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Abstract

Fault isolability plays a significant role and could be critical with respect to
many aspects such as safety and maintenance for a process to be diagnosed. In
the development of processes including diagnosis, design decisions are taken, e.g.
sensor configuration selection, which affects the fault isolability possibilities. In
this report an algorithm for predicting fault isolability possibilities using a struc-
tural model describing the process is proposed. Since only a structural model is
needed as input, the algorithm can easily predict fault isolability possibilities of
different design concepts. In contrast to previous algorithms using structural mod-
els no assumption is imposed on the model. The algorithm computes faults that
cannot be distinguished from other faults, which can be used to exclude design
alternatives with insufficient isolability possibility.

1 Introduction

Fault isolability refers to the question of which faults that are possible to distinguish
from other faults, given the knowledge of available sensor and actuator signals. This
information is important when designing diagnostic systems but also when designing
the process to be diagnosed.

In the development of processes, different design decisions are taken, e.g. how
different parts are connected, which actuators to use, and which sensors to use. All
these design decisions may influence the isolability possibilities. In addition, when
designing the diagnostic system, there is a choice of different fault modeling strategies
and which diagnostic tests to include. As a guidance when taking these design deci-
sions, it is desirable to know exactly how different design choices affect the isolability
possibilities.

To find the isolability of a given model of a process is a difficult problem in general
since it is related to the problem of solving large systems of non-linear differential
equations. In this report we attack the problem by an algorithm that takes a structural
model of a process as input and computes faults that are not isolable from other faults.
Since only a structural model is used, no precise analytical equations are needed. This
implies that the algorithm can be used early in the design phase and thus serve as a
guidance when taking different design decisions. However, if we need to know exactly



which faults that are isolable from others, the algorithm also helps braking down the
large problem into smaller and easier problems to analyze.

Isolability analysis has previously been studied in [9], but only for qualitative mod-
els. Furthermore, a structural method for computing the isolability of different sensor
configurations was presented in [11]. This and other earlier works using structural
models for diagnosis, e.g. [10], [5], [3], and [2], have imposed analytical assumptions
on the systems, e.g. that only subsystem with more equations than unknowns, i.e. only
over-constrained subsystems, can be invalidated and therefore contribute to detection
and isolation. However these assumptions are difficult to verify in most larger models.
If these assumptions are not satisfied, faults that are predicted to be isolable from other
faults can be notisolable and vice verse. In contrast, the method presented in this report
does not require any analytical assumptions.

In Section 2 a modeling framework for model based diagnosis is recapitulated. In
Section 3 the central concepts detectability and isolability are recalled. These concepts
are related to structural properties of the model through the new concepedking
modelpresented in Section 4. We describe how checking models can be computed
by using a structural model. By combining the algorithm for finding checking models
with the results relating checking models and isolability, an algorithm for isolability
prediction is developed in Section 5. An example shows how the obtained isolability
prediction can be interpreted. Furthermore, in Section 6 illustrative examples show
how isolability prediction can be used to identify additional fault modeling and support
sensor selection to meet given isolability requirements.

2 Example Introduction and Models

Throughout the report, we will exemplify concepts and techniques on the same exam-
ple, i.e. the water-tank process depicted in Figure 1. The water-tank process consists
of a pump, a tank, a water-level sensor, and a flow sensor. These components are de-
notedP, T, W, and(@ respectively and are illustrated in the figure by the four dashed
boxes. The pump is pumping water into the top of the tank. The water flows out of the
tank through a pipe connected to the bottom of the tank. The pump is controlled by a
control signak:, the water-level in the tank is measured with the sensor signand

the outflow from the tank is measured with the sensor signalThe true flows into

and out of the tank are denoted and the actual water level in the tank is denated

A physical model of the process is shown in Table 1. The model is organized
according to the modeling principles given in [4; 8]. The equatiprdescribes the
pump;es the conservation of volume in the tankg ande, the outflow from the tank
caused by the gravity and with a possible clogging fgultes a fault model for the
clogging fault;eg the no-fault value for fault variablg; e; andeg the fault free water-
level measurementy ande;, the outflow measurement with a possible bias fet
ande;; ande; the outflow-measurement faulj. Note that both arbitrary faults, e.g.
the water-level sensor fault, and faults modeled by fault parameters, e.g. the bias fault
of the outflow measurement, can be handled by this modeling principle.

