfy

∀X ′ ⊆ X ∪ {x}, |X ′| 6= 0 : |X ′| < |equE∪{e}(X
′)| (1.20)

and
|E ∪ {e}| = |X ∪ {x}| + 1. (1.21)

Proof. First we will find an x /∈ X where x ∈ varXu (E). Using (1.18)
and |E| ≤ |varXu (E)| derived from (1.17), it is clear that |X| < |E| ≤
|varXu (E)|. Hence there must be an x ∈ varXu (E)\X. Take an arbitrary
x ∈ varXu (E)\X.

Let a set of variables X ′, where X ′ 6= ∅ and X ′ ⊆ X∪ {x}, be called
a critical set if

|equE(X ′)| = |X ′|. (1.22)

Next, we will show that there is a unique minimal critical set. Suppose
there are two minimal critical sets Xc1 and Xc2 where Xc1 6= Xc2. Note
that Xci 6= ∅ for i ∈ {1, 2} to satisfy (1.22).

Suppose that X ′ = X ∪ {x} is a critical set such that x /∈ X ′. Then
X ′ ⊆ X and (1.19) can be used deriving |X ′| < |equE(X ′)|. This con-
tradicts the fact that X ′ is critical. Hence all critical sets include x.

Then it is possible to do the following partition of Xc1 ∪ Xc2, de-
noting Xc1 ∩ Xc2 = X12 ∪ {x} where x /∈ X12, X1 = Xc1\Xc2, and
X2 = Xc2\Xc1. Figure 1.3 visualizes the partition.

According to the partition, the critical sets Xc1 and Xc2 are ex-
pressed as

Xc1 = X1 ∪ X12 ∪ {x} (1.23)

and
Xc2 = X2 ∪ X12 ∪ {x}. (1.24)

From (1.22), (1.23), (1.24), and the fact that Xci is critical it follows
that

|equE(Xci)| = |Xci| = |Xi| + |X12| + 1 for i ∈ {1, 2}. (1.25)
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Xc1 Xc2

X1 X2

X12

x

Figure 1.3: The partition of Xc1 and Xc2.

Since Xc2 is a minimal critical set it follows that Xc1 * Xc2. Using
(1.23) and (1.24) and the knowledge that these are partitions, imply
the equivalent expression X1 6= ∅. This implies that

X12 ∪ {x} ⊂ X1 ∪ X12 ∪ {x} = Xc1. (1.26)

Consider first any subset X ′ 6= ∅ of X ∪ {x} such that X ′ 6= {x}. From
(1.19) it follows that

∀X ′ ⊆ X∪{x}, |X ′| ≤ |X ′\{x}|+1 ≤ |equE(X ′\{x})| ≤ |equE(X ′)|. (1.27)

Further on, if X ′ = {x} then

|{x}| ≤ |equE({x})|, (1.28)

because of the fact that x is chosen such that x ∈ varXu (E). The
inequalities (1.27) and (1.28) implies that

∀X ′ ⊆ X ∪ {x}, X ′ 6= ∅ : |X ′| ≤ |equE(X ′)|. (1.29)

Now, the minimality of Xc1 and (1.26) imply that X ∪ {x} is not
critical, i.e.

|equE(X ∪ {x})| 6= |X ∪ {x}|. (1.30)

The set X ∪ {x} satisfies (1.29) and (1.30), hence

|equE(X12 ∪ {x})| ≥ |X12 ∪ {x}| + 1 = |X12| + 2. (1.31)

From the definition of the function equ it follows that for arbitrary
variable sets A and B and for an arbitrary equation set Ē it holds that

equĒ(A ∪ B) = equĒ(A) ∪ equĒ(B). (1.32)
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Using (1.32) and basic set theory implies

|equE(X1 ∪ X12 ∪ {x}) ∪ equE(X2 ∪ X12 ∪ {x})| =

|equE(X1 ∪ X12 ∪ {x} ∪ X2 ∪ X12 ∪ {x})| =

|equE(X1 ∪ X2 ∪ X12 ∪ {x})|.

(1.33)

Further on, it holds that

equE(X1 ∪ X12 ∪ {x}) ∩ equE(X2 ∪ X12 ∪ {x}) =(
equE(X1) ∪ equE(X12 ∪ {x})

) ∩ (
equE(X2) ∪ equE(X12 ∪ {x})

)
=(

equE(X1) ∩ equE(X2)
) ∪ equE(X12 ∪ {x}).

(1.34)
The last row in (1.34) can be underestimated using (1.31)∣∣(equE(X1) ∩ equE(X2)

) ∪ equE(X12 ∪ {x})
∣∣ ≥

|equE(X12 ∪ {x})| ≥ |X12| + 2.
(1.35)

Now, we will apply |A∪B| = |A|+|B|−|A∩B|, where A = equE(X1∪
X12 ∪ {x}) and B = equE(X2 ∪ X12 ∪ {x}). The left hand side can be
simplified using (1.33). The result is

|equE(X1 ∪ X2 ∪ X12 ∪ {x})| = |equE(X1 ∪ X12 ∪ {x})|+

|equE(X2 ∪ X12 ∪ {x})|−

|equE(X1 ∪ X12 ∪ {x}) ∩ equE(X2 ∪ X12 ∪ {x})|.

(1.36)

Further, substitute the results in (1.23), (1.24), (1.25), and (1.34) into
(1.36), then

|equE(X1 ∪ X2 ∪ X12 ∪ {x})| = |X1| + |X12| + 1 + |X2|+

|X12| + 1 − |
(
equE(X1) ∩ equE(X2)

) ∪ equE(X12 ∪ {x})|.
(1.37)

The last part of (1.37) is overestimated using (1.35)

|X1| + |X2| + 2|X12| + 2−

|
(
equE(X1) ∩ equE(X2)

) ∪ equE(X12 ∪ {x})|

≤ |X1| + |X2| + 2|X12| + 2 − (|X12| + 2) = |X1| + |X2| + |X12|.

(1.38)

The result of putting (1.37) and (1.38) together is

|X1| + |X2| + |X12| ≥ |equE(X1 ∪ X2 ∪ X12 ∪ {x})|

≥ |equE(X1 ∪ X2 ∪ X12)|.
(1.39)
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Finally, X1 ∪ X2 ∪ X12 ⊆ X and according to (1.19) is

|X1| + |X2| + |X12| < |equE(X1 ∪ X2 ∪ X12)|. (1.40)

The inequalities (1.39) and (1.40) implies a contradiction. Hence
there cannot be two minimal critical sets. Let the unique minimal
critical set be denoted Xcritical.

Now, it is time to show that there exists an equation e ∈ H\E that
fulfill (1.20). Suppose that equH(Xcritical) ⊆ E. This together with
(1.22) implies that |Xcritical| = |equE(Xcritical)| = |equH(Xcritical)|.This
is a contradiction according to (1.16). Hence there is an equation
e ∈ H\E such that varXcritical

(e) 6= ∅. Xcritical ∩ varX∪{x}(e) 6= ∅.
Now, we will show that this e fulfills (1.20). Take an arbitrary

X ′ ⊆ X∪ {x} where X ′ 6= ∅. Consider first the case when Xcritical ⊆ X ′.
Then it follows from (1.29) that |X ′| ≤ |equE(X ′)| < |equE∪{e}(X

′)|.
The last inequality follows from the fact that equ{e}(Xcritical) = {e}.

The opposite case is when Xcritical * X ′. From the fact that there
is a unique minimal critical set it follows that X ′ cannot be a critical set.
Hence (1.29) and |X ′| 6= ||equE(X ′) conclude that |X ′| < |equE(X ′)| ≤
|equE∪{e}(X

′)|, i.e. (1.20) holds.
Finally, it remains to prove (1.21). Simple calculations using (1.18)

gives |E ∪ {e}| = |E| + 1 = |X| + 2 = |X ∪ {x}| + 1. �

Lemma 1.9. Let the equation set H have the property (1.16). Sup-
pose that Ej ⊆ H has the property (1.17), and the corresponding Xj has
the properties (1.18) and (1.19). Let Ej+1 = Ej∪{e} and Xj+1 = Xj∪{x}

where x and e are defined in Lemma 1.8. Then Ej+1 is either an MSS
set or ∀E ′ ⊆ Ej+1 : |E ′| ≤ |varXu (E ′)|.

Proof. Note that according to Lemma 1.8, (1.21) and (1.20) hold for
the set Ej+1 and Xj+1. Take any Ê ⊂ Ej+1. Then there is an e ∈ Ej+1\Ê

such that Ê ⊆ Ej+1\{e}. From (1.20) it follows that

∀X ′ ⊆ Xj+1, X
′ 6= ∅ : |X ′| ≤ |equEj+1

(X ′)| − 1 ≤ |equEj+1\{e}(X
′)|
(1.41)

Especially, if X ′ = Xj+1 in (1.41) then

|Xj+1| ≤ |equEj+1\{e}(Xj+1)| (1.42)

holds. From (1.21) it follows that

|equEj+1\{e}(Xj+1)| ≤ |Ej+1\{e}| = |Xj+1|. (1.43)
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The inequalities (1.42) and (1.43) imply

|Xj+1| = |equEj+1\{e}(Xj+1)|. (1.44)

Now, using (1.41) in Corollary 1.5 it follows that there is a complete
matching of Xj+1 into Ej+1\{e}. The complete matching is also a per-
fect matching, according to (1.44). A perfect matching is especially a
complete matching of Ej+1\{e} into Xj+1. Corollary 1.4 implies that

∀E ′ ⊆ Ej+1\{e} : |E ′| ≤ |varXj+1
(E ′)|. (1.45)

Since Ê ⊆ Ej+1\{e}, then E ′ = Ê in (1.45) implies that

|Ê| ≤ |varXj+1
(Ê)|. (1.46)

The set Ê was an arbitrary proper subset to Ej+1. This implies that

∀E ′ ⊂ Ej+1 : |E ′| ≤ |varXj+1
(E ′)| ≤ |varXu (E ′)|. (1.47)

Now, it remains to study |varXu (Ej+1)|. From (1.47) it holds that

|Ej+1| = |Ej| + 1 ≤ |varXj+1
(Ej)| + 1 ≤ |varXj+1

(Ej+1)| + 1 ≤
|varXu (Ej+1)| + 1.

