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This report presents the theoretical results of the work in [3]. The report is
not self-contained and should be considered to be complementary to the paper.

1 Theoretical Background

The objective of this section is to introduce notation and theoretical tools re-
garding structural models and bipartite graphs that will be used in proofs of
results in coming section.

The structural representation of a set of equations M with unknown variables
X is a bipartite graph with variables and equations as node sets. There is an
edge in the graph between a node representing an equation e ∈ M and node
representing an unknown variable x ∈ X if the variable x is contained in e. For
notational convenience, we will denote the node representing an equation e or a
variable x simply by the equation name e and the variable name x respectively.
A bipartite graph can be described by a biadjacency matrix where the rows and
columns correspond to the node sets and the position (i, j) is one if there is an
edge between node i and j, and a zero otherwise.

1.1 Dulmage-Mendelsohn decomposition

In the analysis of these graphs, we will frequently use the Dulmage-Mendelsohn
decomposition [2] which is illustrated in Figure 1. The decomposition defines a
partition (M0,M1, . . . ,Mn,M∞) of the set of equations M , a similar partition
of the set of unknowns X, and a partial order on the sets Mi. If the rows and
columns are rearranged according to this order, the biadjacency matrix has the
form shown in Figure 1. There are zero entries in the white parts of the matrix
and there might be ones in the gray-shaded parts. Three main parts of M can be
identified in the partition, M0 is called the structurally underdetermined part,
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Figure 1: Dulmage-Mendelsohn decomposition

Next we will describe how these partitions can be defined and to do this we
need to introduce a couple of definitions. Let |A| denote the cardinality of the
set A. Given a bipartite graph with node sets M and X, let the variables in
E ⊆ M be denoted by var(E) and the surplus of the equation set E be defined
by

ϕ (E) = |E| − |var(E)|

Given a model M , there is a family of subsets of M with the maximum
surplus:

L = {E ⊆ M |ϕ (E) ≥ ϕ (E′),∀E′ ⊆ M} (1)

Let E0 ⊃ E1 ⊃ · · · ⊃ En−1 ⊃ En be any maximal descending chain of L, then
the partition of M is defined as M0 = M \ E0, Mi = Ei−1 \ Ei for i = 1, . . . , n,
and M∞ = En, see [5]. The partition of X is defined as

Xi = var(Mi) \ var(Ei) (2)

for i ∈ {0, 1, . . . , n} and X∞ = var(M∞).
The partial order ≤ can be defined on the sets Mi by

Mi ≤ Mj ⇔ (Mj ⊆ E ∈ L ⇒ Mi ⊆ E) (3)

In the figure, each pair (Mi,Xi) is related to a block which is denoted by bi.
Since there is a one-to-one correspondence between the sets Mi and the blocks
bi, we will also partially order the blocks bi in the same way:

bi ≤ bj ⇔ Mi ≤ Mj (4)
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1.2 Structural formulation of fault diagnosis

In this section, we will give structural characterizations of fault diagnosis prop-
erties. By doing this, the sensor placement problem can be formulated as a
graph theoretical problem.

A fault f is detectable if there exists an observation that is consistent with
fault mode f and inconsistent with the no-fault mode. This means that a
detectable fault can violate a monitorable equation in the model describing fault
free behavior. An equation is, in the generic case, monitorable in an equation
set M if it is contained in the structurally overdetermined part of M [1]. If the
structurally overdetermined part of a set of equations M is denoted by M+,
then the structural characterization of detectability can be defined as follows.

Definition 1. A fault f is structurally detectable in a model M if ef ∈ M+.

Detection is a special case of isolation, i.e. a fault is detectable if the fault is
isolable from the no-fault mode. By noting this similarity, it holds that a fault
fi, isolable from fj , can violate a monitorable equation in the model describing
the behavior of the process having a fault fj . The equations valid with a fault fj

is M \ {efj
} and the monitorable part of these equations is, in the generic case,

equal to (M \ {efj
})+. This motivates the following structural characterization

of isolability.

Definition 2. A fault fi is structurally isolable from fj in a model M if

efi
∈ (M \ {efj

})+ (5)

2 Theorems and proofs

The lemmas and theorems formulated in [3] are in this section proved.

Lemma 1. Let M be an exactly determined set of equations, bi a strongly

connected component in M with equations Mi, and e 6∈ M an equation corre-

sponding to measuring any variable in bi. Then

(M ∪ {e})+ = {e} ∪ (∪Mj≤Mi
Mj) (6)

Proof. The proper overdetermined part (M ∪ {e})+ is defined by the minimal
subset of M ∪ {e} with maximum surplus. The maximum surplus of all subsets
of M is 0. By adding one equation e, we know that the maximum surplus
of any subset of M ∪ {e} is at most 1. Since var({e}) ⊆ var(M), it follows
that ϕ (M ∪ {e}) = 1. Hence the minimal set with surplus 1 is the proper
overdetermined part of M ∪ {e}. Any such set contains e since all other sets
have surplus less or equal to 0. This means that the sought set can be written
as E ∪{e} where E ⊆ M . Since the surplus of E ∪{e} is one and the surplus of
E can be at most 0, it follows that the surplus of E is 0. Let L be a sub-lattice
of the subset-lattice of M defined similar to the set defined in (1). This means
that E ∈ L. Furthermore ϕ (E ∪ {e}) = 1 only if var({e}) ⊆ var(E). This
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implies that Mi ⊆ E. The minimal set E in L such that Mi ⊆ E is according
to (3) E = ∪Mj≤Mi

Mj and this completes the proof.

