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Abstract

A method to improve model based diagnosis for the air path of a truck engine
is presented. Originally, inaccuracies in both volumetric efficiency model and
sensors limited the diagnosis performances. Two approaches are presented to
improve the diagnosis performances. The first method is based on an elimination
of part of the data according to the level of a certain operational variable.
The second and preferred method make use of adaptive statistical charts built
to generate residuals which show a reduced dispersion. Data taken from two
different trucks working in various operating conditions were used to evaluate
the proposed approaches. It was shown that the use of charts improved the
diagnosis performances by approximately 25 %.
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Introduction

This report presents the summary of the work achieved during a 4 months re-
search cooperation to the Vehicular System Laboratory in University of Linköping,
Sweden by PhD student Antoine Berton coming from University Laval, Canada.
The work has also been achieved in cooperation with Scania, a multinational
company and world leading truck manufacturer. This work follows in some ways
the Masters thesis work of Petter Haraldsson [Har02].

The OBD problem

The emission requirements for heavy truck engines as well as for car en-
gines are becoming stricter, especially in Europe and states like California.
The incoming regulations of EURO 4 in 2005 includes restrictions on pollution
and obligation of including an on-board diagnosis (OBD) system for truck en-
ginesc̃iteeuro4. The goal of such a system is to make sure that the requirements
on emissions are met during the whole truck operational life.

Gauges to measure all pollutant emission at the truck exhaust could allow
to built a good OBD system. However, those gauges would be very expansive
and are anyway not available. So it is necessary to infer emission problems by
detecting other faults. Faults in the air path components of the engine is known
to be linked to emissions problems. So it is precisely the kind of fault that, in
the present study, will be aimed to detect with as good precision as possible.

The standard tools used in production vehicles [US93, Jur94] might not be
sufficient to fulfill the requirements of the new regulations. One way to enhance
the performance of fault diagnosis is to make use of more knowledge, using
model-based fault diagnosis. The actual available model on the engine is a
simple static model, based on the engine volumetric efficiency [Hey88].

A previous work on engine diagnosis [Har02] showed that using this raw
model to generate residuals and perform fault detection is relatively inaccurate.
The urgent need for a reliable engine diagnosis procedure then lead to the present
attempt to improve the static model accuracy.

The Process

The engine of study is an experimental engine with exhaust gas recirculation
(EGR). A schematic view of the engine air path is shown on Figure 1. The air
entering the engine is measured by a air-mass flow-meter and the corresponding
measurements is noted Win. Then the air goes through a compressor and a
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Figure 1: Schematic overview of the Scania test engine.

charge air cooler, enters the intake manifold where it is mixed with exhaust
gases, and flows into the cylinders where the fuel is added. The exhaust gases
are divided one part to drive the turbine and another part to be recycled via the
EGR. The involved measurements for residuals generation will be the air mass
flow (Win), the boost pressure (Pbo) and boost temperature (Tbo) at the inlet
manifold, as well as the engine speed (Neng). Those measurements corresponds
to the available sensors on the production version of the engine.

Studies are currently being made in order to accurately include the EGR
path in the engine model. However, the present approved model does not allow
to take into account the EGR component of the air path. Thus, the EGR valve
will be shut for all the experiments presented in this paper.

Residual Generation for Diagnosis
The volumetric efficiency model infers the air-mass flow in the inlet based

on other available measurements [Hey88]. Equation 1 illustrates this predicted
air-mass flow (Wp).

Wp =
Pbo Neng ncyl Vd ηvol(Pbo, Neng)

120 Rair Tboost
(1)

In Equation 1, ncyl is the number of cylinders, Vd is the displacement volume
of the engine and Rair is the gas constant of air. ηvol, called the volumetric
efficiency map, depends on both boost pressure and engine speed and must be
calibrated from operational data. The air-mass flow is in kg/s, the engine speed
is in RPM, the boost pressure is in Pascal and the boost temperature is in
Kelvin.

In Equation 1, all variables are either known or measured, except for the
volumetric efficiency. The volumetric efficiency follows a highly non linear be-
havior depending on Pbo and Neng. In order to characterize this behavior, it
is necessary to build a map (look-up table), from unfaulted data. The data
that has been used to calibrate the map is the dataset maverik1. Maverik is
the affective name of a truck, which with his little sister called platina, are the
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devoted data providers for this study. Then, the fault detection will be based
on the generation of a residual r:

r = Win −Wp (2)

The diagnosis procedure is not to be active all the time when the truck is
working. The diagnosis starts under predefined conditions. These conditions
must be so defined so that they appear in the standardized OBD test cycle. At
a basic sampling rate of 20 Hz, an average diagnosis sample could contain about
15 000 measurements of each variable. Then, for each cycle, the test quantity
for fault detection will be the average value of the residuals over this observation
window.