(1.48)

There are two cases. Suppose that equality in (1.48) holds, i.e.

|Ej+1| = |varXu (Ej+1)| + 1. (1.49)

From (1.47), (1.49), and the definition of MSS sets it follows that Ej+1

is an MSS set.
Next assume that, (1.48) is a strict inequality, i.e.

|Ej+1| ≤ |varXu (Ej+1)|. (1.50)

Hence according to (1.47) and (1.50) it follows that

∀E ′ ⊆ Ej+1 : |E ′| ≤ |varXu (E ′)|. (1.51)

�

Lemma 1.10. Let H ⊆ Morig, where Morig fulfills Assumption 1.1.
Further let H and all Ei fulfill Assumption 1.2. For each e ∈ H, there
exists an E ⊆ H such that e ∈ E, E is an MSS set, and varY(E) 6= ∅.
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Proof. First we will find an MSS set. This is done by adding equations
to e until an MSS set is found. Then, we prove that this MSS set has
to include known variables.

Suppose that varXu (e) = ∅. Then e is an MSS set.
If on the contrary varXu (e) 6= ∅, then there is an x ∈ varX(e).

Let X1 = {x}. According to (1.4) it follows that there is an e ′ ∈
equH(X1)\{e}. Define a path P as e − x − e ′. Let the equations in the
path P, be denoted E1.

Recalling the definition of MSS, Lemma 1.7 imply according to
(1.13) that

∀E ′ ⊂ E1 : |E ′| ≤ |varX1
(E ′)|. (1.52)

There are two cases, either |E1| = |varXu (E1)|+1 or |E1| ≤ |varXu (E1)|.
In the first case it means that E1 is an MSS set. The second case
implies that ∀E ′ ⊆ E1 : |E ′| ≤ |varX1

(E ′)| holds.
If the first case is present the goal is achieved. Therefore suppose

that the second case is present. If it holds that ∀E ′ ⊆ Ej : |E ′| ≤
|varXu (E ′)| then Lemma 1.9 implies that Ej+1 is either MSS or has
the property ∀E ′ ⊆ Ej+1 : |E ′| ≤ |varXu (E ′)|. Since H is assumed to
have property (1.4), |varXu (H)| < |H| < ∞ there is a finite number of
unknown variables. Then E|varXu (H)| has to be an MSS set if for all j,
1 ≤ j < |XH|, Ej is not an MSS set. Hence, it is always possible to find
an MSS set including e. �

Lemma 1.11. Let X be the unknown variables X = varXu (E). If E is
an MSS then ∀X̄ ⊆ X, X̄ 6= ∅ : |equE(X̄)| > |X̄|.

Proof. Consider the negation of the conclusion. That is, E is an MSS
set and

∃X̄ ⊆ X, X̄ 6= ∅ : |equE(X̄)| ≤ |X̄|. (1.53)

Let X ′ be an X̄ that fulfill the requirement. From Theorem 1.6 and
from the fact that E is an MSS set, it follows that ∀e ∈ E : (E\{e}, X),
contains a perfect matching. From the definition of perfect matching
it particularly follows that there is a complete matching from X into
E\{e}. The use of Corollary 1.5 makes it possible to write

∀e ∈ E∀X̄ ⊆ X : |X̄| ≤ |equE\{e}(X̄)|. (1.54)

Since X = varX(E) it means that ∀x ∈ X∃e ∈ E : x ∈ e. Especially
it holds that ∀x ∈ X ′∃e ∈ E : x ∈ e since ∅ 6= X ′ ⊆ X. Hence
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equE(X ′) 6= ∅. Now apply (1.54) to X ′ and an e ′ ∈ equE(X ′), that is

|X ′| ≤ |equE\{e′}(X
′)|. (1.55)

From e ′ ∈ equE(X ′) follows that e ′ ∈ eque′(X ′), hence |eque′(X ′)| =

1. Adding |eque′(X ′)| = 1 on the right-hand side of (1.55) it becomes,

|X ′| < |equE\{e′}(X
′)| +

+|equ{e′}(X
′)| = |equE(X ′)|. (1.56)

This is a contradiction. Hence the theorem follows. �

Now, it is time to prove Theorem 1.2.

Proof. ⇒) There is a consistency relation c(y) = 0 of H(x,y). This is
according to Assumption 1.2 equivalent to

∀X ′ ⊆ varXu (H), X ′ 6= ∅ : |X ′| < |equH(X ′)|

Assumption 1.1, is valid especially for H. According to Lemma 1.10
there is for each ei ∈ H an MSS set Ei ⊆ H, with ei ∈ Ei, and
varY(Ei) 6= ∅. Hence H = ∪iEi.

⇐) Take an arbitrary H =
⋃

i Ei where all Ei are MSS sets.
and varY(Ei) 6= ∅. Hence property (1.4) holds for all Ei. Lemma 1.11

applied to each Ei gives that Ei has property (1.4). From the main
assumption it follows that there exist a consistency relation ci(Y) for
each Ei(Y). Let c(Y) =

∑
i c2

i(Y), then c(Y) = 0 iff ∀i : ci(Y) = 0. This
is equivalent to c(Y) = 0 iff H(Y), hence c(Y) is a consistency relation
for H(Y). �



Chapter 2

Algorithm for Finding MSS Sets

The objective is to find all potential consistency relations for a given
model Morig and then choose a small subset of these consistency re-
lations with the same diagnosability as the full set of the consistency
relations. This is done by finding all MSS sets in a differentiated ver-
sion of the model Morig. The algorithm can be summarized by the
following steps.

Algorithm 1.

1. Differentiate the model: Find equations that are meaningful to
differentiate for finding MSS sets.

2. Simplify the model: Given the original model and the additional
equations found in step 1, remove all equations that cannot be
included in any MSS set. To reduce the computational complex-
ity of the next step, merge sets of equations that have to be used
together in each MSS set.

3. Find MSS sets: Search for MSS sets in the simplified model.

4. Analyze diagnosability: Examine the diagnosability of the MSS
sets found in step 3.
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5. Decouple faults: If the diagnosability has to be improved, some
faults have to be decoupled. For decoupling faults, return to
step 1 and consider these faults as unknown variables in Xu.

6. Select a subset of MSS sets: Select the simplest set of MSS sets
that contains the desired diagnosability.

The following sections discuss each of the steps in the algorithm.

2.1 Differentiating the Model

In this section an algorithm for handling derivatives is defined. This
algorithm is referred to as Algorithm 2. First an example will show
why differentiation has to be considered.

Example 2.1 Consider the model E = {e1, e2, e3} = {y1 = x, y2 =

ẋ, y3 = x2}. An algorithm that is not capable of differentiating equa-
tions can obviously not eliminate ẋ in e2, because there is no other
equation including ẋ. In general, all derivatives of E have to be consid-
ered. If E(i) denote the set of the i:th time derivative of each element,
the equation set generally considered is ∪∞

i=0E
(i).

To summarize the example, Algorithm 2 must be capable of dif-
ferentiating equations. The next question to answer is if it is possible
to predict the structural model of a differentiated analytical model by
using only the structural model of the original analytical model? An
example is used to answer this question.

Example 2.2 Consider again the three equations in Example 2.1.
The differentiated equation ė3 is ẏ3 = 2 x ẋ. The variable y3 is linearly
dependent in e3 and therefore ẏ3 is linearly contained in equation
ė3. Furthermore, both x and ẋ are nonlinearly contained in ė3 as a
consequence of the fact that x is nonlinearly contained in e3.

This example shows that variables are handled in different ways
depending on if they are linearly or nonlinearly dependent. To be able
to take this different treatment into account information about which
variables that are linearly contained is added to the structural model.
With this additional knowledge a structural differentiation can be de-
fined that produce a correct structural representation of differentiated
equations. Structural differentiation for an arbitrary variable x and an
arbitrary equation e is defined in the following way:
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1. If x is linearly contained in e then ẋ is linearly contained in ė.

2. If x is nonlinearly contained in e then both x and ẋ are nonlin-
early contained in ė.

Now structural differentiation can be applied to the structural model.
Since all number of differentiations of each equation implies a new
equation, there are infinitely many equations in the differentiated model.
If a limit m(y) for variable y ∈ Y of the order of derivative that can
be considered as possible to estimate is introduced, it is possible to
find all MSS sets also in a finite subset of the differentiated model.
A sufficient condition that there is a finite submodel that contains all
MSS sets is that the original model Morig satisfy Assumption 1.1 and
all known variables have finite limitations.

Algorithm 2 is a greatly influenced of Pantelides’ algorithm [10].
Before the algorithm is presented, a few definitions are introduced. Let
Mα =

⋃n
i=1

⋃αi
j=1{e

(j)
i } be a differentiated model of Morig =

⋃n
i=1{ei}.

Then the highest number of differentiations in M of equation i is αi.
Let Mmax = {e

(αi)
i |1 ≤ i ≤ n} be the set of most differentiated equa-

tions in M and M∞ = {e
(j)
i |ei ∈ M, j ∈ N}. The highest derivative

of a non-differentiated variable x in a model M is denoted β(M, x),
i.e. β(M, x) = max({i|x(i) ∈ varXu (M)}). Finally let v̂ar(M) be the
variables varXu∪Y(M) that fulfill the following two requirements:

• It is the highest derivative of each variable that are considered.

• It is the variables, whose derivative is unknown.

