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Abstract

The problem addressed is how to control vehicle speed over a given distance on
a given time such that fuel consumption is minimized. Analytical expressions for
the necessary optimality conditions are derived. These expressions are essential
for the understanding of the decisive parameters affectingfuel optimal driving and
the analytical optimality conditions make it possible to see how each parameter
affects the optimal solution. Optimal solutions for an affine engine torque model
are compared to solutions for a piece-wise affine model, and it is shown that small
non-linearities have significant effect on the optimal control strategy. The solutions
for the non linear engine model has a smoother character but also requires longer
prediction horizons.

Assuming a continuously variable transmission, optimal gear ratio control is
presented, and it is shown how the maximum fueling function is essential for the
solution. It is also shown that the gear ratio never is chosensuch that engine speed
exceeds the speed of maximum engine power. Those results arethen extended to
include a discrete stepped transmission, and it is demonstrated how gear shifting
losses affect optimal gear shifting positions.

The theory presented is a good base to formalize the intuition of fuel efficient
driving. To show this, optimal solutions are presented in simulations of some
constructed test road profiles, where the typical behavior of an optimal solution is
pointed out, and also which parameters that are decisive forthe fuel minimization
problem. This is then used to design a simple low-complexitycomputationally
efficient rule-based look ahead cruise controller, and it isdemonstrated that simple
parametrized quantitative rules have potential for significant fuel savings.
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1 Introduction

Fuel cost is a large part of the operating cost of heavy trucks. Hence there has been
an increasing interest in predictive cruise controllers that minimizes fuel consump-
tion [18, 6, 10]. Some early work in finding fuel optimal speedprofiles for automobiles
is reported in [15, 7]. Other related work regarding passenger cars in urban traffic has
shown on a large potential to use speed control to minimize fuel consumption [13].
Similar methods as discussed in this paper has earlier been used on rail vehicles [12].

The scenario studied here concerns heavy trucks used for long haulage and the
goal is to control vehicle speed over a given distance on a given time such that fuel
consumption is minimized. It is assumed that road topography ahead of the vehicle
is known and the resulting problem will be referred to as lookahead cruise control.
In a practical case road topograghy can be extracted using for example a navigation
system with 3D maps or collected data. The differences between optimal solutions for
a linear engine torque model and a non linear engine torque model is investigated. The
non linear model is here modeled as a piece wise affine, PWA, function. Optimal gear
shifting is also studied, both with a simplified transmission model with continuously
variable gear ratio, and for a discrete step transmission.

Based on the modeling, the optimality conditions for the fuel minimization problem
become analytical expressions. From these expressions theeffect of each parameter
can be studied which is important to gain knowledge of what factors that affect fuel
consumption. For example, the optimal control derived herecan be used as an aid
when analyzing and validating the behavior of numerical controllers as described in [4]
and [5]. The results are also the basis for formalizing an intuitive optimal driving
behavior which can be used for design of simple rule based controllers. In this paper
the effect of other traffic is not explicitly considered. However, one way to handle such
situations is to consider other traffic as an extra constraint on vehicle speed. In [16] a
method is presented that optimizes vehicle speed when approaching a slower vehicle.

The paper is organized as follows. The fuel minimization problem is formulated
in Section 2. Under the assumption of an affine engine torque model and a fixed gear
ratio, necessary conditions for optimal fueling is derivedin Section 3. In Section 4
a piece-wise affine, PWA, model is used to capture the non linearities in the engine
characteristics. Assuming a continuously variable transmission, optimal gear ratio is
derived in Section 5 and the results are then extended to include a discrete stepped
transmission. The optimality conditions for the differentmodeling choices are used to
find optimal solutions for a few illustrative constructed road profiles, and simulation
results are presented in Section 6. It is also demonstrated in Section 8 that the derived
expressions can be used to design a low-complexity computationally efficient rule-
based look ahead cruise controller.
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2 Problem formulation

The problem to be solved is to minimize fuel consumption overa given distancesf

with specified travel timeTt . With notation according to Table 1 this is written as

min
∫ sf

0
δncyli
2πnr r

ds (1)

s.t.
∫ sf

0
1
vds= Tt (2)

The vehicle is modeled as in [3], and [9], and can be written as

v̇ =
1
J

(

Fprop−Fair −Froll −Fslope−Fb
)

(3)

where the variables and parameters are selected according to Table 1, and the forces
and inertias are set according to Table 2. Losses in different parts of the driveline
are easily modeled as lumped losses by modifying the coefficients of engine friction
losses and vehicle resistance forces. Measured engine torque from a real engine is
given in Figure 1. It is there seen that an affine model of engine torque is a good first
approximation, but for a detailed analysis the non linearities should be included.

3 Optimal fueling -Affine engine characteristics

It will first be assumed that engine torque can be approximated as an affine function.
With inspiration from the measured data in Figure 1, the model depicted in Figure 2

Variables and Description
parameters

α Road slope[rad]
δ Engine fueling[kg/stroke]
η Transmission efficiency
ωe Engine speed[rad/s]
ρ Air density[kg/m3]
θe Crank shaft angle[rad]
A Front area[m2]

ceδ, ceω, cec Engine torque coefficients
cd Air drag coefficient

cr1, cr2, cr3 Rolling resistance coefficients
Fb Brake force
g Gravitational acceleration
i Gear ratio
Je Engine inertia[kgm]
Jd Lumped drivline inertia[kgm]
m Vehicle mass[kg]

ncyl Number of cylinders
nr Revolutions per stroke
r Wheel radius[m]
s Traveled distance[m]

Table 1: Variables and parameters for the truck model.
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Quantity Equation Description
J(i(t)) m+Jei2η 1

r2 + Jd
r2 Vehicle Inertia

Fair(v(t)) 1
2ρcdAv2 Air resistance

Fprop(δ(t),ωe(t), i(t))
iη
r ( fδ(δ)+ fω(ωe)+cec) Propulsive force

Froll (v(t)) m(cr1 +cr2v+cr3v2) Rolling resistance
Fslope(α(s(t))) mgsinα(s) Force due to road slope

Table 2: Vehicle forces and inertias.
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Figure 1: Measured engine torque. Each line represents a given engine speed.
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Figure 2: Affine approximation of engine torque. A maximum fueling function is also
plotted as function of engine speed.

is constructed. Note that engine torque in Table 2 isTe = fδ(δ)+ fω(ωe)+cec. Using
ωe = iv

r , the affine approximation of engine torque gives thatFprop in Table 2 is written
as

Fprop =
iη
r

(ceδδ+ceω
iv
r

+cec) (4)

In Figure 2 the maximum fueling function for a real engine is plotted. That function
will here firstly be approximated as an affine function of engine speed, but later a more
exact quadratic function will be used. Again usingωe = iv

r this can be written as

Cδ = δ− (cωconi
v
r

+cccon) ≤ 0 (5)

and it is assumed thatδ ≥ 0.
Since road slope is a function of position it is convenient tochange independent

variable from timet to positions,

d
ds

=
1
v

d
dt

(6)

Let the statesx of the system be vehicle speedv and traveled timeT, i.e. x = [v,T]T .
Neglecting engine inertia the system dynamics becomes

dv
ds

=
1
v

(

cδiδ+cωi2
v
r

+cei

+cc +cvv+cv2v2 +cα sinα(s)
)