By including analytically differentiated equations, i.e4, eg, andeyq in the ex-
ample, the derivatives of the unknowns can be replaced with new algebraic variables.
Thus a derivative: is eliminated by substituting a so callddmmy derivative:’ [7]
for  wherever it occurs in the model. Although we assumethat z, this is not true
by definition, instead this relationship should be implied by the augmented algebraic
model containing differentiated equations. For examplds an algebraic variable,



Figure 1: The process to be diagnosed. The location of possible faults are denoted with
ared flash.

i.e. itis not defined as the derivativie of w, but should be equal té. The algebraic
equationse; andeg together with the differential equatiap, = dy.,/dt imply that

w’ = dw/dt = w. In this way it is possible to transform an over-constrained system of
differential-algebraic equations into an algebraic system. The price paid for converting
a differential algebraic model into an algebraic model is that the number of equations
grows. The conversion from a differential algebraic model to an algebraic model can
be done using an algorithm in [6].

The assumption of the first equation, i.&. = NF, means thatt = ¢ is valid
if the behavioral modef componentP is in the no-fault mode, which is abbreviated
NF. For the water-tank example all components are assumed to be either in no-fault
mode NF or in faulty mode F. Equations with no assumptions are always true. A mode
assignment for all components of a process is callsgséem behavioral-modéhe
no-fault system behavioral-mode for the water-tank process will be dedNFednd
fault modes will be denoted by their faulty components, & for the behavioral
mode where component3 and7T" are in faulty mode andV and @ are in no-fault
mode.

The set of equations that are valid in a given system behavioral-moide its
behavioral modetlenoted),, defines the behavior of process in system behavioral-
modeb. For an example, the set of all equations exeepandes is the behavioral
model of behavioral-mod&Vv.

3 Detectability and Isolability Prediction

First some definitions are briefly introduced. Abservatioris here considered to be a
shap-shot of all known variables and possibly also some derivatives of known variables.



Table 1: A model for the water-tank process in Figure 1.

Assumption Equation Expression

Pump
P = NF e1 uU=q
Tank
€2 w =q1—q
es w= (1~ fi)g3
€4 w/:2(1*ft)QQq/2*ft/Q§
€5 ft/ =0
T = NF e fi=0
Water-level sensor
W = NF er Yo = W
W = NF es Y = W'
Flow sensor
eg Yg=aq2+ fq
e1o Ug = g5+ [
€11 ,; =
Q = NF €12 fq =

For the water-tank process an observation is a value of the vie€tor v, (t), .,(t),
yq(t), yq(t)] at timet. A diagnosisat timet is a system behavioral-mode such that
its behavioral model is consistent with the observation at tinfesystem behavioral-
modeb; is said to besolablefrom another system behavioral-moldeif there exists
some observation such that is a diagnosis bub; is not. A faultd; is said to be
detectabléf it is isolable from the no-fault system behavioral mode.

It could be argued that the proposed definition of detectability is relatively weak
in the sense that a fault is detectable if there exists only one single observation that
distinguish the fault from the no-fault mode. However, by using this relatively weak
definition, a non-detectable fault would also be non-detectable with any stronger defi-
nition of detectability.

3.1 Predicting Detectability

In this section we will describe how detectability information can be derived without
knowing the exact analytical equations of a model like the one in Table 1. It can be
realized thab is not detectable ifing C M,;,. However detectability analysis by this
naive idea comparing behavioral models is not particularly powerful. Here a refinement
of this idea will be presented.

Consider first the no-fault system behavioral-model. As in [2], a faultvialate
some equations in the no-fault system-behavioral model, i.e. some equations in no-fault
system-behavioral model can be false for variable values consistent with the behavioral
model of the fault. For example the fault of the outflow sen@oin the water-tank
example can violate,» in the no-fault system behavioral-modélxg.