For example, if ẏ ∈ varXu∪Y(M), ∀i ∈ Z+\{1} : y(i) /∈ varXu∪Y(M),
and m(y) = 1, then ẏ ∈ v̂ar(M) because ẏ is the highest derivative of
y in M and ÿ is unknown.

Algorithm 2.
Input: The original model Morig, a description of which variables that
are linearly contained in each equation, and for each y ∈ varY(Morig),
m(y) < ∞.

1. Let the current model Mc be Morig and let i = 1.

2. If i ≤ |Morig| then let Mmax
c be only the most differentiated

equations of Mc. Let Mmax
c (i) denote the i first equations in
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Mmax
c . A bipartite graph can now be defined with nodes Mmax

c

and v̂ar(Mmax
c ). There is an edge between a variable node and

an equation node if and only if the corresponding variable is in-
cluded in the corresponding equation. Let equation i in Mmax

c be
denoted ei. A complete matching of Mmax

c (i−1) into v̂ar(Mmax
c )

is found in previous steps. A path that have alternating matched
and unmatched edges and that starts and finishes in unassigned
nodes is called an augmented path. Search for an augmented
path from ei to an unassigned variable in v̂ar(Mmax

c ).

a) If an augmented path is found then switch assigned and
unassigned edges in the path. The assigned edges together
with the previous matching now forms a complete matching
of Mmax

c (i) into v̂ar(Mmax
c ). Set i = i + 1 and goto step 2.

b) No augmented path is found. Then an MSS set with respect
to v̂ar(Mmax

c ) is found as follows. Let all edges not included
in the matching be directed edges from the equation nodes
to the variable nodes. Then the MSS set with respect to
v̂ar(Mmax

c ) is defined as all equation nodes reachable from
ei. Denote this MSS set E. Note the difference between this
set which is MSS with respect to v̂ar(Mmax

c ) instead of MSS
with respect to Xu. Differentiate E until |v̂ar(E(i))| ≥ |E|

using the description of which variables that are linearly
contained. Let the obtained differentiated model be Mc.
Goto step 2.

3. Rename the current model Mc to Mdiff.

Output: Mdiff.

Next an example is used to describe how Algorithm 2 works.

Example 2.3 The following example is a continuation of Exam-
ple 1.1 with the structural model shown in (1.1). Let m(u) = m(yf) =

1 and m(yh) = 0 and assume that no variable is linearly contained
in any equation. Then no variable will disappear in the differentia-
tion. Furthermore assume that all faults are zero, i.e. the system is
fault free. The equation e6 contains only a fault. Since all faults are
at the moment assumed to be zero, then e6 is not considered. The
corresponding bipartite graph for (1.1) is shown in Figure 2.1.



2.1. DIFFERENTIATING THE MODEL 25

e1

e2

e3

e4

e5

F1

F2

ḣ

h

yh

yf

u

Figure 2.1: The bipartite graph corresponds to the structural model
(1.1) when all faults are assumed to be zero.

Step 2 in Algorithm 2 is fed the structural model Mc shown in Fig-
ure 2.1 and the m-values. Figure 2.2 shows the graph built in step 2.
Note that the node corresponding to h is not considered, because h

is not the highest derivative of h in the model. The known variables
u and yf have known derivatives and are therefore not included in
v̂ar(Mmax

c ). However, the derivative of yh is an unknown variable
and yh is therefore included. Step 2 in Algorithm 2 searches for an
augmented path from e1 to v̂ar(Mmax

c ) in the graph showed in Fig-
ure 2.2. The path e1 − F1 is found and this single edge becomes the
first assignment. The assignments in the matching are then found in
the following order e2 − ḣ, e3 − yh, and e4 − F2. When e5 is going to
be assigned, there is no variable node left. Since no augmenting path
is found, step 2b) finds an MSS set with respect to v̂ar(Mmax

c ). When
edges not contained in the matching are directed from equation nodes
to variable nodes, the reachable equation nodes from e5 are e4 and
e5. Hence this is the equation set to be differentiated. Differentiating
once implies that ẏf appears in v̂ar({ė4, ė5}). The new model consists
of {e1, e2, e3, e4, ė4, e5, ė5} and the new bipartite graph showed in Fig-
ure 2.3 is extracted in step 2. Equation e4 and e5 are not anymore
the most differentiated equations in the new model. Further, ẏf is
included, because ÿf is considered as an unknown variable. Note that
an edge in the matching in Figure 2.2 is either unchanged or replaced
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e1

e2

e3

e4

e5

F1

F2

ḣ

yh

Figure 2.2: The bipartite graph Mmax
c built in step 2. The bold edges

is the matching found. The bold equation nodes are the MSS set found
in step 2b).

with an edge between the replaced nodes corresponding to the differ-
entiated equation and the differentiated variable in Figure 2.3. For
example {e1, F1} is unchanged and the edge {e4, F2} in Figure 2.2 is re-
placed with {ė4, Ḟ2} in Figure 2.3. Step 2 finds an assignment for ė5.
The structural model Mdiff obtained from Algorithm 2 is shown in
Figure 2.4.

Let MSS(M) denote the set of MSS sets found in equations M and

MSSall(M) = MSS(∪∞
i=0M

(i)).

Then it is possible to state the following theorem.

Theorem 2.1. If Assumption 1.1 is satisfied and for each
y ∈ varY(Morig), m(y) < ∞, then

MSSall(Morig) = MSS(Mdiff)

Proof. The proof consists of two parts. The first part states that Algo-
rithm 2 terminates and that the differentiated model has the property
that there is a complete matching from Mmax

diff into v̂ar(Mmax
diff ). The

second part uses this complete matching and shows that
MSSall(Morig) = MSS(Mdiff).
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e1

e2

e3

ė4

ė5

F1

Ḟ2

ḣ

yh

ẏf

Figure 2.3: The bipartite graph Mmax
c built in step 2 after one differ-

entiation. The bold edges is the complete matching found in step 2.

equation unknown fault known
F1 F2 Ḟ2 h ḣ fu fyh fyf ḟyf u yh yf ẏf

e1 X X X

e2 X X X

e3 X X X

e4 X X

ė4 X X X X

e5 X X X

ė5 X X X X X X

Figure 2.4: The structural model Mdiff obtained from Algorithm 2
when applied to the structural model (1.1).

Algorithm 2 terminates when i = |Morig|. The variable i is in-
creased in step 2a). Step 2a) is done when an augmented path from
ei to an unassigned variable in v̂ar(Mmax

c ) is found.
To show that Algorithm 2 terminates is equivalent to show that

an augmented path from ei to an unassigned variable in v̂ar(Mmax
c )

is always found in finitely many iterations.
First it will be shown that the differentiation in step 2b) is always

terminated. Therefore assume that there is no augmented path from ei

to an unassigned variable in v̂ar(Mmax
c ) in step 2. Then step 2b) finds
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Figure 2.5: The left nodes are the equation nodes Mmax
c and the right

nodes are the variable nodes v̂ar(Mmax
c ). The bold edges represents a

matching. The bold equation nodes are an MSS set E with respect to
v̂ar(Mmax

c ).

an MSS set with respect to v̂ar(Mmax
c ). Let this MSS set be denoted

E. In Figure 2.5 the left nodes are the equation nodes Mmax
c and

the right nodes are the variable nodes v̂ar(Mmax
c ). The bold edges

represents a matching. The bold equation nodes are an MSS set E

with respect to v̂ar(Mmax
c ). The model Mc and the MSS set E can be

realized to have the following property.
(∀x ∈ varXu∪Y(E) : β(Mc, x) < ∞∧

∀y ∈ varY(E) : m(y) < ∞
)

⇒
∃m ∈ N :

(∀x ∈ varXu (E) : β(E(m), x) ≥ β(Mc, x)∧

∀y ∈ varY(E) : β(E(m), y) ≥ max(β(Mc, y), m(y))
) (2.1)

Since both the highest derivatives of each variable and all limits on
known variables are finite, it is possible to exceed those limits by dif-
ferentiating E, m number of times. Assumption 1.1 guarantees that
|E| ≤ |varXu∪Y(E)|. According to expression (2.1) each variable in
varXu∪Y(E) will have a corresponding derivative in v̂ar(E(m)). Hence
|v̂ar(E(m))| = |varXu∪Y(E)| ≥ |E| which is the stop condition of step 2b).
After the redefinition of Mmax

c in step 2 at least one new variable is
included in varv̂ar(Mmax

c )(E
(m)).

According to Lemma 2.2 the differentiation in step 2b) will not
remove any corresponding edge in previous found matching.

Next to show is that the loop using step 2b) terminates, i.e. after
a finite number iterations using step 2b) Algorithm 2 finds an aug-
mented path and step 2a) is applied. Since the previous matching has
a corresponding matching, the corresponding matching together with
the augmented path defines a new extended matching.
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As explained above the differentiation is terminated and there is
at least one new variable included in varv̂ar(Mmax

c )(E
(m)). The result

of finding new variable nodes is divided into two cases.

1. All new variable nodes are already included in the matching. An
example is shown in Figure 2.6 where the dashed edge is the
newly appeared. Then there is a new MSS set Ê with respect to
v̂ar(Mmax

c ) in the right graph in Figure 2.6 denoted with bold
nodes. The definition of structural differentiation implies that
the graphs (E, v̂ar(E)) and (E(m), v̂ar(E(m))) are isomorphic. If
E is differentiated m number of times then it is clear according
to how the MSS set is obtained in Algorithm 2 and the fact that
the subgraphs (E, v̂ar(E)) and (E(m), v̂ar(E(m))) are isomorphic
that E(m) ⊂ Ê. Since the new MSS set Ê is including E (m) then
this case can only be repeated i times. Therefore it is sufficient
to prove that given case 2 an augmented path will be found and
hence step 2b) will be followed by step 2a).