= fv (7)

dT
ds

=
1
v

= fT (8)

where the model coefficients can be derived from those given in Tabel 1.
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The fuel minimization problem will be solved with optimal control theory which is
thoroughly described in the classic textbook [1], and that notation will here be followed.
The function to be minimized, (1), with constraints (5), (7), (8), are used to construct
the following Hamiltonian

H = δi + λv fv + λT fT +µδCδ (9)

where
ncyl

2πnr r
are included in the multipliers. When the constraintCδ is inactiveµδ = 0,

and when the constraint is activeµδ ≥ 0. The dynamics of the adjoint state variables
are dλ

ds = −HT
x , i.e.

dλv

ds
=

λv

v2 (cδiδ+cei +cc−cv2v2 +cα sinα)

+
λT

v2 +µδcωcon
i
r

(10)

dλT

ds
= 0 (11)

As in [11] the optimal fueling control is found by minimizingH with respect to the
control variableδ. Since the Hamiltonian is linear inδ the optimal control sequence
will consist of sections of maximum fueling, minimum fueling or sections wheredH

dδ =
0. The latter sections are called singular arcs. Differentiating the Hamiltonian gives

dH
dδ

= i(1+
λvcδ

v
)+µδ (12)

For sections of singular arcs whereCδ < 0, i.e.µδ = 0, it is seen in (12) thatλv = − v
cδ

.

It must also hold thatdds(
dH
dδ ) = 0 which gives

d
ds

(
λvcδ

v
) =

dλv

ds
cδ
v
− λvcδ

v2 fv

=
λvcδ
v3 (−cω

i2v
r

−cvv−2cv2v
2)+

λTcδ
v3 = 0 (13)

Putting (12) equal to zero, solving forλv, and inserting into (13) gives the following
dependency betweenv andλT

v2

cδ
(cω

i2

r
+cv +2cv2v)+ λT = 0 (14)

SinceλT is constant, (11), the system must be in stationarity duringsingular arcs, i.e.
v is constant, and since (14) andλv = − v

cδ
, λv must be constant. The constantλT is

determined by that the constraint on total travel time (2) isfulfilled. Given initial and
end conditions on the statesv andT, the complete problem to solve thus consists of
Equations (2), (5), (7), (8), (10)-(12), (14).

3.1 Solution characteristics

As mentioned above, the optimal control sequence consists of maximum fueling, zero
fueling and, singular arcs where fuelingδ is chosen such that vehicle speed is station-
ary. Obviously, due to the nature of the vehicle resistance forces, the global optimal
solution will be stationary, i.e. constant speed, wheneverit is possible, i.e. whenever
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the road gradient is small enough. Road gradient is considered small if maximum fu-
eling is enough to keep constant speed in an uphill slope and if zero fueling does not
result in acceleration in a down hill slope, [2]. Such small enough gradients will here be
defined. Consider the model (7) and let fuelingδ = 0. It is seen that for all inclination
angles

α̃d ∈ {α̃d : cωi2
v
r

+cei +cc +cvv+cv2v2 +cα sinα̃d > 0} (15)

the vehicle will accelerate even though the engine does not produce any work. The
limit for the setα̃d is found by setting equality in (15) resulting in

αd = arcsin
cωi2 v

r +cei +cc +cvv+cv2v2

−cα

= arcsin
ceωηi2v

r2 + cecηi
r −mcr1−mcr2v−mcr3v2− 1

2ρcdAv2

mg
(16)

that of course is a negative angle,αd < 0, for realistic vehicle parameters. For uphill
slopes the vehicle will accelerate when using maximum fuelingδmax for angles

α̃u ∈ {α̃u : cδiδmax+cωi2
v
r

+cei +cc+cvv+cv2v2 +cα sinα̃u > 0} (17)

and the limit for the set is

αu = arcsin
cδiδmax+cωi2 v

r +cei +cc+cvv+cv2v2

−cα

= arcsin
ceδηi

r δmax+
ceωηi2v

r2 + cecηi
r −mcr1−mcr2v−mcr3v2− 1

2ρcdAv2

mg
(18)

that is a positive angle,αu > 0.
Using Equations (16) and (18) the following definition can bemade

Definition Small gradients are all gradients with inclinationα such
that

αd < α < αu (19)

Other gradients are referred to as steep gradients.

To conclude, there are three possible control settings for optimal fueling, i.e. max-
imum fueling, fuel cut-off, and to control fueling such thatvehicle speed is constant.

The adjoint variableλv responds to future changes in inclinationα, and for steep
slopes maximum or minimum fueling respectively is not enough to keepλv stationary.
As seen in (12)dH

dδ depends onλv and henceλv is important for the control switch
points. An optimal solution will thus consists of constant fueling for flat road and
small gradients, but in and in a neighborhood of steep uphillslopes it will be optimal
to use maximum fueling, and, in and in a neighborhood of steepdownhill slopes it will
be optimal to cut off the fuel injection. The importance of the adjoint variableλv will
be stressed later and in Section 6.5 it will be used for a discussion on the sensitivity of
the optimal solution.
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Figure 3: Engine torque as a piece-wise affine function of fueling. Maximum fueling
is plotted as function of engine speed.

4 PWA engine characteristics

To better approximate the engine characteristics the engine torque will now be modeled
as a piece-wise affine function of fuelingδ, see Figure 3 for a hypothetic example. Let
fueling be divided inN regions, see Figure 4 for a schematic depiction. When the
engine is operated in regionn the propulsive forceFprop in Table 2 is written

Fprop =
iη
r

(

n−1

∑
i=1

(kδ,i −kδ,i+1)δmax,i +kδ,nδ+kωeωe+k

)

(20)

When operating in fueling regionn the vehicle dynamics can be written in the

form (7) with obvious changes to the parameters, e.g. letcδ = cδ,n =
ηkδ,n

Jr . Differenti-
ating the Hamiltonian with respect to fueling now gives

dH
dδ

= i(1+
λvcδ,n

v
)+µδ (21)

Considering only the operating region where the engine is currently operating, optimal
control can be derived as in Section 3, i.e. fueling can be in the limit of the region or
fueling can be such that vehicle speed is constant. Each engine region can be associated
with a constant speed solution as in Equation (14), i.e. the solution to

v2

cδ,n
(cω

i2

r
+cv +2cv2v)+ λT = 0 (22)

For each engine operating regionn, limit angles can be defined as in Equation (19) by
modifying Equations (16) and (18) giving

αd,n < α < αu,n (23)
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Figure 4: piece-wise affine approximation of engine characteristics.

4.1 Concave engine map

Now consider a concave torque characteristic, i.e.cδ,i > cδ,i+1. From (21) it is seen
that when

− 1
cδ,i+1

<
λv

v
< − 1

cδ,i
(24)

it will hold that dH
dδi

< 0 and dH
dδi+1

> 0. Since bothv andλv are continuous functions
the optimal control sequence will consist of a period where fueling is on the border
of fueling regioni and i + 1. This means that there is never an immediate change
from constant speed to maximum or minimum fueling, but the solution will consist
of a “smoother” change to the upper or lower limit of fueling.With cδ,i > cδ,i+1 the
corresponding stationary solution given by (22) will bevi > vi+1. This means that some
downhill slopes will have constant speed solutions with higher speed than for flat road
and some uphill slopes will have constant speed solutions that is lower than for flat
road.