Aimed strategy for fault detection
The design of fault detection for the truck engine is not an easy task. Both

model and sensors contain a high level of innacuracy that create a lot of problems
when aiming at a precise fault detection procedure. In his Masters thesis, Petter
Haraldsson [Har02] partly solved those problems with ad hoc steps. Those
different steps in the fault diagnosis method were for instance:

• Rejection of subsets of data where the static model seems to be inaccurate

• Noise reduction before residual generation
• Adaptive normalization of the residuals and determination of thresholds

for statistical testing
• Outliers rejection

The aim of the present work will be to bring a more systematic approach for
fault detection.

First, when dealing with fault detection, subsets rejection and outliers rejec-
tion is very delicate. It is easy to build a criteria that would bring the residuals
distribution to look nicer but by the way, eliminate the fingerprint of any fault.
Thus, it will be aimed in this work to be careful about rejecting data.

Then, it will be aimed to have a simple strategy that does not contain too
much different steps before to bring a diagnosis.

Finally, more rigorous statistical contain will be introduce, as once the sta-
tistical properties of the residuals are well determined, thresholding problem
doesn’t exist anymore.

Outline
The first chapter presents a prospective work in which the data are assessed

in different ways. The diagnosis problem in not yet discussed at this point. The
different data available for residuals generation are shown in different ways. This
chapter, that could be skipped by a diagnosis focussed reader, introduce how
the ideas present in the second chapter emerged.

The second chapter illustrates the problem of residual generation. A first
approach implying data selection based on fixed threshold of given operational
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variables is illustrated. Then, the preferred method making use of statistical
charts to improve the model is presented. Finally, the methods are compared
and some expected results for fault detection are presented.



Chapter 1

Data analysis

Before to design any fault detection procedure, it is necessary to have a good
knowledge of the available tools. In our case, as we intend to perform model-
based fault detection, it is of prior importance to spend some time understanding
the data and the process. Here is performed some analysis from the data set
maverik1. This data set comes from the truck running on the Scania test track
in Södertälje. The measurements are taken at a 20 Hz frequency during almost
90 minutes and are of course fault-free.

1.1 Data visualization
Before assessing the data with any statistical tool, it is interesting to have

a quick look at it. This visualization operation aimed to have a rough idea of
what the data is, in what range of values they are evolving, if there is redundant
data, etc. For each figure, data will be shown for a short interval of around 8
minutes.

1.1.1 Data involved in the residual generation

The variables of interest in the purpose of residual generation are of course,
those involved in the static model (Pbo, Tbo, Neng and Win). The data linked
to those variables in the maverik1 dataset are called:

• eadc-dm-egr-s16
• eadc-dm-egrfilt-f32
• eadc-p-boostfilt-s16
• eadc-p-boostrawfilt-f3
• eadc-t-boostfilt-s16
• eess-n-avg10ms-s16

By simple observation, one can realize that the first two available data are
measuring the same variable, with different filtering. Figure 1.1 and Figure 1.2
respectively show this air-mass flow measurements, for two different filtering.
For both figures, the air-mass flow has been divided by 60 in order to have it in
kg/s. The label of the data, as it seems related to EGR, has in fact nothing
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Figure 1.1: eadc-dm-egr-s16: air-mass flow measurement (kg/s)
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Figure 1.2: eadc-dm-egrfilt-s16: air-mass flow measurement with a stronger
filter (kg/s)
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Figure 1.3: eadc-p-boostfilt-s16: boost pressure measurement (Pa)
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Figure 1.4: eadc-p-boostrawfilt-f32: boost pressure measurement with a
stronger filter (Pa)

to do with the flowrate in the EGR but is really the measurement of Win. This
confusing EGR label stands because this sensor is used for diagnosing EGR
faults.

Figure 1.3 and Figure 1.4 show the boost pressure measurement, for two
different filtering. The data have been multiplied by 100, in order to have the
measurement in Pascal.

On Figure 1.5, the measurement of the boost temperature is shown. 273 is
added to the original data in order to have the temperature in Kelvin. Finally,
Figure 1.6 shows the engine speed (Neng) in RPM.

In the further sections, all the previous measurements will be used to gen-
erate residuals for fault detection. In order to be sure that no available infor-
mation is lost, the less filtered signals will be used. This means that the data
from eadc-dm-egr-s16 will be used for the measurement of air mass flow and
eadc-p-boostfilt-s16 will be used as the measurement of the boost pressure.

1.1.2 Data derivatives
As only a static model is available to deal with dynamic data, some sort

of filtering could be useful in order to minimize the effect of data coming from
transitory regime on the residuals. To achieve this, time derivative of the original
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Figure 1.5: eadc-t-boostfilt-s16: boost temperature (Kelvin)
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Figure 1.6: eess-n-avg10ms-s16: engine speed (RPM)

data will be computed to pinpoint the transitory regimes. This operation is done
by priorly filtering the data through a low pass filter combined with a finite time
response filter:

0.002(1 + z−1 + z−2 + z−3 + z−4)
(1− 0.9z−1)2

(1.1)

Then, the differentiation was done by applying the diff Matlab function to the
filtered data. Figure 1.7 shows the time derivative of the air-mass flow and
Figure 1.8 shows the boost pressure time derivative.