2. There is a new variable that is not included in the matching.
All nodes are reachable from e

(m)
i when all edges not included in

the matching are directed edges from the equation nodes to the
variable nodes, i.e. there is an augmented path from e

(m)
i to the

new variable node in v̂ar(E(m)). This augmented path defines a
new complete matching including e

(m)
i . In Figure 2.7 there is a

new edge to a new unassigned variable. There is an augmenting
path from the last equation node to the last variable node. In
the right figure the new matching is defined.

Hence the algorithm will terminate and find a complete matching
of Mmax

diff into v̂ar(Mmax
diff ).

Now it remains to prove that Mdiff contains all MSS sets. From
Lemma 2.3 it follows that MSSall(Morig) ⊆ MSS(Mdiff). Since
Mdiff ⊂ M∞ , it implies that MSS(Mdiff) ⊆ MSS(M∞)

= MSSall(Morig). Hence MSS(Mdiff) = MSSall(Morig). �

Now the two Lemmas 2.2 and 2.3 will be discussed and proven.
According to Algorithm 2 assignments for each equation in Mc are
sequentially found. However it is important that the differentiation
of the MSS set found in step 2b) E not removes any edge that is
included in the matching. To show that differentiation not removes
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Figure 2.6: In the left graph the to last equation nodes have been
differentiated. As a result of the differentiation the dashed edge ap-
pears. The new variable node is already included in the matching as
shown in the left graph. Then there is a new MSS set with respect
to v̂ar(Mmax

c ) in the right graph denoted with bold nodes. Note that
MSS set in the left graph is a subset to the MSS set in the right graph.

Figure 2.7: In the left graph the to last equation nodes have been
differentiated. As a result of the differentiation the dashed edge ap-
pears. There is an augmenting path from the last equation node to
the last variable node. In the right figure the new matching is defined
switching assigned and unassigned edges.

any edge included in the matching let a bipartite graph be defined as
G1 = (Mmax

c , v̂ar(Mmax
c )). Consider two subsequent graphs G1 and

G2, i.e. G2 is the resultant bipartite graph in step 2 after step 2b)
is applied to G1. Suppose that step 2b) differentiate E, m number of
times.

Lemma 2.2. Step 2b) preserves any matching, i.e. if there is an edge
{e, x} included in the matching in G1, then there will be a corresponding
edge in G2 between {e(j), x(j)} where j = 0 ∨ m.

Proof. Let ê denote the last introduced equation before a complete
matching is not found, i.e. ê together with the previous matching
defines the MSS set E. There are two cases:
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1. The equation e is included in the last complete matching and
is not differentiated. Then according to Algorithm 2 there can
not be a directed path from ê to e considering unmatched edges
as directed edges from equation nodes to variable nodes. This
implies that there is no directed path from ê to x either. If any
of the equations reachable from ê included x then x would also
be reachable from ê. This is not true and the conclusion is that
no equations including x are differentiated. Hence the variable
x is not involved in the differentiation. The edge {e, x} and the
nodes e and x are unchanged from G1 to G2.

2. The equation e is included in the last complete matching and is
differentiated. Then according to Algorithm 2 there is a directed
path from ê to e considering unmatched edges as directed edges
from equation nodes to variable nodes. Since the only incoming
edge to e is the edge {e, x} the only possible directed path to e

goes through the variable node corresponding to x. Hence e and
x are replaced with e(1) and x(1) in G2 respectively. The edge
{e(1), x(1)} is obviously included in G2.

In both two cases the matching is preserved and therefore the lemma
is proven. �

Lemma 2.3. If there is a complete matching of the most differentiated
equations in Mdiff into the variable nodes in to v̂ar(Mmax

c ). Then all
MSSall(Morig) ⊆ MSS(Mdiff).

Proof. Let the equations and variables in the complete matching be
denoted ei and xi respectively such that (ei, xi) is an assignment. It is
clear that ∀j ∈ Z+ : e

(j)
i /∈ Mdiff and ∀j ∈ Z+ : x

(j)
i /∈ varXu∪(Mdiff).

Take an arbitrary set of equations E such that E ⊂ M∞ and E ∩
(M∞\Mdiff) 6= ∅. Call this intersection E ′. Let the equations in E ′

be
e

(α1)
1 , · · · , e

(αn1
)

1
...
e

(α1)
m , · · · , e

(αnm )
m

(2.2)

Note that all αi > 0. According to the complete matching, it is clear
that x

(α)
i ∈ varXu (e

(α)
i ) for α > 0. Further x

(α)
i /∈ Mdiff, where α > 0.
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Now, the idea is to apply Lemma 1.11 on the variables set X =

{x
(αj)
i |1 ≤ i ≤ m, 1 ≤ j ≤ ni}. The number of variables is |X| =∑m
i=1 ni. From the fact that varX(Mdiff) = ∅ and x

(α)
i ∈ varX(e

(α)
i )

it follows that equE(X) = E ′. The number of equations in E ′ is |E ′| =∑m
i=1 ni = |X|. Lemma 1.11 conclude that E can not be an MSS set.

Hence, given any MSS set E, it follows that E ⊆ Mdiff. �

The consequence of this theorem is that all MSS sets that are
possible to find if the original model Morig is differentiated an infinite
number of times, can always be found in Mdiff.

2.2 Simplifying the Model

It is a complex task to find all MSS sets in a structural model. There-
fore it can be of great help if it is possible to simplify the model. Here
two kinds of simplifications are used.

In a first step, all equations in Mdiff that include any variable that
is impossible to eliminate, are removed. This can be done with canon-
ical decomposition [3]. The remaining structural model is denoted
Msimp1.

In a second step, variables that can be eliminated without losing
any structural information are found. The rest of this section will be
devoted to a discussion about this second step.

If there is a set X ⊆ Xu with the property 1+ |X| = |equMsimp1
(X)|,

then all equations in equMsimp1
(X) have to be used to eliminate all

variables in X. Since all unknown variables must be eliminated in an
MSS set this means particularly that all MSS sets including any equa-
tion of equMsimp1

(X) has to include all equations in equMsimp1
(X).

The idea is to find these sets. Then it is in these sets possible to elim-
inate internal variables, in the previous discussion denoted X. Each
such set is replaced with one new equation. This second simplifica-
tion step finds subsets of variables that are included in exactly one
more equation than the number of variables. To reduce the computa-
tional complexity, a complete search for such sets is in fact not per-
formed here. Instead only a search for single variables included in two
equations is done. However, with this strategy larger sets than two
equations will also be found, since the algorithm can merge previously
found sets.
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When a variable is included in just two equations these equations
are used to eliminate the variable in common. When all variables
are examined and some simplification was possible, then all remaining
variables have to be examined once more. When no more simplifica-
tions can be made, the simplification step is finished and the resulting
structural model is denoted Msimp.

Algorithm 3.
Input: Msimp1

1. Set X = varXu (Msimp1) and Msimp = Msimp1.

2. For all variables x ∈ X do step 3.

3. If |equMdiff
(x)| = 2 then set X = X\{x} and let the two equa-

tions equMdiff
(x) in Msimp be replaced with one new enew

where varXu∪Y∪F(enew) = varX∪Y∪F(equMsimp
(x)). For all e ∈

Msimp\equMsimp
(x) let varXu∪Y∪F(e) = varX∪Y∪F(e).

4. If some simplifications were made in step 3 go back to step 2.

Output: Msimp.

The complexity of Algorithm 3 is O(|varXu (Msimp)|2). The next
theorem ensures that no MSS set is lost in the simplification step.

Theorem 2.4. MSS(Mdiff) = MSS(Msimp)

The simplification step is divided into two parts. The proof of
Theorem 2.4 is therefore divided into two Lemmas corresponding to
the first and the second part of the simplification.

Proof. Theorem 2.4 follows directly from Lemma 2.5 and Lemma 2.6.
�

The first simplification step relies on the following lemma.

Lemma 2.5. MSS(Mdiff) = MSS(Msimp1)

The proof can be found in [3]. The second part of the simplification
step is correct according to Lemma 2.6.

Lemma 2.6. MSS(Msimp1) = MSS(Msimp)
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Proof. Since Algorithm 3 only changes the model Msimp in step 3 it is
sufficient to prove that this operation on Msimp preserves the MSS sets
included. Let the structural models before and after a simplification
in step 3 be denoted M1 and M2 respectively.

The model Msimp1 has according the first simplification step the
property (1) in Lemma 2.7. Algorithm 3 finds for example that x ∈
varXu (M1) fulfill |equM1

(x)| = 2. Let X = {x} in Lemma 2.7 then (2),
and (3) in Lemma 2.7 are fulfilled.

Take an arbitrary MSS set E ⊆ M1 i.e. property (4) in Lemma 2.7.
There are two cases two consider:

1. It holds that E ∩ equM1
(x) = ∅. Then E is not involved in the

simplification and it is clear that E ⊆ M2.

2. Otherwise it holds that E ∩ equM1
(x) 6= ∅. This is condi-

tion (5) in Lemma 2.7. Since all 5 conditions in Lemma 2.7
are fulfilled the conclusion equM1

(x) ⊆ E follows. This means
that equM1

(x) could be considered as one equation derived from
equM1

(x) by eliminating the variable x. Hence E ⊆ M2. More-
over if M1 has property (1) in Lemma 2.7, then M2 has also this
property because

∀X̄ 6= ∅, X̄ ⊆ varXu (M2) : |X̄| = |X̄ ∪ {x}| − 1 <

< |equM1
(X̄ ∪ {x})| − 1 = |equM2

(X̄)|

Since E was an arbitrary MSS set then MSS(M1) = MSS(M2). Algo-
rithm 3 applies step 3 repeatedly, hence MSS(Msimp1) = MSS(Msimp).