4.2 Non concave engine map

For the approximation in Figure 3 the requirementcδ,i > cδ,i+1 is not fulfilled for all
i, i.e. the approximation is not concave. For such a case further reasoning needs to
be done in order to find the optimal control. An example fuel-torque characteristic
is depicted in Figure 4. Let the torque characteristic have slope cδ,i in the respective
region. Consider a case where cruising at constant speed at flat road implicatesi = 1,
i.e. a fueling value in region 1. When a steep uphill slope is approached there is some

distance where for example 1+
λvcδ,i

v > 0 for i = 2,4 and 1+
λvcδ,i

v < 0 for i = 1,3.
For such a position, if considering only region 1 and 2 fueling would be chosen at the
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Figure 5: piece-wise affine approximation of engine characteristics. Maximum fueling
is plotted as function of engine speed.

border between those regions. Considering only region 3 and4 would in the same
way give a fueling in the border between those regions. Thereis hence two candidate
values of fueling to use. To decide which one that is optimal an approximation to the
torque characteristics that reduces the number of fueling regions can be used. Such
an approximation is marked as a dashed line in Figure 4. In this way the fueling-
torque characteristics is transformed into a concave function and the choice of fueling
is uniquely decided by considering (24). Similar reasoningcan be made for downhill
slopes.

4.3 Non linear engine speed characteristics

To further improve the approximation of the engine characteristics, non-linearities in
engine speed dimension could also be considered. One way is to consider engine torque
as a piece-wise affine function of both speed and fueling.

Let engine speed be divided inM regions and let fueling be divided inN regions.
When the engine is operated in region(m,n) the propulsive forceFprop in Table 2 is
written

Fprop =
iη
r

(

n−1

∑
i=1

(kδ,i −kδ,i+1)δmax,i +kδ,nδ+

m−1

∑
j=1

(kωe, j −kωe, j+1)ωemax, j +kωe,mωe+k

)

(25)

See Figure 5 for an hypothetic engine model withM = 8,N = 6.
Differentiating the Hamiltonian with respect to fueling gives the same result as

in (21).
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Considering only the operating region where the engine is currently operating, op-
timal control can be derived as in Section 3, i.e. fueling canbe in the limit of the
region or fueling can be such that vehicle speed is constant.Each engine region can be
associated with a constant speed solution as in Equation (14), i.e. the solution to

v2

cδ,n
(cω,m

i2

r
+cv +2cv2v)+ λT = 0 (26)

For each engine operating region[m,n], limit angles can be defined as in Equation (19)
by modifying Equations (16) and (18) giving

αd,m,n < α < αu,m,m (27)

Modeling engine torque as a piece-wise affine function of engine speed gives a
Hamiltonian that is not differentiable with respect tov. This means thatλv will have a
discontinuity in the switch point between different enginespeed regions. How this can
be treated is described in Chapter 3.6 in [1]. However, accounting for the non-linearities
in the speed dimension does not affect the principal behavior of the optimal control
given by (21) in the sense that the optimal fueling also in this case is in the border
of fueling regions or such that vehicle speed is constant. However, both the vehicle
dynamics (7) and the adjoint dynamics (10) is affected by theengine characteristics in
the speed dimension, which means that the optimal control switch points depends on
it. Since the optimal fueling behavior in principal is not affected by the modeling in
the speed dimension the remaining of this paper only considers nonlinearities in the
fueling dimension.

A non-concave engine torque can require some care in finding the global optimal
solution. One such case is treated in [8]. That case is when the desired average speed
corresponds to an inefficient engine operating point. Then it can be optimal to switch
between two other cruising speeds resulting in correct average speed. This can be
studied using Equation (26). For a givenλT it can be the case that no region has a
feasible constant speed solution corresponding to desiredaverage speed. In such a case
the optimal solution consists of switching between different cruising speeds.

Other ways than (25) to make a PWA approximation of the enginemap can be more
close to the real characteristics. For example one can use a triangular mesh or a bilinear
function of engine speed and fueling. However, such approximations would still keep
the problem in input affine form and the principal results discussed so far would not be
changed.

5 Optimal gear ratio control

Not only fueling control but also gear choice affects the fuel consumption considerably.
Although there are high-power applications for which continuously variable transmis-
sions are used [14, 17], the most common transmission for heavy trucks are the discrete
step transmission. As a first attempt to study fuel optimal gear shifting, gear ratioi is
assumed to be continuously variable and fulfilling 0< imin ≤ i ≤ imax. Later, those
results will be used to derive solutions for a stepped transmission.

5.1 Optimal gear ratio - affine maximum fueling

Again study the model with affine engine characteristics (4)from Section 3. Maximum
fueling will here be modeled as an affine function of engine speed by usingωe =

14



iv
r in (5). Although this is a too simple model to resemble the measured function in
Figure 2 the results are illustrative and a base for the more accurate quadratic model
that will be used in Section 5.2.

The gear ratio can be varied between a lower and upper limit, i.e., it has to fulfill
the following constraints

Cimax = i − imax≤ 0 (28)

Cimin = imin− i ≤ 0 (29)

When choosing gear ratio the engine speed must also be kept within limits, i.e.

Cωmin = ωmin−
iv
r
≤ 0 (30)

Cωmax =
iv
r
−ωmax≤ 0 (31)

The constraints (28)-(31) are adjoined to the Hamiltonian with respective Lagrange
multipliersµimax, µimin, µωmin, andµωmax.

H = δi + λv fv + λT fT +µδCδ +µimaxCimax+µiminCimin +µωminCωmix

+µωmaxCωmax (32)

Differentiating the Hamiltonian (32) with respect toi gives

dH
di

= δ(1+
λvcδ

v
)+2cω

λv

r
i +ce

λv

v
−µδcωcon

v
r

+µimax−µimin−µωmin
v
r

+µωmax
v
r

(33)

During sections of constant speed, i.e. for flat road and small gradients, fueling is not
in the limit, i.e.µδ = 0. Then Equation (12) gives 1+ λvcδ

v = 0. Also assume that gear
ratio and engine speed is within allowed limits, i.e. the respectiveµ= 0. The condition
dH
di = 0 then gives the optimal gear ratio

iopt = − ce

cω

r
2v

(34)

For typical engine characteristics, see Figure 1,ce,cω < 0 or cω < 0 andce is small.
Both situations result in thatiopt given by (34) is smaller thanimin, and hence, consid-
ering limits oni the resulting optimal solution isiopt = imin. This minimizes engine
speed and hence engine friction.

Assuming that engine speed limits and gear ratio limits are not reached, i.e.µωmin =
µωmax = µimin = µimax = 0, optimal gear ratio during sections of maximum fueling is
found by combining Equations (5), (12), and, (33), usingdH

dδ = dH
di = 0, which gives

dH
di

= ccon(1+
λvcδ

v
)+ce

λv

v

+
2
r
(cωconv(1+

λvcδ
v

)+cωλv)i = 0 (35)

The optimal gear ratio given by Equation (35) is

iopt = − ccon(1+
λvcδ

v )+ce
λv
v

2
r (cωconv(1+

λvcδ
v )+cωλv)

(36)
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Recall that 1+ λvcδ
v < 0 during sections where maximum fueling is used. It will be

shown later in simulations that 1+ λvcδ
v gets a large magnitude in steep uphill slopes

resulting in high gear ratios. Before and after the slope a low gear is used as given
by (34). For the model consideredcconcδ is about 7 timesce, giving high gear ratios in
steep uphill slopes. However, large magnitudes oncωcon limits the gear ratio to a lower
gear ratio.