Figure 1.9 shows the boost temperature time derivative and Figure 1.10
shows the engine speed time derivative.

All the previous figures are example of time derivatives measurements. They
are shown in order to visualize how those variables can be used to localize
transitory regimes.

1.2 Principal component analysis
In order to have a better understanding of the process, it is interesting to

perform a principal component analysis on the data [WEG87]. This procedure
is helpful to see what are the interactions between the different process variables
and can also be used to evaluate a non measurable characteristic of the process.
As we will see in the next chapter, the scores of the principal components can
be used to either weight or threshold data, before performing fault detection.
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Figure 1.7: Air mass flow derivative
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Figure 1.8: Boost pressure time derivative
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Figure 1.10: Engine speed time derivative

Figure 1.11 shows the first four principal components when PCA has been
performed on the 4 raw variables and on their four derivatives. In the vertical
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Figure 1.11: First four principal components of the data set maverik1, with
explained variance (%)

axes, the explained variance is given. Thus, the first four principal components
(out of 8) explained about 82 % of the total variance. This is actually quite
difficult to assess the signification of the resulting principal components. But
it will be possible to express the residuals with respect to the principal compo-
nents scores, which could be an interesting tool to evaluate residuals statistical
properties.

Figure 1.12 shows the four principal components of the PCA performed only
to the derivatives of the four variables.

As the scores of the principal components are to be used to evaluate accuracy
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Figure 1.12: Four principal components of the data set maverik1, with ex-
plained variance (%)

of the data, it could be better to use only data derivative and not raw data. For
fault detection purpose, using data derivative is not a problem but using the
raw data can induce the exclusion of fault at a pre-treatment operation, which
would definitely deteriorate the detection performances.

1.3 Residuals visualization

If we intend to improve the residual informative content, it is necessary to
study what variables have a strong influence on the residual values. Therefore
plotting the raw residuals against different variables of interest could give an
hint about the most influent variables on the residual behavior. In the following,
plots of residuals against some of those variables of operation are presented in
order to show this kind of interaction. Ultimately, this study will be used in
order to pinpoint variables that can be used, either as a threshold variable in
case of data selection, either as weighting factor.

1.3.1 Time evolution of the residuals

In a first step, it is worth to look at the time evolution of the model residuals,
in order to have an idea of the dynamics of the process. Figure 1.13 shows the
time evolution of the residuals, as well as the evolution of the air-mass flow.

From a first view, it is already possible to associate high values of residuals
with transitory regimes. It is then going to be an objective to find the best
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Figure 1.13: Temporal evolution of the residuals compared to the evolution of
the air-mass flow.

way to improve the fault detection performances dealing with those transitory
regimes.

1.3.2 Residuals plot against measured variables
It is already known that the accuracy of both the model and the air-mass

flow sensor varies with the air-mass flow level. It is therefore interesting to plot
the residuals with respect with Win (shown in Figure 1.14). For all the following
figures, data set maverik1 has been used and 15 000 points are plotted.
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Figure 1.14: Residuals with respect to the air-mass flow level (Win)

Figure 1.14 shows that the residuals behavior seems to have different prop-
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erties depending on Win. At first, we can notice that for very low air-mass flow,
there seems to be two different modes, generating two different types of residu-
als. It could look like a kind of hysteresis in the sensor, inducing a bias at some
moment. Then, around Win = 0.1 kg/s, the residual distribution seems to have
a smaller dispersion. But for higher flows, the dispersion increases. Overall, the
raw residuals have a mean of -0.0144 kg/s and a standard deviation of 0.0244
kg/s for this data set.

A similar bias on the mathematical expectancy of the residual was observed
by Haraldsson in his Master Thesis. In a recurrent manner, he was multiplying
the predicted air-mass flow by a factor 0.94, in order for the mean of the residuals
to be zero.

In the present approach, many variables will be assessed in order to find the
best way to generate reliable residuals. Ideally, it would be aimed to reduce
significantly the variance of the remaining data, while approaching a zero mean
for the residuals, and that for any dataset.

1.3.3 Residuals plot against variable derivatives

The principal assumption made when trying to discriminate more coherent
data on a given observation window is that the model is accurate only when
it is in a steady-state. Thus, it is interesting to plot the residuals against the
derivatives of the four involved variables.

First, Figure 1.15 shows the plot of the residuals against the time derivative
of the air flow. In Figure 1.15, we can notice that the dispersion of the data is
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Figure 1.15: Residuals with respect to the air-mass flow derivative (dWin)

a little bit reduced when the derivative is close to zero. Also, it seems that for
high positive derivative values, the residuals tend to be positively biased. This
means that putting higher weight on low flow derivative absolute values of the
data could probably improve the residuals.