�

Lemma 2.7. Given that

1. the system M has the property ∀X̄ 6= ∅,

X̄ ⊆ varXu (M) : |X̄| < |equM(X̄)|,

2. X 6= ∅,

3. 1 + |X| = |equM(X)|,

4. E is an MSS set and E ⊆ M,

5. E ∩ equM(X) 6= ∅,

then equM(X) ⊆ E.
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Proof. Let E ′ = E ∩ equM(X) and XE′ = varX(E ′). Since
E ∩ equM(X) 6= ∅, then ∃e ∈ E ′∃x ∈ X : x ∈ varX({e}). It follows that
∅ 6= {x} ⊆ varX(E ′) = XE′ .

Suppose that X\XE′ = ∅. Then XE′ = X since XE′ ⊆ X. Ap-
ply Lemma 1.11 to X ⊆ varX(E) and X 6= ∅ then it follows that
|equE(X)| > |X|. Then |E ′| > |X| since the definition of E ′ gives
|E ′| = |equE(X)|. Condition (3) imply an upper bound on |E ′|,

|E ′| = |E ∩ equM(X)| ≤ |equM(X)| = 1 + |X|. (2.3)

From inequality (2.3) and |E ′| > |X| it follows that equM(X) = E ′,
hence equM(X) ⊆ E.

Suppose contrary that X\XE′ 6= ∅. Now, condition (1) of the
system M where X̄ = X\XE′ gives the inequality

|X\XE′ | ≤ |equM(X\XE′)| − 1. (2.4)

Consider the negation of the conclusion. Then
equM(X)\E ′ 6= ∅. E is an MSS set and XE′ 6= ∅. Then apply
Lemma 1.11 where X̄ = XE′ and it follows that

|XE′ | ≤ |equE(XE′)| − 1. (2.5)

Add inequality (2.4) and (2.5)

|X| = |XE′ | + |X\XE′ | ≤
≤ |equE(XE′)| + |equM(X\XE′)| − 2 ≤ (2.6)

≤ |equM(X)| − 2.

The last inequality in (2.6) follows since equE(XE′)∩ equM(X\XE′) =

∅. Condition (3) imply a contradiction |X| + 2 ≤ |equM(X)| = |X| + 1.
Hence, equM(X) ⊆ E. �

Example 2.4 Consider again Example 2.3 and the output in Fig-
ure 2.4 from the differentiation step. No equations can be removed in
the first simplification step.

The second step searches for variables which belong only to two
equations. In the first search, the algorithm finds F1 in {e1, e2}, Ḟ2 in
{ė4, ė5} and ḣ in the equations produced by {e1, e2} and {ė4, ė5}. This
makes one group of {e1, e2, ė4, ė5}. This search made simplifications
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and therefore the search is performed once more. The second time no
simplifications have been done and the simplification step is therefore
complete. The remaining system is

equation unknown fault known
F2 h fu fyh fyf ḟyf u yh yf ẏf

{e1, e2, ė4, ė5} X X X X X X X X

e3 X X X

e4 X X

e5 X X X

(2.7)

After the simplification step is completed, step 3 in Algorithm 1
finds all MSS sets in the simplified model Msimp. This section explains
how the MSS sets are found.

2.3 Finding MSS Sets

The task is to find all MSS sets in the model Msimp with equations
{e1, · · · , en}. Let Mk = {ek, · · · , en} be the last n − k + 1 equations.
Let Ej be the current set of equations that is examined. The set of
MSS sets found is denoted Malg4. Then the following algorithm finds
all MSS sets in Msimp if M = Msimp.

Algorithm 4.
Input: A structural model M.

1. Set k = 1 and Malg4 = ∅.

2. Choose equation ek. Let E1 = {ek} and X1 = ∅.

3. Find all MSS sets that are subsets of Mk and include equation
ek.

(a) Let X̃j = varXu (Ej)\Xj be the unmatched variables.

(b) If X̃j = ∅, then Ej is an MSS set. Insert Ej into Malg4.

(c) Else take a remaining variable x̃j ∈ X̃j and assign {x̃j} to
e, i.e. let Xj+1 = Xj ∪ {x̃j}. Let Ẽj = equMk\Ej

(x̃j) be the
remaining equations. For all equations e in Ẽj let Ej+1 =

Ej ∪ {e}, and goto (a).
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4. If k < n set k = k + 1 and goto number (2) .

Output: Malg4

Theorem 2.8. MSSalg4 = MSS(M).

Proof. To show the inclusion MSSalg4 ⊆ MSS(M), we will take an
arbitrary E ∈ MSSalg4 and show that E is an MSS set. The set E

is an MSS set if and only if ∀e ∈ E there exist a perfect matching
in (E\{e}, varXu (E)) according to Theorem 1.6. The goal is to find a
perfect matching in (E\{e}, varXu (E)) for all e.

Number the equations in E as they were found in Algorithm 4, i.e.
E = {e1, · · · , en}. Let Ej = {e1, · · · , ej} be the first j equations found.
Note that when Algorithm 4 stores E in step 3b it holds that j = n. If
n = 1, then varXu (E1) = X̃1 = ∅ in (3b) and E1 = {e1} is an MSS set.
Otherwise, if n ≥ 2 take an arbitrary eα ∈ E. The next paragraph
shows that there will be a perfect matching in (E\{eα}, varX(E)) for all
α ∈ {1, 2, · · · , n}.

If n ≥ 2 the algorithm finds a complete matching of varXu (E)

into E. This assignment is {e2, x1}, {e3, x2}, · · · ,{en, xn−1}. If α = 1

a perfect matching is the previous assignment. If α 6= 1, then all
variables but xα−1 have an assignment. The next paragraph shows
that it is always possible to construct an augmenting path from eα to
e1. This path defines a reassignment such that the new assignment is
a perfect matching in (E\{eα}, varXu (E)).

Algorithm 4 picks an equation ei in step 3c only if xi−1 is in-
cluded in ei. In step 3c a search for xi−1 is performed only if xi−1 ∈
varXu (Ei−1) according to step 3a. The conclusion is that for any
i ∈ {2, 3, · · · , n}, it is possible to find an equation eβ such that xi−1 ∈
varXu (eβ) and β < i. This is a sufficient condition to find an aug-
menting path from eα to e1.

Starting in equation eα the assignment imply the first edge to xj−1.
From the previous paragraph there is an edge between eβ1

and xj−1

where β1 < j. This can be repeated until βk = 1. Since β1 is finite
and {βi} is a strictly decreasing list of natural numbers, it follows that
k is finite. Reassign the equations and variables included in the aug-
menting path so {eβ1

, xα−1}, {eβ2
, xβ1−1}, {eβ3

, xβ2−1}, · · · ,{e1, xβk
}.

This assignment is a perfect matching in (E\{eα}, varXu (E)). Using
Theorem 1.6 the conclusion is that MSSalg4 ⊆ MSS(M).

The second part of the proof shows that MSS(M) ⊆ MSSalg4.
Take arbitrary E ∈ MSS(M). Let e1 ∈ E be the first equation
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that Algorithm 4 picks in step 2. If E = {e1} then varXu (e1) =

∅ and the algorithm finds the MSS set immediately in step 3b. If
{e1} ⊂ E then according to Theorem 1.6 there is a perfect matching
in (E\{e1}, varX(E)). Take any perfect matching in (E\{e1}, varX(E)).
This perfect matching is (x1, e2), (x2, e3) · · · (x|E|−1, e|E|). We will now
show that the algorithm will find this perfect matching. The enumer-
ations of the variables are defined step by step as they are found in
Algorithm 4.

Since {e1} is not an MSS set then varX(e1) 6= ∅. The algorithm
picks a x ∈ varX(e1) in step 3c. This x is defined as x1 by the al-
gorithm. The given perfect matching assigns x1 to e2. This is only
possible if e2 ∈ equMk

(x1). Then Ẽ1 = equMk
(x1) in step 3c. Finally

step 3c will assign x1 once at a time to all e ∈ equMk
(x1). Particularly

the algorithm will assign x1 to e2.
Now, suppose that the algorithm has assigned {x1, e2}, {x2, e3}, · · ·

,{xi, ei+1} for any 1 ≤ i ≤ |E| − 2. This means that step 3c is just done
and the algorithm will start in step 3a again.

The current value of the variables are

Ei+1 = {e1, e2, · · · , ei+1}

Xi+1 = {x1, x2, · · · , xi}.

In step 3a X̃i+1 = varXu (Ei+1)\Xi+1. From the assumption it fol-
lows that Ei+1 is not structurally singular, because i ≤ |E| − 2, hence
varXu (Ei+1)\Xi+1 6= ∅. This implies that X̃i 6= ∅. Hence it must be
at least one variable in X̃i. The variable that the algorithm picks is
denoted xi+1.

The variable xi+1 is assigned ei+2 according to the given matching.
Then ei+2 ∈ equMk

(xi+1) and especially ei+2 ∈ equMk\Ei+1
(xi+1).

Hence ei+2 ∈ Ẽi+1 in step 3c. Since step 3c assign xi+1 to all e ∈ Ẽi+1

one at a time, the algorithm will particularly assign xi+1 to ei+2.
Now, E|E| = {e1, · · · , en}, X|E| = {x1, · · · , x|E|−1}, and Algorithm 4

starts at step 3a. Since E is an MSS set it follows that |E| > |varXu (E)|.
The

From the definition of {x1, · · · , x|E|−1}, it follows that varXu (E) =

{x1, · · · , x|E|−1}. Then X̃|E| = varXu (E)\{x1, · · · , x|E|−1} = ∅. This is
detected in step 3b and the algorithm conclude that E|E| = E is an
MSS set. Hence MSS(M) ⊆ MSSalg4.

�
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1
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F2 h

Figure 2.8: The structural model (2.8) viewed as a graph.

The next example shows how the search for MSS sets is performed
in the Example 2.4.