5.2 Optimal gear ratio - quadratic maximum fueling

To make a better approximation of maximum fueling than (5) the following quadratic
model is used

Cδ = δ− (a0+a1
iv
r

+a2(
iv
r

)2) ≤ 0 (37)

Another choice could be to make a piece-wise affine model, butthen the Hamiltonian
will not be differentiable with respect to vehicle speed.

The optimal gear ratio is now given from

dH
di

= δ(1+
λvcδ

v
)+2cω

λv

r
i +ce

λv

v
−µδ(a1 +2a2

iv
r

)
v
r

+µimax−µimin

−µωmin
v
r

+µωmax
v
r

= 0 (38)

When using maximum fueling and assuming that gear ratio limits as well as engine
speed limits are not reached, optimal gear ratio is found by combining Equations (12),
(37), and (38), which gives

3a2
v2

r2 (1+
λvcδ

v
)i2 +

(

2a1
v
r
(1+

λvcδ
v

)+2cω
λv

r

)

i +a0(1+
λvcδ

v
)+ce

λv

v

= k2i2 +k1i +ko = 0 (39)

Now the optimal gear ratio is

iopt = − k1

2k2
±

√

(

k1

2k2

)2

− ko

k2
(40)

Typically, only the solution with the plus sign before the square root gives physically
feasible solutions.

Plots of optimal gear solutions.In Figure 6 the solution to Equation (39) is plotted
as a function of the decisive variable 1+

λvcδ
v and vehicle speedv. The lowest possi-

ble gear ratio for the vehicle studied is 3.42. Recall that during sections of constant
speed 1+ λvcδ

v = 0. Consider the case where cruising speed is 85 km/h and the vehicle
is approaching a steep uphill slope. During acceleration before the slope speed will
increase and the term 1+ λvcδ

v will decrease, i.e. the operating point will move down-
wards to the right in Figure 6. One conclusion that can be drawn from this figure is
that it will never be optimal to change gear during the acceleration phase before a steep
uphill slope. When the vehicle starts to climb the hill speedwill decrease, shifting the
operating point to the left, and the operating point enters the region for a possible gear
change.

Another thing to notice in Figure 6 is that for large magnitudes of 1+ λvcδ
v the opti-

mal gear ratio is approximately a function of vehicle speed since the gear ratio contours
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ating point for stationary vehicle speed at 85 km/h is markedby a cross. The contours
are drawn at gear ratio levels corresponding to a discrete step transmission. The dashed
lines are the optimal gear shifting points for a discrete step transmission.

are almost vertical. As will be shown later in simulations that region is reached when
maximum fueling has been used for a longer period of time, i.e. for relatively long or
steep uphill slopes.

For any given vehicle speed it is equivalent to see engine speedωe as control vari-
able instead of gear ratioi using ωe = vi

r . Using this substitution in Equation (39)
optimal engine speed can be calculated and a contour plot of the achieved result is
plotted in Figure 7. It can be seen in the area to the left of thedotted line in Figure 7
that optimal engine speed very well can be described as a function of the decisive vari-
able 1+ λvcδ

v , since the lines are almost horizontal. To the right of the dotted line the
solution is restricted by the minimum allowed gear ratio, compare with Figure 6. As
will be shown later in simulations the magnitude of the decisive expression 1+ λvcδ

v
depends highly on the length and inclination of uphill slopes. A longer or steeper slope
results in larger magnitude of 1+ λvcδ

v , which means that optimal engine speed is a
function of length and steepness of the slope.

Further analysis and implications of optimality. If the quadratic maximum fuel-
ing function is linearized it can be compared with the resultin (36). The linearization
of the quadratic model in the pointω0 is

Cδ = δ− (a0−a2ω2
0 +(a1+2a2ω0)ω) ≤ 0 (41)

Considering (36) and assuming that 1+
λvcδ

v has a large magnitude,iopt can be approx-
imated as

iopt = − ccon
2
r cωconv

(42)
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Figure 7: Contour plot of optimal engine speed.

Again using engine speed as an equivalent control instead ofgear ratio, using the sub-
stitution ωe = vi

r , an optimal engine speed can be calculated for every vehiclespeed.
Rewriting (42) to optimal engine speed gives

ωopt = − ccon

2cωcon
= − a0−a2ω2

0

2(a1+2a2ω0)
(43)

There is one engine speedω0 = ω∗ whereω∗ = − a0−a2ω∗2

2(a1+2a2ω∗) . For ω0 < ω∗ it holds
thatωopt > ω∗ and forω0 > ω∗ it holds thatωopt < ω∗. Hence it is never beneficial to
operate at a higher engine speed thanω∗. Rewriting (43) the optimal engine speed is
found by solving the following equation

3a2ω2
opt +2a1ωopt +a0 = 0 (44)

Usingωe = vi
r this expression is quite similar to (39). It will now be shownthat when

∣

∣

∣

λvcδ
v

∣

∣

∣ >> 1, optimal engine speed goes to the same engine speed as wheremaximum

torque to the wheels are delivered. The torque delivered by the engine to the wheels is

Tw =
rωe

v
ηTe =

rωe

v
η(ceδ(a0 +a1ωe+a2ω2

e)+ceωωe+cec) (45)

This equation is differentiated with respect toωe to find the engine speed that gives
maximum torque to the wheels. This is also the engine speed where the engine pro-
duces maximum power.

dTw

dωe
=

rη
v

(ceδ(a0 +2a1ωe+3a2ω2
e)+2ceωωe+cec) = 0 (46)

Consider Equation (39), notice that when
∣

∣

∣

λvcδ
v

∣

∣

∣ >> 1, the optimal engine speed goes

to the solution of Equation (46). Also, since|ceδ| >> |ceω| , |cec|, this solution is close
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to the solution of Equation (44). For the engine considered and the quadratic maximum
fueling function, maximum engine torque and maximum wheel torque (maximum en-
gine power) are plotted in Figure 8. The conclusion from thisis that the character of
the maximum fueling function is decisive for the optimal gear choice.

5.3 Discrete step transmission

Since discrete step transmissions are the most commonly used transmission for heavy
trucks it is interesting to see how the optimal solution would be if the gear ratio belongs
to a set of discrete numbersi ∈ {i1, i2, . . . , in}. For this case Equation (33) can no longer
be used directly to find the optimal gear ratio.