Even if a fault can violate an equation in a model, it is not sure that the fault is
detectable as the next small illustrative example shows. Consider a no-fault behavioral



M,

Figure 2: Venn-diagram representation of equation sets.

model Mnr defined as

u = T (1a)
= (1b)
0 = x1+2x2 (1c)

whereu andy are known variables and, andzs are unknowns. The set of observa-
tions consistent with (1a)-(1c), i.8dnF IS

{(u,y) € R?|lu =y} ()

which will be called theobservation sefor Mg and denoted (Mny). A fault vio-
lating either (1a) or (1b) is detectable, becausg vy if either (1a) or (1b) is violated,

i.e. (u,y) belongs not to the observation set (2). A fault which only violates (1c) can-
not be detected because a violation of (1c) leads to different values lofit u = y

still holds. Equation (1c) is therefore said to@n-monitorablen [2].

A difference between the first two equations where a fault can be detected and (1c)
where a fault can not be detected is that the first two equations define the observa-
tion set (2) and (1c) is not needed to define (2). Observation set is next defined to
formalize this discussion. I}/ is a set of equationss a vector of unknowns, anzl
a vector of known variables, then the observation setMbis defined byO(M) =
{z|3x Acerr e(x,2)}. The following definition will be used to formalize in which
equations violations can be detected.

Definition 1 (C,, Checking Model ob). A modelC}, is achecking model ob if Cy, is
a subset of the behavioral modef, andO(C) = O(My).

Note that behavioral models trivially are checking models. Note also that checking
models need not be over-constrained. As examples of checking models, the two check-
ing models ofNF in (1) are the set$(1a), (1b} and{(1a),(1b), (1c). A detectable
fault violates at least one equation in every checking médgt for the no-fault be-
havioral mode. A detectable fault must therefore violate (1a) or (1b) in (1), because
{(1a), (1b} is a checking model dNF.

An illustration of the equation sets involved in the discussion is shown in Figure 2
as a Venn diagram. The rectangle represents the set of all equations in the no-fault
behavioral modelMnr, i.e. (1a)-(1c) in the small example. The right circle contains
a checking model’\ g of the no-fault behavioral mode, i.e. (1a)-(1b) in the example.
The left circle contains the behavioral moddl, for some behavioral mode The
grey-shaded area represents the set of equations which can be violated in behavioral



modeb, i.e. the equations that render detection of behavioral naquessible. Hence

if the grey-shaded area is empty, theis not detectable. 1/, = {(1a),(1b} in the
example withM/ Ny equal to (1) theid is not detectable, because both (1a) and (1b) hold
in b. From this discussion the next theorem follows which summarizes how checking
models will be used for detectability analysis.

Lemma 1. A system behavioral-modegis not isolable from a system behavioral mode
b; if and only if
O(My,) € O(My,) 3

Proof. The modeb; is not isolable fromb; if and only if wheneve; is a diagnosis

b; is a diagnosis too. This can according to the definition of diagnosis be written as
z(t) € O(M,,) implies thatz(t) € O(M,,) wherez(t) is an observation at time

This implication is equivalent to (3) which completes the proof. O

Theorem 2. A system behavioral-modeis not detectable if there exists a checking
modelCnr of NF such thatCng C M.

Proof. FromCny C M, it follows that
O(M,) C O(CnF)
This and Definition 1 imply that
O(My) € O(Mnr) 4)

sinceCnr is a checking model dNF. Equation (4) and Lemma 1 imply thais not
isolable fromNF which means thak is not detectable. O

How to find checking models will be described in Section 4.