Figure 1.16 shows the plot of the residuals against the the boost pressure
time derivative. Just by a quick view of Figure 1.16, one can see that the time
derivative of the boost pressure would not help as the dispersion of the residuals
seems to be even at a maximum when the boost pressure derivative is close to
zero.

Figure 1.17 shows the plot of the residuals against the time derivative of
the boost temperature. As for boost pressure derivative, designing a threshold
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Figure 1.16: Residuals with respect to the boost pressure derivative (dPbo)
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Figure 1.17: Residuals with respect to the boost temperature derivative (dTbo)
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Figure 1.18: Residuals with respect to the engine speed derivative (dNeng)

on boost temperature derivative wont be very useful as the dispersion of the
residuals is high when the time derivative is around zero. However, an interesting
thing with this plot is that at high temperature derivative, there seems to have
two residuals distribution, like observed in Figure 1.14 for low air flows. This
could imply a correlation between those two behavior.

Figure 1.18 shows the plot of the residuals against the time derivative of
the engine speed. As for the last two variable derivatives, the dispersion of the
residuals around zero seems rather high to choose engine speed as a residual
design variable.

A priori, the time derivative of the air-mass flow seems the best candidate
to design a weighting or a threshold to discriminate model-coherent data.

1.3.4 Residuals plot against principal component scores
Plots of residuals can be made with respect to the four different measure-

ment, as well as the four measurement derivative. But it is also possible to plot
the residuals against a linear combination of the different available variables.
The natural linear combination are the principal component of the different
variables. Every new observation must be projected in the principal component
directions. The result of this scalar product is the score of an given observation.

Figure 1.19 shows the plot of the residuals against scores of the first principal
component given by the principal component analysis made over both raw and
differentiated variables (see Figure 1.11). Around null scores of the first principal
component, the dispersion of the residuals seems significantly reduced. This
mean that designing a selection criteria based on the scores of the first principal
component could be an interesting avenue.

Figure 1.20 shows the plot of the residuals against the scores of the second
principal component (8 variables). On Figure 1.20, it is not that obvious that
the scores of the second principal components are good candidate for residual
discrimination. However, the analysis made just looking at the figures is very
limited. For the third and fourth principal component, not much improvement
was observed.

The principal component analysis made over only derivated variables can be
assessed as well. Figure 1.21 shows the plot of the residuals against scores of
the first principal component given by the principal component analysis made
over only derivated variables (see Figure 1.12). The dispersion of the residuals
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Figure 1.19: Residuals with respect to the scores of the first principal component
(8 variables)
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Figure 1.20: Residuals with respect to the scores of the second principal com-
ponent (8 variables)
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Figure 1.21: Residuals with respect to the scores of the first principal component
(4 variables)
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Figure 1.22: Residuals of the static model with respect to the scores of the
second principal component (4 variables)
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Figure 1.23: Residuals of the static model with respect to the scores of the first
principal component (7 variables)

seems to be ligthly improved around zero, as high residuals values tend to be
more associated with high negative score values.

Figure 1.22 shows the plot of the residuals against scores of the second
principal component given by the principal component analysis made over only
derivated variables. The dispersion of the residuals doesn’t seem to be improved
around zero, so this score will probably not be associated with data selection.
The residuals projected against the third and fourth principal component are
not giving interesting results either.

The selection of the first principal component in Figure 1.19 as threshold
variable for selecting model-coherent data could seem straight forward. How-
ever, as this principal component is also made over the raw measurements, it
could be influenced by the eventual presence of a sensor fault. For this reason,
another principal component analysis has been done on all derivated and raw
variables, except the air-mass flow measurement. This has been achieved in
order find a variable that can reduce the dispersion of the residuals as the first
principal componentscores do in Figure 1.19, but without using the measure-
ment on which we intend to perform fault detection (Win). Figure 1.23 shows
the plot of the residuals against scores of the first principal component given by
the principal component analysis made over all derivated variables, along with
Pboost, Tboost and Neng.

The dispersion around zero is significantly reduced, but maybe not as much
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as in Figure 1.19. But probably, this variable will be less sensitive to eventual
faults on Win.

In the next chapter, the prospective study made here will be helpful in
finding way to improve residual dispersion. The variables assessed here will be
used in order to select or weight part of the data in the whole residual generation
procedure.



Chapter 2

Residual Generation

If the process model we have described before was exact, the fault detection
procedure would be quite simple. As a lot of measurements are available and
supposing that the measurements are submitted to white noise, the measure-
ment mean would have a much reduced variance (by the huge amount of data)
and very low amplitude faults could then be detected. But as shown in the
previous chapter, the process model is not exact and shows evident variability,
even for very large samples.