As a first attempt to model the gear shift process it will be assumed that a gear shift
is carried out instantaneously but possibly with a discontinuity in vehicle speed. For
vehicles with mechanical solutions such as for example dualclutch transmissions there
is no disruption in torque during a gear shift, and hence it isfeasible to model the gear
shifting without any speed loss. Using the more common manual transmissions there
is a disruption in torque, and such gear shifts will, except in steep downhills, result in
a decrease in speed. Suppose that a gear shift occurs at position s= si for a set of gear
shifting positionssi ∈ {s1, . . . ,sN−1}, and let the speed just before the shift bev(si−),
let the speed just after the shift bev(si+), and let the decrease in speed during the shift
bevs. The shift is then modeled as

v(si−)−v(si+) = vs (47)

One way to handle the discontinuity in this problem is to consider both fueling and
gear choice as control variables. The optimal control is then found by searching for
the control that minimizes the Hamiltonian at every position, see the discussion on the
maximum principle in [11]. Another approach that will be used here is described in [1].
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Then only fueling is considered as a control variable that isfound from∂H/∂u = 0.
This leads to a formulation with switching between different system dynamics func-
tions when switching gear. The optimal control problem formulation with disconti-
nuities in the system equations and in the state variables, as described in Chapter 3.7
in [1] is used here. The gear shifting function

ϕ = v(si−)−v(si+)−vs = 0 (48)

is adjoined to the performance criteria with multiplierϑ. Let

φ = ϑϕ (49)

and the Hamiltonian be the combination of the Hamiltonians for each interval

H(i) = L(i) + λT f (i) (50)

ForN−1 shifts the performance criteria is

J =
N−1

∑
j=1

ϑ( j)Tϕ( j) +
N

∑
i=1

∫ si−

si−1+
(L(i) + λT f (i) −λT dx

ds
)ds (51)

It is shown in [1] that necessary conditions for optimality is

dλ
ds

= −
(

∂H(i)

∂x

)T

, si−1+ < s< si − (52)

λT(si−) =
∂φ

∂x(si−)
(53)

λT(si+) = − ∂φ
∂x(si+)

(54)

H(i)(si−)−H(i+1)(si+) = 0 (55)

For the case (48)λv(si−) = λv(si+) = ϑi , i.e. the adjoint variableλv is continuous over
a gear shift.

Sinceλv is continuous and gear ratio should be chosen such that the Hamiltonian
is minimized at each position, a change in gear can only occurwhen the Hamiltonian
evaluated for two nearby gears equal each other, i.e.H(i i ,v(si−)) = H(i i+1,v(si+)).
For zero speed loss at shifting points, i.e.vs = 0, the resulting gear shifting points are
marked with dashed lines in Figure 6. The optimal solution with a stepped transmis-
sion will of course be quite similar to the continuously variable ratio solution in the
sense that the gear ratio is chosen such that the engine speedis on average close to the
continuous case. See Figure 9 for a depiction of typical gearshifting points when the
speed loss of a gear shift is set to 0.1 m/s.

5.4 Optimal gear ratio for PWA engine characteristics

For non-linear engine characteristics it is interesting tostudy gear choice also when
fueling is not in the limit. For a PWA model as (25) each engineregion can be analyzed
separately as in Section 5.1. During constant speed sections each region{m,n} has an
optimal gear ratio as in (34)

iopt = −ce,m,n

cω,m

r
2v

(56)
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In most cases the optimal gear ratio for each region is such that the engine speed is in
the border of the regions. This means that there are some operating points that have
to be considered and the optimal gear ratio is chosen such that engine efficiency is
maximized. Again, if searching for optimal gear ratio during non stationary sections
the engine torque has to be modeled such that the Hamiltonianis differentiable with
respect to speed.

6 Simulations

The results from previous sections will now be demonstratedin simulations of some
constructed road profiles. Both affine and piece wise affine engine models will be used,
but all simulations will use the quadratic maximum fueling function (37). Also results
from both continuous variable transmission as well as discrete stepped transmission
will be presented. The road profiles will consist of flat road followed by an uphill
slope or a downhill slope of constant gradient, and then flat road again. For such
road segments the slopeα will have a discontinuity when changing from flat road to
slope. If there is such a discontinuity at a given positionsd it is according to theory
possible that the Hamiltonian and/or the adjoint variableshave a discontinuity at that
position. For simulation it is important to decide whether or not the adjoint variables
have discontinuities, and it will here be shown that that is not the case. A general
condition that decides at which positions1 such an event occurs can be formulated as
in [1] as a so called interior boundary condition

N(x(s1),s1) = 0 (57)
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In Chapter 3.5 in [1] the influence onH andλ from such an event is derived to be

λT(s1−) = λT(s1+)+ πT ∂N
∂x(s1)

(58)

H(s1−) = H(s1+)−πT ∂N
∂s1

(59)

whereπ are constant multipliers. Since road slope is a function of position the condition
that decides when a discontinuity inα occurs can be formulated as

N(s) = s1−s= 0 (60)

For the condition (60) it is seen from (58) that there is no discontinuity in the adjoint
variablesλ since the condition is independent of the states.

6.1 Optimal solutions for uphill and downhill slopes

Optimal solutions of example simulations are seen in Figures 10, 11 and, 12. All
simulations are of a 40 ton truck withλT chosen such that cruising speed at flat road is
85 km/h. In Figure 10 the engine model is piece-wise affine in fueling dimension and
affine in speed dimension, see Figure 3. Assuming a continuously variable transmission
both fueling and gear ratio is optimized. As expected from Section 5.2 and especially
Equations (39) and (46), for long steep slopes the gear ratiois chosen such that the
engine speed is close to 1800 rpm, the point of engine maximumpower. Also as
mentioned in Section 5.2 in connection to Figure 6, startingat 85 km/h before the
slope there is no change in gear ratio during the acceleration phase before the slope.
Notice also that the acceleration from about position 300 m to 2400 m is done using
fueling in the border between the two upper fueling regions.Then, between about 2400
m to 5200 m maximum fueling is used, and from 5200 m to 6900 m fueling is again in
the border between the two upper fueling regions.

In Figure 11 a simulation of the PWA engine model is done in a 500 m slope of
−6% slope. The vehicle cruises at constant speed from start toabout 800 m where
the fueling is lowered to the border between fueling region 2and 3. During that part
it begins to decelerate and at about 2400 m the fuel injectionis again lowered to the
border between region 1 and 2. It is worth noting that the fuelinjection is never cut off
totally as it would have been done for an affine engine torque model.

6.2 Affine and piece-wise affine modeling

In Figure 12 three simulations are presented. The solid lineis a simulation of the
affine engine torque model with no gear optimization. The dashed line is with the
PWA engine torque model with no gear optimization. The dotted line is also with
the PWA model but now with gear optimization. As expected theaffine model only
uses two modes of fueling, i.e. such that constant speed is kept to about 2300 m,
and then maximum fueling is used until 5300 m where speed is kept constant again.
The simulation with the PWA model start accelerating earlier and uses only maximum
fueling from about 3900 m to about 4200 m. The gradual change in fueling for the
PWA model gives a smoother control but also requires about 500 m longer prediction
horizon than the affine model. When also gear ratio is optimized the PWA model never
uses maximum fueling.
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Figure 10: Uphill slope of 1500 m 6 percent inclination. Bothfueling and gear ratio is
optimized.
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Figure 11: Downhill slope of 500 m -6 percent inclination. Both fueling and gear ratio
is optimized.
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Figure 12: Three simulations in a 1000 m 3 percent uphill slope. Solid line is an affine
engine torque model. Dashed line is PWA engine torque model.Dotted line is PWA
engine torque model with gear optimization.

6.3 Continuously variable gear ratio optimization

To study optimal choice of gear ratio three simulations of the affine engine torque
model is presented in Figure 13. The optimal engine speed given by Equation (39) for
the three simulations are there shown as functions of vehicle speed and the decisive
variable 1+ λvcδ

v . One simulation, the “inner arc”, is of a 1000 m 3 % uphill slope. In
that simulation the optimal gear ratio just about reaches the lowest feasible gear ratio.
The other simulations is of a 600 m 6 % uphill slope and a 1500 m 6% uphill slope.
In the latter simulation the vehicle is able to keep a constant speed of about 30 km/h
at some part of the slope. As mentioned earlier the magnitudeof 1+

λvcδ
v gets larger

the longer and steeper the slope is. Hence, optimal engine speed is a function of length
and steepness of the slope.