Example 2.5 To simplify the notation, let the equations be renamed
as

renamed equation equation unknown fault
1 {e1, e2, ė4, ė5} F2, h fu, fyf, ḟyf

2 e3 h fyh

3 e4 F2, h

4 e5 F2 fyf

(2.8)

Algorithm 4 is explained using the structural model (2.8) shown as
a graph in Figure 2.8. The algorithm order the equations according
to their numbers and the variables for example as F2 then h. First all
MSS sets that include equation 1 are found. Set the current equation
as E1 = {1}, i.e. equation 1 will be used. Equation 1 includes the
unknown variables F2 and h, i.e. X̃1 = {F2, h}. The algorithm starts to
find an equation that is able to eliminate the first unknown variable,
i.e. in this case variable F2. This can be done either with equation 3
or 4. Algorithm 4 starts to include equation 3, i.e. E2 = {1, 3} and
X̃2 = {h}. The only equation that is able to eliminate the unknown
variable h is equation 2, because equation 3 is already used to eliminate
F2. Then E3 = {1, 3, 2} and X3 = ∅, hence an MSS set is found. The
stack of current equations Ej is throughout the entire algorithm:

2 2 3 4
3 3 4 4 4 3 3 4

1 1 1 1 1 1 2 2 2 3 3 4

The bold columns represent the MSS sets found. The MSS sets found
are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4} or in the original notations
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{e1, e2, e3, e4, ė4, ė5}, {e1, e2, e3, ė4, e, ė5}, {e1, e2, e4, ė4, e5, ė5}, and
{e3, e4, e5}.

Example 2.6 Another example with five equations shows how the
algorithm works.

x1 x2 x3

1 X X

2 X X

3 X X X

4 X

5 X

This model gives the following stack of current equations, i.e. Ej is

2 3 2
2 5 5 2 2 3 3 5

3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1

4
4 3 3 5

3 3 5 5 5 4 4
2 2 2 2 2 2 3 3 3 4 5

The bold columns represent the MSS sets found. This example also
shows that if there are several matchings including the same equations,
the algorithm finds the same subset of equations several times.

2.4 Analyzing Diagnosability

In many cases in real applications, it is difficult to draw conclusions
when a consistency relation is fulfilled. Therefore it is assumed that
conclusions are drawn only when consistency relations are not fulfilled.

Example 2.7 Now follows the continuation of Example 2.5. The
matrix in Figure 2.9 is the incidence matrix of the MSS sets produced
of (2.8). If any equation in the MSS set i include fault j, the element
(i, j) of the incidence matrix is equal to X. The derivatives of the
faults are omitted in the incidence matrices. The third MSS set in
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MSS fu fyh fyf

{e1, e2, e3, e4, ė4, ė5} X X X

{e1, e2, e3, ė4, e5, ė5} X X X

{e1, e2, e4, ė4, e5, ė5} X X

{e3, e4, e5} X X

Figure 2.9: The incidence matrix of the MSS sets in Example 2.5.

Figure 2.10 (a) could contain fu and fyf, but it is impossible that it
could contain fyh, since fyh is only included in equation e3.

If the number of different faults are large it is not easy to see how
good the diagnosis can be. The incidence matrix of the MSS set shows
how the consistency relations react on the faults, but it is more inter-
esting to see which faults that can be explained by other faults. The
fault matrix shows the maximum isolation and the detection capability
of the diagnosis system. If fault j can explain the not satisfied consis-
tency relations, then element (i, j) of fault matrix is equal to X. To
get an upper limit of the diagnosability it is assumed that if a fault i

is present then all consistency relations including fault i are not satis-
fied. No analytical consistency relations are known at this stage and
therefore it is impossible to determine the true diagnosability. Instead
upper limits of the diagnosability are calculated and shown in the fault
matrices in the continuation of the report.

Example 2.8 The fault matrix of the incidence matrix in Exam-
ple 2.7 is shown in Figure 2.10. Remember that the fault matrix shows
the upper limit of the diagnosability. Consider the first row in the fault
matrix. Suppose that the fault fu is present. Then, the first three
consistency relations are not satisfied in the best case according to the
discussion above. This means that fu certainly can explain fault fu,
but also fyf can explain fault fu. Fault fyh cannot explain fault fu,
since the third consistency relation is not satisfied. Note that the fault
matrix is not symmetric. For example fault fyf can explain fault fu

but the opposite is not true.

The fault matrix can more easily be analyzed after
Dulmage-Mendelsohn permutations [9]. This algorithm returns a max-
imal matching [6] which is in block upper-triangular form. The diag-
onal blocks corresponds to strong Hall components of the adjacency
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present interpreted fault
fault fu fyh fyf

fu X X

fyh X X

fyf X

Figure 2.10: The fault matrix of the incidence matrix in Figure 2.9.

graph of the fault matrix. The interpretation is that the diagnostic
system considered handles the faults in a diagonal block as equivalent
faults. In the small example in Figure 2.10, the same matrix is re-
turned after Dulmage-Mendelsohn permutations, which usually is not
the case. The diagonal blocks are the 1 × 1 diagonal elements, i.e. all
faults act different on the diagnostic system.

2.5 Decoupling Faults

Suppose that the element (i, j) of the fault matrix is equal to X for
some i 6= j. It could still be possible to isolate fault i from fault j by
trying to decouple fault j. Include fault j among the unknown variables
Xu and search for new MSS sets in the new model obtained. Apply the
new model to Algorithm 1 step 1. An MSS set that is able to isolate
faults has to include at least one equation that includes fault i. If any
such MSS set is found, it has to include an elimination of fault j. If
not, this MSS would have been discovered earlier.

Example 2.9 In Figure 2.10, the fault matrix shows that fu and
fyh can not be isolated. The problem is that there is no consistency
relation that decouple fault fyf. But there could be one if fyf is elimi-
nated. The fault fyf is moved from the faults F to the unknown vari-
ables Xu. The procedure starts all over from step 1 in Algorithm 1.
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MSS fu fyh fyf

{e1, e2, e3, e4, ė4, ė5} X X X

{e1, e2, e3, ė4, e5, ė5} X X X

{e1, e2, e4, ė4, e5, ė5} X X

{e3, e4, e5} X X

{e1, e2, e3, e4, ė4, e5, ė5, e6} X X

Figure 2.11: The incidence matrix for the decoupled model.

The model 1.1 is

equation unknown fault known
F1 F2 h ḣ fyf ḟyf fu fyh u yh yf

e1 X X X

e2 X X X

e3 X X X

e4 X X

e5 X X X

e6 X

(2.9)

The result is a new set of one MSS set {e1, e2, e3, e4, ė4, e5, ė5, e6} in
which fyf is decoupled. The incidence matrix is showed in Figure 2.11
and the corresponding fault matrix is the identity matrix. This gives
a possibility to detect and isolate all faults.

2.6 Selecting a Subset of MSS Sets

It is not unusual that the number of MSS sets found is very large. Many
of the MSS sets probably use almost as many equations as unknown
variables in the entire system. These MSS sets usually rely on too
many uncertainties to be used for fault isolation. Small MSS sets are
more robust and are usually sensitive to fewer faults which means that
they have higher isolation capability. Therefore the goal must be to
find a set of robust MSS sets but with the same diagnosis capability
as the set of all MSS sets.

Start to sort the MSS sets in an ascending order of complexity. The
complexity measure is here the number of equations, even though more
informative measures are also a possibility. The MSS sets are examined
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in the rearranged order. If an MSS set increase the diagnosability,
then select the MSS set. The diagnosability is increased if some fault
becomes detectable or some fault i becomes isolable from fault j. This
test uses the fault matrix of the previous selected MSS sets. If the
considered MSS set remove one or more entries in fault matrix, the
MSS set is selected. In this way the final output from Algorithm 1
will be the most robust set of MSS sets with highest possible diagnosis
capability.

Example 2.10 The last part in the structural analysis is to choose
MSS sets. The MSS sets in Example 2.9 are ordered in increasing size
as

MSS fu fyh fyf

{e3, e4, e5} X X

{e1, e2, e4, ė4, e5, ė5} X X

{e1, e2, e3, e4, ė4, ė5} X X X

{e1, e2, e3, ė4, e5, ė5} X X X

{e1, e2, e3, e4, ė4, e5, ė5, e6} X X

The MSS sets finally chosen are

MSS fu fyh fyf

{e3, e4, e5} X X

{e1, e2, e4, ė4, e5, ė5} X X

{e1, e2, e3, e4, ė4, e5, ė5, e6} X X



Chapter 3

Industrial Example: A Paper Plant

This industrial example from ABB is a stock preparation and broke
treatment system of a paper plant. The system is used for mixing and
purifying recycled paper for production of new paper. An overview of
the system is shown in Figure 3.1.

3.1 System Description

After the preparation step the purified paper mixture is transferred to
the screen. In the screen it is important that the mixture has a correct
concentration of paper fibers and not exceed a critical pressure. The
system starts with recycled paper and water. The recycled paper has
a high concentration of paper fibers. The two fluids are mixed in the
pulper tank to a correct concentration. Looking in the right part of
Figure 3.1, the cyclone purifies the paper mixture. This is done by
spinning the fluid in the cyclone. The result is that large particles are
collected in the bottom of the cyclone and the clean paper mixture is
collected in the top. A drawback with this method is that the purified
mixture obtains a high pressure. To limit the outflow pressure from
this part of the process, there is a pipe going back to a tank. When this
opens the pressure in the outflow mixture decreases. The return of the
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Figure 3.1: A stock preparation and broke treatment system of a paper
plant

fluid increases the concentration in the tank. Therefore the mixture
is diluted with water before entering the cyclone. For a more detailed
description, see [1].