In the first section, the behavior of the original model for residual generation
will be assessed. Then, an attempt to improve the residuals selecting part of
the data will be presented in the second section. The third section presents a
way to generate residuals using statistical charts. This last technique is showing
interesting results as the overall residual dispersion is significantly reduced. The
two approaches will be compared in the fourth section. Finally, the correspond-
ing expected inputs for fault detection will be evaluated.

In order to compare the different approaches for residual generation, it is
necessary to have rigorous comparison tools. To do so, the different datasets
will be always used in the same way. First, the first half of the dataset called
maverik4, which includes 210 000 different observation, will be designated as
the calibration set. All the other available datasets will be used for valida-
tion purposes. From the truck Maverik, the datasets maverik1, maverik2,
maverik3 and maverik4b (second half) will be used. Also, coming from the
similar truck Platina, the datasets mplatina1, mplatina3 and mplatina4 will
be used for validation. The ultimate goal would be to have a residual generation
procedure that when calibrated on a given dataset, still show good results on
the different validation sets.

2.1 Residuals of the original model

It could be expected that the residual is simply the difference between the
measured and the predicted air-mass flow, as in Equation 2. But due to innacu-
racy in both the model and the measurements, an important bias remain and
must be corrected, even when testing the calibration dataset. Depending on the

19
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calibration set used to evaluate the volumetric efficiency map and the bias, this
bias will differ. Taking many different samples of 15 000 points from the cali-
bration set, the bias has been evaluated and results in the following expression
for the residual calculation:

r = Win −Wp + 0.0129 (2.1)

The corresponding units of the residuals is in kg/s, compared to a sensor oper-
ating range of 0.05 kg/s to 0.50 kg/s.

2.1.1 Residual distribution: calibration set
From this basic residual generation, it is interesting to plot an histogram in

order to see what is the approximate distribution of the residuals. Figure 2.1
shows the distribution of the residual mean values over around 1000 different
15 000 points overlapping samples of the calibration set. From this only dis-
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Figure 2.1: Averaged residual distribution for the calibration set.

tribution, it could seem that faults in the range of 0.01 kg/s could be easily
detected.

2.1.2 Residual distribution: validation set
When using different dataset, the resulting residuals distributions shows huge

differences. Figure 2.2 shows the residual mean distributions for the calibration
set as well as for the seven different validation sets. Figure 2.2 illustrates the
whole problem of fault detection in a real engine. The model calibrated with
one data set is not reliable when applied to other datasets. The distribution
biases observed in Figure 2.2 are significant as they appear to be higher than
the dispersion of the original distribution.

For the dataset maverik4b, the behavior of the residuals is dramatically
different. Some special event may have occurred for this particular dataset and
the author have no idea if the whole dataset is reliable or not. The data are
shown here, but maybe they wont be considered in the choice of the best residual
generation method.

From the distributions observed in Figure 2.2, it would be possible to detect
fault only on the range of 0.04 kg/s, at the best. From that point, the work will
consist in finding a way to make the overall residual generation more reliable.
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Figure 2.2: Averaged residual distributions for the calibration set and 7 valida-
tion sets.
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threshold variable r̄ σr best candidates
no threshold -0.0144 0.0247
dWin -0.0183 0.0194

√
dPboost -0.0177 0.0223
dTboost -0.0125 0.0231
dNeng -0.016 0.0244
PC1 (8 var.) -0.0089 0.0152

√
PC2 (8 var.) -0.014 0.0157

√
PC3 (8 var.) -0.0155 0.0277
PC4 (8 var.) -0.0116 0.0251
PC1 (4 var.) -0.0183 0.0207
PC2 (4 var.) -0.0169 0.0227
PC3 (4 var.) -0.0179 0.0215
PC4 (4 var.) -0.0152 0.0227
PC1 (7 var.) -0.0112 0.0159

√
PC2 (7 var.) -0.0097 0.0193
PC3 (7 var.) -0.0162 0.0233
PC4 (7 var.) -0.0170 0.0230

Table 2.1: Statistical properties of the remaining residuals after a selection has
been made, based on a threshold on the given operational variable.

2.2 Residuals generation with data selection

At first, it was supposed that high residual values were associated with
transitory regimes, as the process model could only be accurate with static
data. Then, the first attempt to improve the residuals was to eliminate part
of the data where those transitory behavior occurs. This is done by setting a
threshold on a given operational variable to be determined.

2.2.1 Best thresholding candidates

All variables, filtered variables and linear combination of variables are can-
didates to become a threshold variable. But it is not possible to study all of
them extensively. Then it is necessary to operate a pre-selection of the best
thresholding candidates.

A way to evaluate which variable should be chosen to select model coherent
data is to evaluate the statistical properties of the remaining residuals once a
selection as been performed with the corresponding threshold variable. Table 2.1
shows the mean and the standard deviation of the remaining residuals, for a
merge of many datasets. For each data selection, a threshold has been selected
in order to keep approximately 20 % of the initial data. The first line shows
the residuals properties prior to any selection. The fourth column indicates
which variables seem to be the most appropriate for thresholding.Those are the
properties of all residuals and not residual sample means.