In Figure 14 the same simulation as in Figure 10 with the PWA modeled engine
is depicted. Only the part in the upper fueling region is shown. Note that the optimal
engine speed, being around the line 1780 rpm, is higher than for the affine engine, Fig-
ure 13, where it was around 1650 rpm, and closer to maximum engine power, Figure 8
where the maximum is around 1800 rpm.

The result from Figures 6 and 7 could be used to define gear shifting points that
is dependent on speed and for example length and slope of hills. If the vehicle is
approaching a long and or steep slope the magnitude of 1+

λvcδ
v will get larger leading

to a higher optimal engine speed during the slope. Looking atthe simulations in for
example Figure 13 it is seen that during the uphill slope, theretardation phase, the
optimal engine speed has small variations with a mean value depending on the speed at
the start of the slope. Hence, an approximative gear shifting strategy could be designed
based on the speed when starting to climb a hill.
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Figure 14: Optimal engine speed for the highest fueling region of the PWA modeled
engine. A simulation of a 1500 m 6 % slope is plotted. Compare with Figure 13.
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Figure 15: Simulations with an affine engine and stepped transmission in a 6% 600
m uphill slope. The engine speed is on average close to the continuous ratio solution
in Figure 13. Dashed line corresponds to a simulation without a speed loss during the
gear shifts, and solid line corresponds to a simulation with0.1 m/s speed loss during
the gear shifts. Note that without gear shift losses an extragear shift occurs near the
top of the hill.

6.4 Discrete stepped transmission

Last, two simulations of a stepped transmission is presented. See Figure 15 for example
simulations in a 6% 600 m uphill slope. The dashed lines in thefigure corresponds to a
simulation without a speed loss during the gear shifts, and the solid lines corresponds
to a 0.1 m/s speed loss during shifts. This is a typical value if it is assumed that the
engine is incapable to propel the vehicle for about 0.5 s during the shift. Note that the
simulation without gear shifting losses performs an extra gear shift near the top of the
hill. Note also that the engine speed is on average close to the continuous ratio solution
in Figure 13.

6.5 Interpretation of the Lagrange variables

Looking at the Hamiltonian (9), it is seen that it is proportional to amount of fuel used
per distance, i.e. [kg/m]. This means that the Lagrange variableλv is proportional
to amount of fuel divided by velocity, i.e. [kg/(m/s)]. Since λv is decisive for the
optimal control it is interesting to interpret the value of it. In [1] it is shown that for
the augmented performance criteriāJ =

∫ sf
s0 (δi + λT( f − dx

ds))ds, the variation in the
performance criteriaδJ̄ due to a variation in initial conditionsδx(s0) is

δJ̄ = λT(s0)δx(s0)+
∫ sf

s0

∂H
∂u

δuds (61)

whereu is the control vector[δ i]T . Hence,λT(s0) is the gradient ofJ̄ with respect to
initial conditions while holdingu(s) constant. Of course the positions0 can be taken
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anywhere which means thatλ at every position is a measure of how much the total cost
would be affected by a change inx at that position. The variableλv thus is a measure of
how much fuel consumption would change if the speedv is varied. Sinceλv is negative
a raise in vehicle speed by 1 m/s at positions0 will result in a decreased total cost given
by the value ofλv(s0). A decrease of speed by 1 m/s would increase the total cost by
the same amount.

Now, looking at the simulations above in for example Figures10 and 11, it is seen
that for an uphill slope a change in speed in the beginning of the slope has the highest
influence on the total consumption. In the same way the speed at the end of a down hill
slope is most critical to the total fuel consumption.

The influence from a change in vehicle speed on the total cost,λv(s0)δv(s0), can
be written as

λv(s0)

v(s0)
v(s0)δv(s0) (62)

Remember that the termλv/v is decisive for both optimal fueling and for optimal gear
ratio. Rewriting (61) the first part is (62). Sincevδv is a measure of change in kinetic
energy,λv/v is a measure of how the total cost is affected to a change in kinetic energy.
Looking at Figure 13 it is seen that the point most sensitive to a change in kinetic
energy does not coincide with the point most sensitive to a change in vehicle speed.
Instead of the beginning of the slope now a point somewhere inthe middle of the slope
is most critical, i.e. the lowest point of the respective arc. However, as mentioned
earlier, the decisive factor 1+ λvcδ

v has small variations during the slope which means
that the sensitivity to a change in kinetic energy is approximately constant during the
slope.

6.6 Speed limits

Speed limits is a state variable inequality constraint. Optimal control with such con-
straints are treated in Section 3.11 in [1]. An upper speed limit is derived by the fol-
lowing constraint

Cv = v−Vmax≤ 0 (63)

In [1] the method to handle the type of constraint as (63) are to differentiate until the
control variable appears explicitly. For the model (7) thismeans that the derivative
C′

v = d
dsCv is adjoined to the Hamiltonian (9) with the multiplierµv resulting in

H = δi +(λv+µv) fv + λT fT +µδCδ (64)

At the entry point of a constrained arc the adjoint variableλv is discontinuous but con-
tinuous at the exit point. However, instead of solving the optimal control problem as
before the constrained solution can intuitively be found from the unconstrained solu-
tion. Consider the cases presented so far. If there had been an upper speed constraint
present the solution after the position of leaving the constrained arc would follow the
unconstrained solution. For example, after a steep downhill slope where the uncon-
strained solution exceeds the speed limit at the end of the slope, the constrained so-
lution could be found in the same way as before, by setting thespeed at the end of
the slope to the maximum allowed speed. The value ofλv is then given by the fact that
bothλv andv should reach their respective stationary values at the sameposition. Since
λv has a discontinuity at the entry point of the constrained arcthere is no easy way to
decide the value ofλv at that point. However, among all solutions that fulfills thenec-
essary conditions for optimality, (10)-(13), the most fuelefficient solution is to start
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to decelerate before the slope at a position such that the upper speed limit is reached
exactly at the end of the slope. This is of course then the solution that minimizes brake
usage, and hence minimizes the total fuel consumption.

For uphill slopes the reasoning can be done in the same way such that maximum
allowed speed is reached exactly at the beginning of the slope if the unconstrained
solution exceeds the speed limit at that position. An example simulation with an affine
engine torque model is plotted in Figure 16 where the maximumallowed speed was 90
km/h. If Figure 16 is compared to an unconstrained simulation of the same slope in
Figure 13 it is seen that in the constrained simulation the optimal gear ratio in the slope
is higher resulting in about 100 rpm higher engine speed thanin the unconstrained case.

6.7 Discussion

The optimal strategies presented above is a compromise between running the engine at
efficient operating points and minimizing air and roll resistance. For the affine engine
model (4) the optimal fueling strategy has the character of bang-bang control. This
strategy minimizes vehicle speed variations and hence air and roll resistance losses.
When using the non linear model (20) the engine efficiency decreases in the upper fu-
eling region. Hence the optimal solution in for example Figure 12 starts to accelerate
earlier than when using an affine model. Using this strategy,vehicle losses for the driv-
ing mission is increased but the distance of maximum fueling, where engine efficiency
is low, is shortened. Looking in the same figure it is also seenthat, by optimizing gear
ratio, the upper fueling region is avoided, though the higher gear ratio gives increased
engine friction.