Theorem 1. Let M be an exactly determined set of equations, F the corre-

sponding set of faults, P ⊆ X the set of possible sensor locations, and MS

the equations corresponding to adding a set of sensors S. Then maximal de-

tectability of faults F in M ∪MS are obtained if and only if S has a non-empty

intersection with D([f ]) for all [f ] ∈ Fm where Fm is the set of maximal fault

classes among the fault classes with D([f ]) 6= ∅.

Proof. First, note that faults in fault classes with D([f ]) = ∅ can not be made
detectable with any of the available sensor locations. Therefore, let Fm be,
among the fault classes with D([f ]) 6= ∅, the set of maximal elements with
respect to the partial order. Then maximal fault detectability is obtained if and
only if the fault classes in Fm are detectable. This follows from Lemma 1 and
Definition 1 which states that if a sensor is added such that a fault in a higher
ordered fault class is detected, detectability for the lower ordered fault classes
is also obtained.

Furthermore, Lemma 1 also states that a fault f in F becomes detectable if
and only if we measure at least one unknown variable in blocks that are greater
or equal than the block that includes the fault equation, i.e. if we measure a
variable in D([f ]). A sensor addition that makes all faults in F detectable must
thus have a non-empty intersection with D([f ]) for all [f ] ∈ Fm.

Theorem 2. Let M be a set of equations with no structurally underdetermined

part, F a set of structurally detectable faults in M , P ⊆ X the set of possible

sensor locations, and MS the equations added by adding the sensor set S. For

an arbitrary fault fj, assume that M0 is the just-determined part of M \ {efj
},

F 0 is the faults contained in M0, and D = Detectability(M0, F 0, P ). Then

the maximum possible number of faults fi ∈ F \ {fj} are structurally isolable

from fj in M ∪MS if and only if S have a non-empty intersection with all sets

in D.

Proof. Given a sensor set S, a fault fi is structurally isolable from fj in the
model M ∪ MS if

efi
∈ ((M \ {efj

}) ∪ MS)+ (7)

according to Definition 2. This is equivalent to say that fi is structurally de-
tectable in (M \ {efj

}) ∪ MS . Since all faults are structurally detectable, it
follows that efj

∈ M+. This implies that the underdetermined part of M \{efj
}

is empty. The faults in the structurally overdetermined part of M \ {efj
} are

according to Definition 1 structurally detectable. From Theorem 1, maximal de-
tectability of faults F 0 in the structurally just-determined part M0 of M \{efj

}
is obtained if and only if S has a non-empty intersection with all detectability
sets contained in D = Detectability(M0, F 0, P ).

A key property in the determination of structural isolability is the set (M \
{efj

})+ which is determined by the result of the combined operation of removing
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an equation and then computing the overdetermined part. The resulting set of
the combined operation has been studied in [4] and can be characterized as
follows. There exists a partition (M1,M2, . . . ,Mp) of the overdetermined part
M+ such that for any equation e ∈ Mk, it holds that

(M \ {e})+ = M+ \ Mk (8)

Theorem 3. Given a model M , let fi and fj be two structurally detectable

faults in M . The fault fi is structurally isolable from fj if and only if efi
and

efj
belong to different sets in the partition defined in (8).

Proof. The fault fi is structurally isolable from fj if and only if (5) holds ac-
cording to Definition 2. By using (8), (5) can be expressed as

efi
∈ M+ \ Mk (9)

where Mk is the set in the partition such that efj
∈ Mk. Since fi is structurally

detectable, i.e. efi
∈ M+, it follow that (9) is equivalent to efi

/∈ Mk and this
completes the proof.

Theorem 4. Let M be a model with no underdetermined part and let x ∈
var(M) be measured with a sensor described by an equation e /∈ M . Then, a

sensor fault violating e will be structurally detectable in M ∪ {e}.

Proof. The sensor fault is structurally detectable if e ∈ (M ∪{e})+. Since there
is no underdetermined part in M , it follows that ϕ (M) is equal to the maximal
surplus for any set contained in M . The maximal surplus of any set in M∪{e} is
ϕ (M)+1. Any set with surplus ϕ (M)+1 have to include e, and especially the
minimal set of the maximal surplus ϕ (M)+1. This implies that e ∈ (M ∪{e})+

which was to be proved.

Theorem 5. Let M be a model with no underdetermined part and F a set

of structurally detectable faults in M . Furthermore, let MS be an equation set

describing additional sensors and FS the associated set of sensor faults. Then

for any sensor fault f ∈ FS and for any fault f ′ ∈ (F ∪ FS) \ {f}, it holds that

f is isolable from f ′ and f ′ is isolable from f in M ∪ MS.

Proof. The faults in F are detectable by condition and the faults in FS are
detectable according to Theorem 4. Since both f ′ and f are structurally de-
tectable it is sufficient to show that f ′ is structurally isolable from f in M ∪MS

according to Theorem 3.
First, assume that f ′ ∈ F . All faults in F are structurally detectable and it

follows that f ′ is structurally detectable, i.e.

ef ′ ∈ M+ (10)

From the fact that M ⊆ (M ∪ MS) \ {ef}, it follows that M+ ⊆ ((M ∪ MS) \
{ef})

+. This and (10) imply that ef ′ ∈ ((M∪MS)\{ef})
+, i.e. f ′ is structurally

isolable from f according to Definition 2.
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Finally, assume that f ′ ∈ FS \ {f}. From Theorem 4, we get that f ′ is
structurally detectable in M ∪ {ef ′}, i.e.

ef ′ ∈ (M ∪ {ef ′})+ (11)

From the fact that M ∪{ef ′} ⊆ (M ∪MS)\{ef}, it follows that (M ∪{ef ′})+ ⊆
((M ∪ MS) \ {ef})

+. This and (11) imply that ef ′ ∈ ((M ∪ MS) \ {ef})
+, i.e.

f ′ is structurally isolable from f according to Definition 2 and this completes
the proof.
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