The best performance when using only variable derivative as threshold is
obtained by the air flow derivative, for which the standard deviation is reduced
by about 20 %. When using the score of the first and second principal component
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data no thres. dWin PC1 (8) PC2 (8) PC1 (7)
mav4a 0.0000 -0.0009 0.0078 0.0027 0.0001
mav1 -0.0048 -0.0053 0.0036 -0.0005 -0.0050
mav2 -0.0095 -0.0102 -0.0004 -0.0071 -0.0162
mav3 -0.0018 -0.0042 0.0020 -0.0009 -0.0047
mav4b -0.0204 -0.0257 -0.0048 -0.0149 -0.0349
mpl1 -0.0010 -0.0078 -0.0013 -0.0031 0.0002
mpl3 -0.0107 -0.0151 -0.0108 -0.0105 -0.0053
mpl4 -0.0126 -0.0124 0.0001 -0.0071 -0.0061
tot. 0.0609 0.0818 0.0307 0.0469 0.0724

Table 2.2: Mean of averaged residual distributions, for different datasets and
threshold variables.

(8 variables) for threshold, the standard deviation of the remaining residuals is
reduced by almost 40 %. Finally, when using the score of the first principal
component in the case when 7 variables are considered, the reduction of the
standard deviation is around 35 %. Those 4 possible threshold variables will
be considered in order to compare the residuals distribution between different
datasets.

2.2.2 Threshold variable selection
The study made in Table 2.1 intend mostly to find which threshold variable

could bring the most improvement in the dispersion on a big sample. Now, the
datasets that have been previously used as calibration and validation sets will
be used again to assessed if the selection of parts of the data using thresholds
on specific variables can reduce the overall range of the residual distributions
for different datasets.

For each data selection, the corresponding threshold has been set in order to
eliminate around half of the data. As a lot of data is available to perform the di-
agnosis on each cycle, discarding half of it wouldn’t have dramatic consequences
on detection performances. In Table 2.2, the mean of each dataset residuals dis-
tribution is shown for the four different threshold variables. In order to compare
values, the original residuals without data selection are also shown. The last
line on Table 2.2 shows the added absolute biases of every dataset residual dis-
tribution for each threshold variable. As it could have been expected looking
at Figure 1.19, the best results are obtained with a threshold on the scores of
the first principal component (8 variables). For the corresponding remaining
residuals samples, the total bias over the 7 validation samples is reduced by
half, compared to the original residuals.

2.2.3 Selected residual distributions
Figure 2.3 shows the residual mean distributions for the 8 datasets when the

threshold variable is the scores of the first principal component. The thresh-
old was put to -1 and +1, which discard about half of the data. Comparing
Figure 2.3 to Figure 2.2 which has the same scale, it is obvious that a signifi-
cant improvement in the residual distributions has been achieved, as the various
distributions are less spread.
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Figure 2.3: Averaged residual distributions for the calibration set and 7 vali-
dation sets, when a threshold has been put on the scores on the first principal
component.
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2.3 Residuals generation using statistical charts

As statistical properties of the residuals seem to be dependent on the op-
erational level of the truck engine, it is natural to try to use this additional
information in order to improve the residual generation.

2.3.1 Improved residual generation

The main idea of the new residual generation is to use adaptive statistical
properties for the generation of each residual among the 15 000 residuals of a
cycle sample. Therefore, depending on an operational variable to be determined,
different bias (mean) and standard deviation will be assigned to each residual.

Instead of using Equation 2.1, the residuals will then be generated by Equa-
tion 2.2:

r = σ̄
Win −Wp + b(xi)

σ(xi)
(2.2)

In Equation 2.2, b is a bias taken from a chart that depends on the observation
i of the operational variable x. In a same way, σ is taken form a chart also
depending on xi. In order to bring back the original dimension of the residual,
the quotient is multiplied by σ̄, the average standard deviation of the residual
over the sample. In that way, each residual of the sample will have its own
bias and its own level of confidence, depending on its corresponding operational
variable. Then, the test quantity for fault detection will again be the mean of
all the 15 000 residuals of the sample.

2.3.2 Chart selection

As for the design of threshold variables, charts can be built on any opera-
tional variable, filtered variable, linear combination of variables, etc. It is then
necessary to determine what chart would bring the most improvement.

The main problem observed in Figure 2.2 is the evident difference in the distri-
bution mean of the different datasets. As for finding the best threshold variable,
the performance index will be based on the difference between the calibration
set distribution mean and the validation sets distribution means. Many different
charts have been studied in order to find the one that minimize this difference.
Table 2.3 shows, for the different data sets, the bias of the distribution mean, for
some of the charts studied. The charts were done on the operational variables
Win, air-mass flow derivative (dWin), scores of the first principal component (8
variables), scores of the second principal component (8 variables) and scores of
the first principal component (7 variables). The last line of Table 2.3 shows the
sum of the absolute biases for each chart.