3.2 Model Description

Most parts of the system are nonlinear. It is only the tank and the
pulper that are considered to be dynamic. The system has 4 states:
the volumes x1 and x3 and concentrations x2 and x4 in the pulper and
in the tank respectively. There are 6 sensors in the system. Sensor y1

and y3 measure the water levels of the pulper and the tank respectively,
y2 and y4 measure concentration, y5 and y6 measure pressure. The
flows into and out from this system are known, i.e F1, F2, F6, F7, and F9

are known. Moreover the concentrations of the fluids flowing into the
system are constant and known, i.e. c1, c2, and c6 are known. There
are 6 valves with control signals ui, where i ∈ {1, 2, 4, 5, 6, 7} and two
pumps that have actuator signals zp1 and zp2.

There are 21 faults that are analyzed. All sensors can have a con-
stant offset fault fyi, i ∈ {1, 2, 4, 5, 6, 7}. All valves can have a constant
offset in the actuator signal fui, i ∈ {1, 2, 4, 5, 6, 7}. Clogging can occur
in the pipes near the valves fcvi, i ∈ {1, 2, 4, 5, 6, 7} and also directly
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after the tank fcv8. Finally, the pumps can have a constant offset on
the actuator signal fp1 and fp2.

The system is described by 29 equations. The model equations are

e1 ẋ1 − e1(F1 + F2 − F3) = 0

e2 ẋ2 −
e1(F1(c1+fy2−y2)+F2(c2+fy2−y2))

y1−fy1
= 0

e3 ẋ3 − e2(F3 + F10 − F4) = 0

e4 ẋ4 +
e2(F10(fy4+x4−y4)+F3(fy2+x4−y2))

y3−fy3
= 0

e5 g1 − a1F2
1 = 0

e6 g3 − F2
2(a2 + a3 + b1(fcv1 + zu1)) = 0

e7 k1(y1 − fy1) + d11 − 1 + f2
p1zp1 − F2

3(bcv3 + a4 + a5

+a6 + a7 + b2fcv2 + b2zu2) = 0

e8 p + k2(y3 − fy3) − b8fcv8F2
4 − a8F2

4 − p = 0

e9 y5 + d12 − 1 + f2
p2zp2 − a11F2

5 − a10F2
5 − fy5 − p = 0

e10 p + g27 − b4F2
6(fcv4 + zu4) − a9F2

6 − p = 0

e11 y5 − b6F2
7(fcv6 + zu6) − fy5 − g21 − p = 0

e12 fy6 + y5 − b5F2
8(fcv5 + zu5) − y6 − fy5 = 0

e13 y6 − a13F2
9 − fy6 − g23 − p = 0

e14 y6 − b7F2
10(fcv7 + zu7) − a14F2

10 − a12F2
10 − fy6 − p = 0

e15 fy4 + c6F6+F4x4

F4+F6
− y4 = 0

e16 −1 +
d21F2

3

(−1+fp1)2 + z2
p1 = 0

e17 −1 +
d22F2

5

(−1+fp2)2 + z2
p2 = 0

e18 −1 + fu1 + u2
1zu1 = 0

e19 −1 + fu2 + u2
2zu2 = 0

e20 −1 + fu4 + u2
4zu4 = 0

e21 −1 + fu5 + u2
5zu5 = 0

e22 −1 + fu6 + u2
6zu6 = 0

e23 −1 + fu7 + u2
7zu7 = 0

e24 F4 + F6 − F5 = 0

e25 F5 − F8 − F7 = 0

e26 F8 − F10 − F9 = 0

e27 fy1 + x1 − y1 = 0

e28 fy2 + x2 − y2 = 0

e29 fy3 + x3 − y3 = 0

(3.1)

Equations e1, . . . , e4 describe the dynamics; e5, . . . , e14 are pressure
loops; e15 relates the concentration in the junction after the tank with
the flows F4 and F6; e16 and e17 describe the two pumps; e18, . . . , e23

are valve equations; e24, e25, e26 are flow equations, and finally e27, e28, e29

are sensor equations for sensor 1, 2, and 3. Furthermore there are 21
equations one for each fault expressed as ḟi = 0. The structural model
for equation system (3.1) can be viewed in the matrix in Figure 3.2.
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Figure 3.2: Structural model for the set of equations (3.1). The cir-
cles denote that the corresponding variable is linearly dependent and
the crosses denote nonlinearly dependent variables. Because of space
considerations the variables are abbreviated. For example is the first
7 variables are F3, F4, F5, F8, F10, x1, and ẋ1.

The circles denote that the corresponding variable is linearly included.
The variables are divided as follows

type of variable variable
Xu F3, F4, F5, F8, F10, x1, ẋ1, x2, ẋ2, x3, ẋ3, x4, ẋ4, zu1,

zu2, zu4, zu5, zu6, zu7, p

F fy1, fy2, fy3, fy4, fy5, fy6, fu1, fu2, fu4, fu5, fu6,

fu7, fcv1, fcv2, fcv4, fcv5, fcv6, fcv7, fcv8, fp1, fp2

Y F1, F2, F6, F7, F9, y1, y2, y3, y4, y5, y6, zp1, zp2, u1,

u2, u4, u5, u6, u7

3.3 Differentiating the Model

The highest order of derivatives that can be used for all known vari-
ables is assumed to be one. If a variable is contained linearly in an
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equation, the variable disappears in the differentiated expression. This
knowledge is used since the equations are known. Algorithm 2 is ap-
plied to the structural model in Figure 3.2. The result is that all
equations except equation 1, 2, 3, and 4 are differentiated. This re-
sults in additionally 25 differentiated equations showed in Figure 3.3.
Note how the knowledge concerning linear dependence influences the
structural model in Figure 3.3 by comparing it with the original struc-
tural model in 3.2. For example, x3 is linearly contained in e29, hence
varXu (ė29) = {ẋ3} and zu1 is nonlinearly contained in e6 and then it
follows that varXu (ė6) = {zu1, żu1}.

3.4 Simplifying the Model

In the first step of simplification applied to the matrix in Figure 3.3,
the equations e27, e28, and e29 include variables belonging only to one
equation, i.e. they cannot be included in any MSS sets.

The second part of the simplification finds that the variables Ḟ3,
Ḟ10, x1, x2, x3, x4, ẋ4, żu1, żu2, żu4, żu5, żu6, and żu7 can be elimi-
nated. The equations that form groups are {ė7, ė16, ė19}, {ė14, ė23, ė26},
{e1, ė27}, {e2, ė28}, {e3, ė29}, {e4, e15, ė15}, {ė6, ė18}, {ė10, ė20}, {ė12, ė21},
and {ė11, ė22}. The simplified structural model is showed in Figure 3.4.
Note the simplification of the model by comparing Figure 3.3 and Fig-
ure 3.4. The simplification reduces the model from 54 equations to
38 equations and reduces the unknown variables from 32 to 16. To
compare the reduction computational complexity of finding the MSS
set the number of times the algorithm

To give an example of the reduction of the computational com-
plexity using this simplification step, the algorithm has found all MSS
sets in the structural model in Figure 3.3 without using the simplifica-
tion step. The number of times that the algorithm asks for a row or a
column in the structural model is computed. The result is that the sim-
plification step required 88 calls and Algorithm 4 335,107 calls. When
the simplification step was not first applied, the Algorithm 4 used
1,872,753 calls. This result indicates that simplification is cheap and
considerable decreases the computational complexity of Algorithm 4.
The next step is to find all MSS sets in the simplified model.
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Figure 3.3: The resulting structural model when the differentiation
step is applied to the structural model in Figure 3.2. The variables F

and Y are not shown. Differentiated equations are denoted with a dot
after the number.
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Figure 3.4: The simplified structural model.

3.5 Finding MSS Sets

Algorithm 4 is applied to the simplified model. The algorithm returns
35770 MSS sets that are contained in the simplified model. The five
smallest MSS sets are {e5}, {ė5}, {e13}, {ė13}, and {e2, ė28}. The largest
MSS sets consists of 23 equations. Now the diagnosability of the MSS
sets found is analyzed.
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Figure 3.5: The fault matrix of the MSS sets corresponding to Fig-
ure 3.4

3.6 Analyzing Diagnosability

The diagnosability of the MSS sets found can be seen in the fault
matrix in Figure 3.5. All faults are detectable with the MSS sets
found in the previous step. The fault fui is not isolable from fcvi

where i ∈ {1, 2, 4, 5, 6, 7}, i.e. a constant offset in the actuator signal to
valve i can always be explained as clogging in valve i. Moreover fy4

is not isolable from fy2 and fy3. Finally fu2 and fcv2 are not isolable
from fp1.

3.7 Decoupling Faults

In the fault matrix shown in Figure 3.5 the columns that have non-
diagonal entries are collected. These columns correspond to the faults
that will be decoupled, i.e. fy2, fy3, fcv1, fcv2, fcv4, fcv5, fcv6, fcv7,
and fp1. First fy2 will be decoupled by applying Algorithm 1 step 1 to
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the original model, but this time the fault variable fy2 and its deriva-
tives are considered to be unknown variables. The goal is to find an
MSS set that decouple fy2 and is sensitive to fault fy4. An MSS set
with this property increases the diagnosability because it gives the
possibility to isolate fault fy4 from fy2. This implies that the cross
in the row corresponding to fy4 and the column corresponding to fy2

in the fault matrix in Figure 3.5 is removed. The result of decou-
pling fault fy2 is that 26959 new MSS sets are found. The small-
est MSS set of these new MSS sets that isolate fault fy4 from fy2 is
{e2, e3, e4, e15, ė15, e16, e17, ė17, e24, ė24, ė28, ė29}.