3.2 Predicting Isolability

Since detectability is a special case of isolability, the results of Theorem 2 concerning
detectability can be generalized to isolability as follows. A behavioral nigdehat

is isolable from a behavioral modg, violates some equations in a checking model
Cy, of the behavioral modg;. Figure 2 could represent this situation as welNiF® is
changed t@; andb to b,. Then it can be seen that if all equations in a checking model
Cy, hold in behavioral mode; then it follows thab; is not isolable fromb;. Hence by
computing a checking model @f,, it can be concluded which behavioral modes that
are not isolable fron;. '

Theorem 3. A system behavioral-modg is not isolable from a system behavioral
modeb; if there exists a checking modé},; of b; such that

Cy; C My, (5)
Proof. Inclusion (5) implies that
O(My,) € O(Cy)
which according to Definition 1 implies that
O(Ms,) € O(My,)

Henceb; is not isolable fronb; according to Lemma 1. O



In conclusion, by computing a checking model for each system behavioral-mode,
Theorem 2 and Theorem 3 give an explicit method to compute if a faulty behavioral
mode is not detectable and if a behavioral mode is not isolable from another behavioral
mode. The algorithm presented later will be based on these results.

3.3 Isolability and Checking Models

There might exist several checking models of a system behavioral-mjode seen
previously. Assume that one checking modgjl is a proper subset of another checking

modelC7 , i.e. Gy C G} If Cf C My, thenCj - C My, but the opposite does not
hold. This and Theorem 3 imply that if checking moate}j implies thatb; is not
isolable fromb; thenC1 does that too. Now assume tt@,} C My, C 02 By using
Cl as checking model fob;, it is concluded from Theorem 3 thatis not isolable

from b;. However |fC§ is used as checking model then no conclusion can be drawn.
Hence the strongest conclusion is given by the smallest checking model. By finding
smaller checking models thav, more faults can be concluded to not be isolable from
others.

4  Finding Checking Models

The minimal checking models of a system behavioral-mode are unknown and depends
on the analytical expressions of the equations in the model. A brute-force approach to
compute the minimal checking models would be to compute observation sets for sub-
sets of equations and compare it to the observation set of the behavioral model. Even
for models of the size and complexity like the water-tank example, automatic compu-
tation of observation sets by using computer algebra, like for example Mathematica,
is computationally demanding. For a large industrial example this approach would be
computationally intractable. Instead of requiring an exact determination of all minimal
checking models of, we propose to compute the smallest checking modé| tifat

can be obtained with the structural method to be presented in Section 4.3. This model
will in the continuation be called the smallest checking modelbfolrhe strategy to

find the smallest checking model oWill be to start with the corresponding behavioral
model and remove equations which are not needed to define the observation set for the
behavioral model, i.e. to remove non-monitorable equations.

4.1 Excluding Non-monitorable Equations

If X is any set of variables, thenwill denote the vector of the variables x. If M
is a set of equations with variablés then M (x) will denote the conjunction of the
analytical equations i/ where the values of the variablés are set tax. Consider
a set of equationd/ with unknown variablesX and known variables. If X is
partitioned intoX; and X, and

VzVxo3x1 : M (X1, X2,2) (6)

then the sef\/ of equations is said to b&; -satisfiable For example, lef = {es}
andX; = {w}. For arbitrary values of; andq, there exists a value: = (1 — f;)q¢3
such thaks is true, i.e.{es} is {w}-satisfiable.



Theorem 4. If a modelM C M, is X;-satisfiableand no variable inX; is contained
in M\ M, thenM,\ M is a checking model df

Proof. Let M, be a behavioral model with as the set of its known variables and with
X1UX> as a partition of the set of its unknowns. Let= M\ M. Since the variables
in X; are not included inV/ the observation s&?(M,) is

O(My) = {z|3x1,%x2: (M(x1,2) A M(x1,X2,2))} @)

The set in (7) can be expressed as

{z|3x3 : (M(x2,2) AJxy : M(x1,%2,2))} = {z|3xz: M(x2,2)} (8)

where the equality holds sincll is X-satisfiable. The last set is equal @(M)
which implies that

O(M,) = O(M) 9)

This and Definition 1 implies tha/ = M, \ M is a checking model fos which was
to be proved. O

An alternative formulation of Theorem 4 is that Aff is X;-satisfiableand no
variable inX; is contained inM,\ M, then M is non-monitorable. This means that
a checking model smaller than the behavioral model can be computed by removing
equation setM from the behavioral model/,. To give an example of how this is
done, consider the behavioral mo¥€ for the water-tank example. Sindes} is
{w}-satisfiable andj is the only equation in/w wherew is included, M \{es}
is a checking model oW according to Theorem 4. In [2; 5; 10] analytical assump-
tions imply that the minimal checking model for a behavioral méde equal to the
equations included in the vertical tdif,"” of the Dulmage-Mendelsohn decomposition
of the behavioral model/,. The smallest checking model that can be derived using
Theorem 4 is not related tof;".