The chart on Win shows really good results on the first two validation sets,
which were taken from the same truck as the calibration set. But when it comes
to validation sets taken from the second truck engine, the results are no more
reliable. In Table 2.3, the sum of the distribution absolute means show that
the biases are generally minimized using a chart on the scores of the second
principal component (PC2). Figure 2.4 illustrates the corresponding charts for
residuals mean and standard deviation. This result is not an absolute one as



26 Residual Generation

data no chart Win dWin PC1 (8) PC2 (8) PC1 (7)
mav4a 0.0000 0.0002 0.0002 -0.0007 0.0004 0.0002
mav1 -0.0048 -0.0019 -0.0049 -0.0041 -0.0016 -0.0038
mav2 -0.0095 -0.0041 -0.0098 -0.0065 -0.0058 -0.0090
mav3 -0.0018 0.0023 -0.0019 -0.0015 0.0018 -0.0007
mav4b -0.0205 -0.0111 -0.0209 -0.0166 -0.0131 -0.0212
mpl1 -0.0010 -0.0038 -0.0018 -0.0041 0.0011 -0.0074
mpl3 -0.0107 -0.0139 -0.0116 -0.0115 -0.0075 -0.0134
mpl4 -0.0126 -0.0179 -0.0136 -0.0109 -0.0089 -0.0182
tot. 0.0609 0.0552 0.0647 0.0559 0.0402 0.0739

Table 2.3: Mean of averaged residual distributions, for different data sets and
threshold variables.
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Figure 2.4: Residual mean and standard deviation of the calibration set against
the scores of the 2nd principal component.
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not all the different chart alternatives have been studied. But among all the
ones studied, this chart is the best candidate to improve residuals reliability.

2.3.3 Dispersion reduction of the residuals

From the results of Table 2.3, it is already known that the use of the chart
on PC2 will reduce the expanse of the different dataset residual distributions.
Figure 2.5 shows exactly the same distributions as in Figure 2.2, but when
the charts has been used to generate the residuals. Showing the same scale
as Figure 2.2 and Figure 2.3 , Figure 2.5 demonstrates that the new residual
distributions are less spread than the original ones. However, it is not yet clear
if it is better to use a threshold or to use a chart on a given operational variable.

2.4 Comparison of the residual generation meth-
ods

The three different approaches for residual generations will be compared
here. First, the raw residuals without any prior treatment, then the remaining
residuals after a threshold has been set on the scores of the first principal com-
ponent, and finally, the residuals generated using statistical charts on the scores
of the second principal component.

As one of the dataset (maverik4b) shows totally different properties than
the other, residuals distributions will also be assessed without this particular
dataset. The engine and sensors during this test had a suspicious behavior, that
could be interpreted as a fault. But as nothing is known about the particular
experimental conditions of this test, nothing can be said and therefore, the two
possibilities will be assessed: if this behavior is normal or if it is abnormal.

2.4.1 Raw residuals

Merging all residual distributions of Figure 2.2 gives the residual mean dis-
tribution of Figure 2.6. Depending on which dataset had been chosen for the
calibration of the bias, the distribution would be slightly different, having a
different mean. But the general dispersion of the residuals would be similar.
When the dataset maverik4b is ignored, the resulting distribution is nicer (see
Figure 2.7).

Depending if the dataset maverik4b is considered or not, the overall range
of the raw residuals is 0.048 kg/s or 0.039 kg/s. This is huge comparing with
the operating range of the air-mass flow sensor of 0.05 to 0.5 kg/s, and will
therefore highly limitate the diagnosis performances.

2.4.2 Residuals after data selection

Merging all residual distributions after the thresholding of Figure 2.3 gives
the overall residual mean distribution of Figure 2.8. The dispersion reduction
can easily be seen comparing Figures 2.6 and Figure 2.8. No residual mean go
further than -0.02 kg/s compare to -0.035 kg/s with the raw residuals.

Figure 2.9 shows the residual mean distributions when the dataset maverik4b
is ignored. The range of the selected residual means goes from -0.021 kg/s to
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Figure 2.5: Averaged residual distributions for the calibration set and 7 valida-
tion sets, when a chart on PC2 scores has been used for residual generation.
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Figure 2.6: Averaged residual distribution for all datasets, using raw residuals.
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Figure 2.7: Averaged residual distribution for all datasets except maverick4b,
using raw residuals.
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Figure 2.8: Averaged residual distribution for all datasets, using selected resid-
uals.
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0.012 kg/s, no matter if dataset maverik4b is considered or not. However, the
distribution without maverik4b is slightly more compact than the first one.
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Figure 2.9: Averaged residual distribution for all datasets except maverick4b,
using selected residuals.