7 Sensitivity analysis

For an implementation in a vehicle it is interesting to see how uncertainties in param-
eters will affect the optimal strategy and thereby the totalfuel consumption. Using a
given fueling strategy and gear choice, an error in a parameter estimation will result in
a different speed profile than predicted. To see how much sucha change will affect the
total cost the discussion in Section 6.5 can be used. As mentioned,λv is a measure of
how much the total fuel consumption is affected by a change invehicle speed. Thus, to
estimate how a parameter change influences the total fuel consumption it is sufficient to
study how a parameter change affects vehicle speed. The sensitivity of a function f (x)
to x at the pointx0 is computed as(∂ f/∂x)|x0/(x0/ f (x0)). In Table 3 the sensitivity of
the vehicle dynamics, i.e. the right hand side of Equation (7), to the model coefficients,
is presented. Road slope has the highest significance on the total fuel consumption.
The second highest influence hascδ, and the third highest influence hascc andcv2.
Note that if the drive line inertiasJe andJd are neglected in the total vehicle inertia,
see Table 2,cδ = (iηceδ)/(mr), cv2 = (0.5ρcdA+mcr3)/m, cc = (iηcec+mcr1)/m, and
cα = g. This means for example that a fault in vehicle mass or fuel-torque characteristic
has equal importance. However, a fault in road slope has the most significant influence
on the total cost.

One parameter known to be difficult to measure is vehicle massand therefor it is
of special interest to study. To see how a fault in vehicle mass affects the optimal
solution two simulations has been performed with masses 40 tons and 44 tons, see
Figure 17. It is there seen that if the vehicle mass is underestimated, the vehicle will
start to accelerate too late and shift to lower gear too late which can lead to a necessary
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Figure 16: Simulation in a 6 % 600 m uphill slope with maximum allowed speed of
90 km/h, solid line. The unconstrained solution from Figure13 of the same simulation
case is also plotted in the lower plot, dotted line.
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Coefficient Sensitivity,α = −0.03 Sensitivity,α = 0 Sensitivity,α = 0.03
δ = 0 mg/stroke δ = 113 mg/stroke δ = 220 mg/stroke

cδ 0.00 323 -1.48
cω -0.12 -49 0.11
ce 0.079 32 -0.076
cc -0.42 -171 0.40
cv 0.00 0.00 0.00
cv2 -0.33 -135 0.32
cα 1.78 0.00 1.72
α 1.78 0.00 1.72

Table 3: Senstivity of vehicle dynamics to model coefficients. The sensitivity is calcu-
lated for a 40 ton truck cruising at 85 km/h

0 1000 2000 3000 4000 5000 6000
0

20

40
Uphill slope of 0.06 radians 

A
lti

tu
de

 [m
]

0 1000 2000 3000 4000 5000 6000
50

100

150

V
eh

ic
le

 s
pe

ed
 [k

m
/h

]

0 1000 2000 3000 4000 5000 6000
1000

1500

2000

E
ng

in
e 

sp
ee

d 
[r

pm
]

0 1000 2000 3000 4000 5000 6000
−0.15

−0.1

−0.05

λ 1

0 1000 2000 3000 4000 5000 6000
100

200

300

Distance [m]

F
ue

lin
g 

[m
g/

st
ro

ke
]

Figure 17: Simulation in a 6 % 600 m uphill slope with masses 44tons (dashed lines)
and 40 tons (solid lines).
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extra gear shift which of course gives an increase in fuel consumption. In a downhill
slope it is of course also worse to underestimate the mass than to overestimate since
an underestimate leads to a later deceleration before the slope, which in turn leads to a
higher speed in the slope. In presence of speed limits this leads to unnecessary braking
and an increase of total fuel consumption.

8 Rule based predictive cruise control

There are several ways to use the presented optimality conditions in attempts towards
an on-line controller. Looking at the vehicle dynamics in the time domain, vehicle
speed can be solved analytically, as in [2], on constant grades for both constant fueling
and maximum fueling. Given the equations for vehicle speed and the constraint on total
travel time, the problem of finding optimal controls is that of finding optimal control
switching points, by solving a system of nonlinear equations [2].

Another approach to utilize the analytical solutions to thevehicle motion will here
be used as part of an on-line predictive cruise controller. One advantage is that the
assumption that the road grade is piece-wise constant can bedropped.

To demonstrate the possibility to significantly save fuel using the second approach,
a simple rule based predictive cruise controller has been implemented. For simplicity
the controller is based on the results using an affine engine torque model as in Section 3.
It would be possible to make further improvements using a controller based on non-
linear engine characteristics and optimize gear choice. However, the purpose here is
only to demonstrate the magnitude of the savings that can be done using the presented
material. In [6] the possible savings of gear choice is presented.

8.1 Optimization criterion

The idea for an on-line controller is to locate upcoming steep hills, compare differ-
ent fueling strategies with respect to a criterion over a prediction horizon, use the best
strategy over a sampling distance, and then re-evaluate thecriterion at the next sam-
pling point. Closed loop control is achieved by recalculating optimal controls at every
sample point.

An idea for criterion could be to use the Hamiltonian (9). Over short horizons it
might however not be a good idea to try to control the average speed to a given value.
For example, if the road mostly consists of downhill slopes during the prediction hori-
zon it is often better for the total driving mission to have a higher speed than average,
and the opposite for sections of mostly uphill slopes. Influenced by (9) the criterion for
a prediction horizon froms= 0 tos= Sp could be chosen as

J̃ =

∫ Sp

0
δids+ λT

∫ Sp

0
fTds (65)

The first term is proportional to the fuel consumed while driving the distanceSp and the
second term accounts for the travel time. The time penaltyλT is obtained by solving
Equation (14) using a desired stationary speedvre f on flat roads and small gradients.
For this criterion to be useful it has to be modified to accountfor the speed at the end
of horizon. As known from Section 3 the optimal solution consists of constant speed,
maximum fueling, and fuel cut off. Using (65) will result in astrategy that uses fuel
cut off at the end of the prediction horizon.
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Handling residual cost at end of horizon.One way to deal with this could be to
constrain the solution to a given speed, e.g.v(Sp) = vre f , at the end of the horizon.
However, this is not a good idea if for example the end of horizon is in a slope. The
way chosen here to deal with the problem of finite horizon is asfollows: Assume flat
road afterSp, let Svre f be the position where the reference speedvre f is reached after
Sp when using either maximum fueling or fuel cut off depending on if the speed atSp

is less than or greater thanvre f . By defining a function∆ as

∆ =

∫ Svre f

SP

δids+ λT

∫ Svre f

SP

fTds (66)

the criterion (65) can be chosen as

J =

∫ Sp

0
δids+ λT

∫ Sp

0
fTds+ ∆ (67)

The function∆ then follows from the solution to the vehicles longitudinaldynam-
ics. When using fuel cut off on flat road the vehicle dynamics (7) in the time domain
becomes

v̇ = cei +cc+(cω
i2

r
+cv)v+cv2v2 (68)

Using maximum fueling modeled asδmax= ccon+cωcon
i
r v+cω2con

i2

r2 v2 results in

v̇ = cδiccon + cei + cc + (cδcωcon
i2

r
+ cω

i2

r
+ cv)v + (cδcω2con

i3

r2 + cv2)v
2 (69)