Next also the faults fy3, fcv1, fcv2, fcv4, fcv5, fcv6, fcv7, and fp1 are
decoupled. The results are:
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smallest MSS set with desired property
fy2 fy4 {e2, e3, e4, e15, ė15, e16, e17, ė17, e24, ė24, ė28, ė29}

fy3 fy4 {e4, e8, e9, e14, e15, ė15, e16, e17, ė17, e23, e24, ė24}

fcv1 fu1 {e6, ė6, e18, ė18}

fcv2 fu2 {e7, ė7, e16, ė16, e19, ė19}

fcv4 fu4 {e9, ė9, e10, ė10, e17, ė17, e20, ė20}

fcv5 fu5 {e12, ė12, e17, ė17, e21, ė21, e25, ė25}

fcv6 fu6 {e11, ė11, e22, ė22}

fcv7 fu7 {e12, ė12, e14, ė14, e21, ė21, e23, ė23, e26, ė26}

fp1 fu2 {e1, e7, e16, e19, ė27}

With those additional MSS sets all faults are detectable and isolable.
The next step is to select a small subset of all found MSS sets that
have full diagnosability.

3.8 Selecting a Subset of MSS Sets

First the MSS sets are reordered in increasing size. The first 6 MSS
sets in the reordered list are
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MSS

1 e5

2 ė5

3 e13

4 ė13

5 e2 ė28

6 e6 e18

(3.2)

Then the algorithm selects those MSS sets that increase the diagnos-
ability starting from the smallest MSS sets in (3.2). According to
Figure 3.2 neither the first {e5} nor the second MSS set {ė5} is sensitive
to any fault and is therefore not selected. The third MSS set {e13} is
sensitive only to fy6, i.e. fy6 can be detected and isolated. The diag-
nosability is improved with this MSS set and therefore it is selected.
The fourth MSS set is not sensitive for any fault and is therefore not
selected. The 5th MSS set detects fy1 and fy2 and isolate fy1 and fy2

from all other faults. This MSS set is selected. When all MSS sets
have been analyzed, 36 MSS sets are selected. These are

MSS
1 e13
2 e2 ė28
3 e6 e18
4 e11 e22
5 e1 e16 ė27
6 e6 ė6 ė18
7 e11 ė11 ė22
8 e11 e22 ė22
9 e7 e16 e19
10 e8 e9 e17 e24
11 e9 e10 e17 e20
12 e12 e17 e21 e25
13 e6 ė6 e18 ė18
14 e11 ė11 e22 ė22
15 e7 ė7 e16 ė16 ė19
16 ė7 e16 ė16 e19 ė19
17 e8 e10 e17 e20 e24
18 e12 e14 e21 e23 e26
19 e14 e17 e23 e25 e26
20 e1 e7 e16 e19 ė27
21 ė8 ė9 e17 ė17 e24 ė24
22 e7 ė7 e16 ė16 e19 ė19
23 e9 ė9 e10 ė10 e17 ė17 ė20
24 e12 ė12 e17 ė17 ė21 e25 ė25
25 e8 e10 e12 e20 e21 e24 e25
26 ė12 e17 ė17 e21 ė21 e25 ė25
27 e9 ė9 e10 ė10 e17 ė17 e20 ė20
28 e12 ė12 e17 ė17 e21 ė21 e25 ė25
29 e12 ė12 e14 ė14 e21 ė21 ė23 e26 ė26
30 e14 e17 ė17 e23 ė23 e25 ė25 e26 ė26
31 e3 e4 e15 ė15 e16 e17 e24 ė24 ė29
32 e12 ė12 e14 ė14 e21 ė21 e23 ė23 e26 ė26
33 e1 e3 e4 e15 ė15 e17 ė17 e24 ė24 ė27 ė29
34 e3 e4 e8 ė8 e10 ė10 e15 ė15 e16 e20 ė20 ė29
35 e4 e8 e9 e14 e15 ė15 e16 e17 ė17 e23 e24 ė24
36 e2 e3 e4 e15 ė15 e16 e17 ė17 e24 ė24 ė28 ė29

(3.3)
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nz = 421

nz = 179

nz = 383 nz = 345 nz = 291

nz = 271 nz = 270 nz = 268 nz = 266

nz = 231 nz = 143 nz = 111

nz = 110 nz = 109 nz = 108 nz = 106

Figure 3.6: The sequence the first 16 fault matrices defined by adding
one MSS at the time from (3.3). The numbers denote the number of
crosses in each fault matrix.

The first three MSS sets can be recognized from (3.2). In Figure 3.6
the sequence of fault matrices defined by adding one MSS at a time
from (3.3) is shown. Note that the number of crosses in each fault
matrix can be interpreted as inversely proportional to the isolability.
From the 36 MSS sets the incidence matrix in Figure 3.7 is obtained.

3.9 Generating Consistency Relations

In this report consistency relations are used to validate the MSS sets.
However, there are also other methods that can be used to validate
the MSS sets, e.g. observers. The consistency relations corresponding
to the MSS sets are calculated, by using the function Eliminate in
Mathematica. Most of the equations in the model are polynomial
equations. For polynomial equation-systems, the function Eliminate
uses Gröbner Basis for elimination.

All MSS sets with 7 or less equations were easily eliminated to
a consistency relation. The consistency relations from the MSS set
23, 24, 25 and 26 were obtained from the elimination function, but
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Figure 3.7: The incidence matrix of the selected MSS sets correspond-
ing to Figure 3.4

were not useful because of bad numerical properties. However, small
MSS sets make the largest contribution to the isolability. To see this,
Figure 3.8 shows the percentage of full isolability when only the first
n selected MSS sets in (3.3) are used. The number n is plotted on
the x-axis. It is clear that the diagnosability reduces slightly, without
using large MSS sets that are difficult to calculate. A few examples of
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Figure 3.8: The label on the x-axis indicate how many of the first se-
lected MSS sets in (3.3) that are used. The y-axis shows the percentage
of full isolability with those MSS sets.

consistency relations derived by Mathematica are
MSS consistency relations with faults
1. y6(t) = 292890. + fy6(t) + 3.13291 ∗ 10−7 ∗ F9(t)

2

2. F1(t) ∗ (−22173. − 389000. ∗ fy2(t) + 389000.y2(t))
+F2(t) ∗ (−389. − 389000. ∗ fy2(t) + 389000.y2(t))

+6. 1011 ∗ y1(t) ∗ (y2) ′(t) = 6. ∗ 1011 fy1(t) ∗ (y2) ′(t)
5. fp1(t) 6= 1. ∧ 8.796 1017 + 8.796 1017 fp1(t)

2
+

1.7592 1018 fp1(t) zp1(t)
2
+

1.02649 1015 F1(t) (y1) ′(t) + 1.02649 1015 F2(t) (y1) ′(t)
= 1.7592 1018 fp1(t) + 3.32755 108 F1(t)

2
+

6.6551 108 F1(t) F2(t) + 3.32755 108 F2(t)
2
+

8.796 1017 zp1(t)
2
+

8.796 1017 fp1(t)
2
zp1(t)

2
+

7.9164 1020 (y1) ′(t)2

6. fu1(t)
2

(
−1.21562 1034 − 9.35281 107 F2(t)

2
)

(F2) ′(t)+

fu1(t) ((−2.43123 1034 − 1.87056 108 F2(t)
2
)u1(t) (F2) ′(t)+

F2(t) (1.21562 1034+

(−1.33226 1024 − 7.19341 1025 f cv1(t)) F2(t)
2
) (u1) ′(t))+

u1(t) ((−1.21562 1034 − 9.35281 107 F2(t)
2
)u1(t) (F2) ′(t)+

F2(t) (1.21562 1034+

(−1.33226 1024 − 7.19341 1025 f cv1(t)) F2(t)
2
) (u1) ′(t)) = 0

(3.4)
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The computational form of these consistency relations are

MSS computational form of some consistency relations
1. y6(t) = 292890. + 3.13291 10−7 F9(t)

2

2. F1(t) (−22173. + 389000. y2(t)) +

F2(t) (−389. + 389000. y2(t)) + 6. 1011 y1(t) (y2) ′(t) = 0

5. 8.796 1017 + 1.02649 1015 F1(t) (y1) ′(t)+
1.02649 1015 F2(t) (y1) ′(t) = 3.32755 108 F1(t)

2
+

6.6551 108 F1(t) F2(t) + 3.32755 108 F2(t)
2
+

8.796 1017 zp1(t)
2

+ 7.9164 1020 (y1) ′(t)2

6. u1(t) ((−1.21562 1034 − 9.35281 107 F2(t)
2
)u1(t) (F2) ′(t)+

F2(t)
(
1.21562 1034 − 1.33226 1024 F2(t)

2
)

(u1) ′(t)) = 0

(3.5)

The consistency relations are not normalized and therefore some coef-
ficients are large. Furthermore the variables are not scaled and there-
fore big differences in the order of magnitude of coefficients occurs. For
some simulation results utilizing consistency relations in this industrial
example see [1].



Chapter 4

Conclusion

This report has presented a systematic and automatic method for find-
ing a small set of submodels that can be used to derive consistency re-
lations with highest possible diagnosis capability. The method is based
on graph theoretical reasoning about the structure of the model. It is
assumed that a condition on algebraic independency is fulfilled.

An important idea, towards finding these submodels, is to use the
mathematical concept minimal structurally singular sets. These sets
have in Theorem 1.2 been shown to characterize these submodels, i.e.
the consistency relations, which give the fault detection and the fault
isolation capability.

The method is capable of handling general differential-algebraic
non-causal equations. Further, the method is not limited to any spe-
cial type of fault model. Algorithm 1 finds all submodels that can
be used to derive consistency relations and this is proven in Theo-
rem 2.1, 2.4, and 2.8. The key step in Algorithm 1 is step 3 that finds
all MSS sets in the model it is applied to.

Finally the method has been applied to a large nonlinear industrial
example, a part of a paper plant. The algorithm successfully manage
to derive a small set of submodels. In spite of the complexity of this
process, a sufficient number of submodels could be transformed to
consistency relations so that high diagnosis capability was obtained.
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