2.4.3 Residuals after the use of a chart
Figure 2.10 shows the distribution of the residual mean from all dataset,

when a chart on PC2 has been used in the residual generation. The suspicious
behavior of dataset maverik4b is clearly present in Figure 2.10, compared to
Figure 2.8 where it seemed to vanish. So depending if this behavior is considered
abnormal or not, an approach would give better results than the other. The
thresholding approach would most probably not detect this behavior as a fault
as the chart approach will probably do.

Figure 2.11 shows the residual mean distribution of all datasets but maverik4b,
when using charts to generate residuals. Depending if maverik4b is considered
or not, the range of the residual mean is reduced from -0.025 kg/s to 0.009 kg/s
or from -0.18 kg/s to 0.009 kg/s.

2.4.4 Best approach
In order to identify which approach would bring the best results for diagnosis
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Figure 2.10: Averaged residual distribution for all datasets, using residuals gen-
erated with charts.
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Figure 2.11: Averaged residual distribution for all datasets except maverick4b,
using residuals generated with charts.

purposes, it is necessary to study the dispersion of the various residual mean
distribution. But as the residual distributions of Figures 2.6 to 2.11 are not
symmetrical, it is more appropriate to evaluate different dispersions for each
sides of the distributions. Then, cutting each distribution at the most occurring
residual mean (top of the distribution), a standard deviation is evaluated for
the negative side and another for the positive side. That is repeated for each of
the three approaches. Table 2.4 shows those dual standard deviations.

approach σr-(all) σr+(all) σr- (no mav4b) σr+ (no mav4b)
raw res. 0.0142 0.0042 0.0101 0.0041
selec. res. 0.0078 0.0067 0.0070 0.0059
chart 0.0104 0.0031 0.0076 0.0032

Table 2.4: Negative and positive standard deviations (kg/s) for the 3 residual
generation approaches; on left: for all datasets; on right: for all datasets except
maverik4b .

Adding both positive and negative standard deviation, the approach using
a chart on PC2 to generate residuals is always better. When not considering
maverik4b, the difference is more obvious. For that case, the dispersion is
reduced by 24 % for the chart approach, comparing to a 10 % reduction for the
threshold approach.

2.5 Diagnosis improvement
A dispersion reduction of the residuals will bring an improvement in the

fault detection performances. Making some gross assumption, it is possible to
evaluate this performance improvement. The next figures show the detection
test power function [CB90] for a simulated sensor bias on the air-mass flow
measurement. This power function has been roughly evaluated considering two
different Gaussian distributions, on each sides of every residual distributions,
and setting the false alarm rate to 1 %. Figure 2.12 shows the power functions
of the three approaches when dataset maverik4b is consider as normal.

From Figure 2.12, it is not clear which shows the best performances as what’s
gained on the negative side seemed to be lost on the positive side. The results
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Figure 2.12: Power functions evaluation for a Win sensor bias (considering
maverik4b as normal).
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Figure 2.13: Power functions evaluation for a Win sensor bias (considering
maverik4b as abnormal).

are more obvious on Figure 2.13, which shows the same power functions, but
when maverik4b is considered as abnormal.

From Figure 2.13, the power function of the approach using charts is def-
initely sharper. Thus, we can conclude that using charts will allow to detect
smaller faults, for the same level of false alarm. Table 2.5 shows the approximate
fault amplitudes where 98 % of detection is obtained in the power functions.

Generally, using a chart in the residual generation procedure is improving
the detection performances by approximately 25 %.

approach fault-(all) fault+(all) fault- (no mav4b) fault+ (no mav4b)
raw res. -0.065 0.019 - 0.046 0.019
selec. res. - 0.036 0.031 -0.032 0.027
chart - 0.048 0.015 -0.035 0.015

Table 2.5: Negative and positive fault amplitudes (kg/s) where 98 % of detection
is reached; on left: for all datasets; on right: for all datasets except maverik4b.
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2.6 Conclusion
With the incoming new regulations, the problem of diagnosis for truck en-

gines need solutions in a near future. To match regulations, faults have to be
detected as early as possible, without showing false alarm. From this viewpoint,
it is necessary to improve model-based diagnosis, even having as starting points
inaccurate model.

Having an inaccurate model of the truck engine air-path, this study first
proposed a way to generate residuals of the model using selected parts of data,
based on various operational variables. Then, another avenue is explored where
the model for residual generation is empirically improved using adaptive statis-
tical properties (mean and standard deviation) taken from empirical charts.

Those approaches, that could on a first view seem quite particular to the
presented problem can be used for other mean. In fact, any problem where
residuals are generated in large quantity is a candidate for that kind of model
improvement.

In the present study, the best results were obtained by generating residu-
als making use of statistical charts based on the score of the second principal
component. If the technique can be extended to other diagnosis problem, this
results is particular to this problem. Doing so, the overall dispersion of the re-
sulting residuals was significantly reduced compared to the original ones. This
dispersion reduction in the residuals was improving the diagnosis performances
by close to 25 %. Depending on the exact requirement of the environmental
laws, this difference could be very helpful.
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