4.2 Structural Method

A structural method will be used to compute non-monitorable equation sets for a be-
havioral model. The structure of a model is an abstraction of the model in the sense
that it includes which variables that are included in each equation [3]. The structure
of the water-tank model in Table 1 is shown in Table 2 dsaaljacency matri}1].

An “X” or an “O” in row e and columnz means that: is included ine. An entry
corresponding to equatianand variabler is marked X if {e} is {x}-satisfiable and
otherwise ©”. Insights of the physics can be used to specify where to Alits.

By using this additional information together with the structure it is possible to
find non-monitorable equation sets with cardinality one as follows: iff the only
equation inM, that contains a variable and this variable is marked with anX™
in the biadjacency matrix, thefe} satisfies the conditions in Theorem 4, if:} is
non-monitorable. The next theorem will give theoretical results needed for computing
non-monitorable equation set with cardinality greater than 1.

Theorem 5. Let M, and M, be disjoint sets of equations. M is X -satisfiable M,
is X-satisfiable, and does not contain any variableip, then it follows that\/; U My
is (X1 U Xo)-satisfiable.



Proof. Let the set of variables iff; U M5 not included in eitheX; or X5 be denoted
X3. From the conditions on/; and M, it follows that

\V/X3\V/X25|X1 . Ml(Xl,XQ,X:;) /\\V/X35|X2 . MQ(XQ,Xg)
which implies that
Vxg3xi, xo (M (x1,X2,%x3) A Ma(x2,%3))

since for anyzs there exists amry consistent withA/, and for anyx, there exists
an z; consistent with)A/; and therefore alsd/; and M. This and the definition of
X -satisfiable models imply thatl, U M- is X; U Xs-satisfiable. O

This theorem provides a recursive computation of a non-monitorable set of equa-
tions M that satisfies Theorem 4. To exemplify Theorem 4 consider the behavioral
model M, = Mpw in the water-tank example. The mod#élpyw consists of all equa-
tions in Table 1 except fof;, e7, andeg. The modelM; = {eq} is {¢ }-satisfiable
and M, = {es} is {w'}-satisfiable. Now, sincée,} and{e2} are disjoint andy; is
not included iney, Theorem 5 implies thafes, e4} is {¢1, w’}-satisfiable. Further-
more, the variables ifig;, w'} are not included iMV/pw \{e2, e4} which means that
Mpw\{e2,e4} is a checking model dPW, according to Theorem 4. In this way, it
is possible to find the smallest checking model by finding a non-monitorable equation
and remove them from the model.

Table 2: The structure of the model in Table 1.

Equation Unknowns Knowns
qlww,q?q%ftﬂqué U YwYwYqYq
€1 X X
ea X XX
eq X0000
€5 X
€6 X
er X X
eg X X
€9 X X X
€10 X X X
€11 X
€12 X

4.3 Algorithm

Next we will present a recursive algorithm for computing the smallest possible check-
ing model of a behavioral modegiven the type of information given in Table 2. The
input to the algorithm is a structure as the one shown in Table 2 withs“and “X™:s.

Algorithm 1. FindCheckingModel
input: The structure of\f;,.

if there exists ar € M, with an unknownz only in e and the entry(e, x) is
marked “X” do



M, = FindCheckingModel(M;\{e});
end if
return: The checking modélf,.

The correctness of the algorithm is implied by Theorem 4 and Theorem 5. For a
checking model’}, obtained by Algorithm 1, it holds thaM,jr C Cy, € M,. Note
that the output model of Algorithm 1 contains all algebraic loops contained in the input
model. However, by deriving a checking model using Theorem 4 and Theorem 5 di-
rectly, not all equations containing algebraic loops need to be contained in the checking
model.

Consider for the water-tank example the behavioral mBd¥. The structure is
seen in Table 2FindCheckingModel is first called with inputM, = Mpw. The
variableg; is among the equations i pw only included ine; and the corresponding
entry is marked X, i.e. the if-condition is satisfied anflindCheckingModel is
called with inputMpw\{e2}. Now the if-condition is also satisfied, becausds
only included ine; and(es, w) is marked X”. Continuing the recursion in this way
FindCheckingModel(Mpw ) returns the empty set which is the checking model of
PW to be used in the isolability computation later. This means Bt is always a
diagnosis.

5 Isolability Prediction Algorithm

Algorithm 1 computes the smallest checking modg| of a behavioral modé; given

the structure of the behavioral model,,. If (5) is true for the computed checking
model C; and a behavioral model/,, of another behavioral mode, Theorem 3
implies thatb; is not isolable fromb;. This is the idea used in the next algorithm for
computing behavioral modes that are not isolable from other behavioral modes. Let
B be the set of all system behavioral-modes and’lef B x B be a set of pairs of
behavioral mode&;, b;) such that if(b;, b;) € Z thenb, is not isolable fronb;.

Algorithm 2. IsolabilityPrediction
input: The structure of a diagnostic model and a set of system behavioral-nfodes

T =0,
forall b; € Bdo

Cy; = FindCheckingModel(Mp,);
forall b, € Bdo

if Cb]. - Mb,; do
I=TU{(bi,bj)};
end if
end for
end for
return: 7

10



PW,PTW,PWQ, PTWQ

PTQ TWQ

Figure 3: An isolability prediction of the water-tank process.

Algorithm 2 computes the largest séthat can be derived using only the type of
information given in Table 2. The interpretation of the output of the algorithm is dis-
cussed in the next section. The purpose of Algorithm 2, as stated here, is to illustrate the
idea and not to explain additional features that can lower the computational complexity.
However one such improvement is to use the fact gt C M, impliesCy, C Cy,
and in each step compute a checking model for a maximal behavioral model.

5.1 Isolability Prediction Interpretation

The isolability property can be seen as a partial order on the set of equivalence classes
generated by mutually not isolable behavioral modes. Two equivalence classes of be-
havioral modesB; and B; are related as. when for allb; € B; and for allb; € B;,

b; is not isolable fromb;. Figure 3 shows the partial order computed by Algorithm 2
when all multiple faults of the water-tank process are considered. For example the four
behavioral modes in the top are an equivalence class and are therefore not isolable from
each other. In Figure 3 it can also be seen that no fault is isolable from faults with a
superset of faulty components. This is not surprising since no equation in the model
holds only in a faulty behavioral mode. Furthermore, since the top element is an upper
bound for all behavioral modes, it means that these faults will always be diagnoses, in
fact they all have the empty set as their checking models.

6 lllustrative Examples

Previous sections have described Algorithm 2 that predicts the isolability. Here, two
examples illustrate how Algorithm 2 can be used.

6.1 Fault Modeling Specification

Assume safety or legislative requirements state demands on the fault isolability. Given
a diagnostic model including fault models, it can be determined by applying Algo-
rithm 2 to the diagnostic model if the proposed fault modeling is insufficient for the
fault isolability demands.

Assume that all double faults must be isolable from each other in the water-tank
process. The result shown in Figure 3 implies that the isolability demands cannot be
fulfilled with the proposed model in Table 1. For example no double fault is isolable

11



from PW. To make any behavioral mode isolable fr@W the behavioral model
Mpw must be improved for example by additional fault modeling. The faulty compo-
nents inPW are the pumpP and the water-level sensér and non of these compo-
nents have fault models.

Assume that it is reasonable to use a constant bias fault model for the water-level
sensor. Letf,, be the size of the bias fault. Equatiea can now be replaced by
Yyw = w + fi, andeg by 4, = w’ + f/, which both hold in any system behavioral-
mode. Furthermore, the new equatiens : f,, = 0 which holds wheri¥ = NF and
e1s : fI, = 0 which always is true are added to the model in Table 1. By applying
Algorithm 2 to the model including the new fault model, a smallersét obtained.
This means that some faults that were not isolable from some other faults without the
fault model, now might be isolable. The result with the additional fault model is that it
might be possible to isolate all double faults from all other double faults. For this ex-
ample it is also possible to analyze the true isolability using the analytical expressions.
For example consider the behavioral mo#& andPT. Without the additional fault
model,PT was not isolable frorP'W. When including the fault model the observa-
tion setO(Mpw ) for PW is defined byy,, — 2y, 9, = 0 andO(Mpr) is defined by
Yw Yq — 2Yw Yq = 0 and ify, = 0 theny,, = ¢, = 0. Both these expressions can
be computed by elimination of all unknowns in their corresponding checking models
respectively. Since these checking models are smaller than the corresponding behav-
ioral model, the elimination problem is reduced. The mBdE is isolable fromPW
if O(Mpt) \ O(Mpw) # <. An example of observations @(Mpt) \ O(Mpw)
ISy, #0,9q # 0, yuw # yg: andy., = 2y. Yq/yq- HenceO(Mpr) \ O(Mpw) # 2,
i.e. PT is isolable fromPW. According to the result of Algorithm 2, it is possible
that all double faults are isolable from all other double faults and it can be shown to be
so.

6.2 Design Alternative Selection

Suppose there are different design alternatives, e.g. different possible sensor configu-
rations. Since only a course model is needed as input to Algorithm 2, the isolability
aspects of different design alternatives can easily be evaluated.

Let the isolability demands be the same as in the previous section and assume
that there are two design alternatives for the water-tank process, one as described in
Section 2 and one with an additional flow sen§gxtrgmeasuringy; . We know from
the previous discussion that it is not possible to isolate all double faults from each other
by using the model in Figure 1. The result of applying Algorithm 2 to an extended
model including the additional sens@extrq answers the question if the model with
the additional sensor can be sufficient to meet the isolability demands.

The extended model is obtained by adding the equatign: y = ¢; with the
assumptiorQexira = NF. Note that an extra sensor will change the set of all system
behavioral modes. In this example the number of components is 5 and the original
model has only 4 components. By including the additional sensor, all double faults,
including the new once introduced Bextrg Might be isolable from any other double
fault according to the result of Algorithm 2. Analytical analysis can be done as in
Section 6.1 to conclude that all double faults are isolable from all other double faults.

To summarize the results of the examples, without any fault model or any additional
sensor, this analysis shows that there are double faults which are not isolable from other
double faults. However, by adding the proposed fault model or the water-level sensor
it can be shown that all double faults are isolable from all other double faults.
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7 Conclusions

In the development of processes including diagnosis, design decisions are taken, e.g.
sensor configuration selection, which affects the fault isolability possibilities. This
report has presented an algorithm and a methodology that easily can be applied to
different design alternatives and evaluate their isolability limitations.

The framework from [4; 8], which handles general fault models, has been used.
In [11; 5], and [2] assumptions are made such that all detectable faults violate the
over-constrained subsystem. Here a more careful assumption is made. The advantage
of being careful is that in contrast to the results in [11], [5], and [2] no analytical
assumptions need to be satisfied to draw the conclusions about the detectability or the
isolability.

Algorithm 2 computes faults that are not isolable from others by using the structure
of a diagnostic model as the one in Table 2. This was done by combining Algorithm 1,
which computes the smallest checking models that can be computed by using struc-
tural models as the one in Table 2, and the link between checking models and isolabil-
ity stated in Theorem 3. Furthermore, in Section 6.1 it was shown how Algorithm 2
could detect insufficient fault modeling. The analysis revealed faults not isolable from
other faults and by the example a methodology was proposed to locate required addi-
tional fault modeling. Section 6.2 showed how Algorithm 2 could be used to find the
isolability limitations of different design alternative for a process to be diagnosed.

In conclusion, it is believed that structural methods for isolability analysis have an
advantage of analytical methods to support decisions early in the design process. The
proposed algorithm is the only structural algorithm which computes faults that are not
isolable from others without any analytical assumptions.
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