Both Equation (68) and (69) are in the form

v̇ = c0 +c1v+c2v
2 (70)

This differential equation can be solved by separating variables as

1
c0 +c1v+c2v2 dv= dt, c0 +c1v+c2v

2 6= 0 (71)

Integrating both sides give

∫

1
c0 +c1v+c2v2 dv=

∫

dt (72)

This equation has two different solutions depending on the coefficients. When acceler-
ating the coefficients are such that the solution to (72) is

1
√

−4c2c0 +c2
1

ln

∣

∣

∣

∣

∣

∣

2c2v+c1−
√

−4c2c0 +c2
1

2c2v+c1+
√

−4c2c0 +c2
1

∣

∣

∣

∣

∣

∣

= t +k (73)

The solution to this equation is

v(t) =
−(c1−

√

c2
1−4c0c2)− (c1 +

√

c2
1−4c0c2)e

√
c2
1−4c0c2(t+k)

2c2e
√

c2
1−4c0c2(t+k) +2c2

(74)
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andk is chosen such that initial conditions are satisfied. When decelerating the coeffi-
cients are such that the solution to (72) is

2
√

4c0c2−c2
1

arctan





2c2v+c1
√

4c0c2−c2
1



= t +k (75)

and also herek is determined by initial conditions. The vehicle speed given by this
equation is

v(t) =
1

2c2





√

4c0c2−c2
1 tan





√

4c0c2−c2
1

2
(t +k)



−c1



 (76)

Now, from (73) or (75) the time required forv to reachvre f can be calculated. Given
time, distance can be calculated by integrating speed. The distance traveled,s=

∫

vdt,
during acceleration tovre f , is given from the integral of (74) which is

∫ −(c1−
√

c2
1−4c0c2)− (c1+

√

c2
1−4c0c2)e

√
c2
1−4c0c2(t+k)

2c2e
√

c2
1−4c0c2(t+k) +2c2

dt

=

√

c2
1−4c0c2−c1

2c2
t −

ln
∣

∣

∣2c2(e
√

c2
1−4c0c2(k+t) +1)

∣

∣

∣

c2
(77)

and the distance traveled during deceleration tovre f is given from the integral of (76)
which is

∫





√

4c0c2−c2
1

2c2
tan





√

4c0c2−c2
1

2
(t +k)



− c1

2c2



dt

= − c1

2c2
t −

ln

∣

∣

∣

∣

cos

(√
4c0c2−c2

1
2 (t +k)

)∣

∣

∣

∣

c2
(78)

Now ∆, (66), can be calculated as follows. Given distance the firstintegral is easily
calculated for the different cases of fuel cut off and maximum fueling. The second
integral is simply traveled time as given by Equations (73) and (75).

8.2 On-line algorithm

Given the results above, an on-line cruise controller can beformulated. For simplicity,
as in [6] the standard cruise controller will be used as actuator. When constant speed
is desired,v = vre f is commanded, when maximum fueling is desired, a higher speed
than the vehicles present speed will be commanded, and, whenfuel cut off is desired, a
lower speed than the present speed is commanded. Since the standard cruise controller
is of a PID-controller type this strategy will not always lead to the desired fueling but
as will be shown in simulations it will be close to desired behavior.

For a realistic case speed, limits has to be imposed such thatVmin ≤ v≤Vmax. The
algorithm is as follows:
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1. Check if there are steep slopes within the horizon. If not,sendvre f to the cruise
controller.

2. If a steep slope is detected, perform two simulations of the vehicle. First sim-
ulation: If the first steep slope is an uphill(downhill) slope start using maxi-
mum(minimum) fueling and simulate until eithervre f or Vmax(Vmin) is reached.
Second simulation: Command constant speed on one sample andthen use max-
imum(minimum) fueling.

3. If Vmax(Vmin) is reached beforevre f is reached after the slope, commandvre f to
the cruise controller.

4. Compare the two solutions by the performance index (67). Chose control ac-
cording to the simulation with lowest value of the performance index.

This algorithm is implemented in a simulation environment developed by Erik Hell-
ström [4].

Results from the simulations are shown in Figures 18 - 20. There the above rule-
based look-ahead cruise controller, LC, is compared to a standard PID-type cruise con-
troller, CC. The allowed speed range is 80≤ v≤ 90 km/h and the reference speed is
85 km/h. The standard cruise controller will not apply the brakes until the upper speed
limit is reached. The prediction horizon for the look-aheadcontroller was set to 1000
m and the sample distance to 50 m. It is seen that the algorithmworks as expected from
Section 3. In Figure 18 the algorithm starts to accelerate using maximum fueling about
300 m before the slope. The higher speed compared to the standard cruise controller
also results in a shorter period on a lower gear. Due to higheraverage speed for the
look ahead cruise controller the fuel consumption is slightly higher compared to the
standard cruise controller. However, the trip time is significantly lower. A down hill
slope is presented in Figure 19. The look ahead algorithm cutoffs the fuel injection
and starts to decelerate about 200 m before the slope. This results in a shorter period
of braking and significant fuel savings but a small increase in trip time. For a real road
consisting of both uphill slopes and downhill slopes, it is expected that the difference in
total travel time between the look ahead cruise controller and the standard cruise con-
troller is moderate. In Figure 20 it is seen that even though the travel time is almost the
same for the two controllers the fuel saving is significant for the look ahead controller.
It can also be mentioned that the magnitude of the savings is promising even though
not quite as high as those reported in [4] using a more sophisticated numerical optimal
controller.

9 Conclusions

Analytical expressions for optimality of the fuel optimal cruise control problem have
been derived. These expressions are essential for the understanding of the decisive pa-
rameters affecting fuel optimal driving, and the analytical optimality conditions makes
it possible to see how each parameter affects the optimal solution. It has been shown
that the expression 1+ λvcδ

v is decisive for both optimal fueling and optimal gear se-
lection. For example, it is seen in Equation (12) that the ratio between engine torque
to vehicle mass, given by the parametercδ, directly affects the optimal control switch
points, which also the adjoint variableλv and vehicle speedv does. The adjoint vari-
ableλv reacts to future changes in road slope and from that the control switch points
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given by (12) also depends on road inclination. This type of analysis lead to the idea
of using phase plots with 1+ λvcδ

v andv on the axes, and this type of plot has been used
extensively, see Figures 6, 7, 13, 14, and 16. It has also beenshown that, accounting
for small non-linearities in the engine torque model, fueling is gradually increased or
decreased to the fueling limit, giving a smoother control than achieved for an affine
model, see for example Figure 11. This gradual change in control also means that a
longer prediction horizon is needed.

The maximum fueling function has strong influence on optimalgear choice. It
is shown for a continuously variable transmission that it isnever optimal to operate
above the engine speed of maximum engine power. Further, fortypical cases, see
Figure 13, during the acceleration phase before an uphill slope it is never optimal to
shift gear, but it can be optimal to stay at a higher gear ratiofor a short distance after the
slope. From the results in Figure 13 it is seen that for optimal solutions engine speed is
approximately constant during the slope, and is determinedby the vehicle speed at the
beginning of the slope. The optimal vehicle speed at the beginning of the slope mostly
depends on the length and inclination of the slope and hence optimal gear shifting is
approximatively a function of slope length and inclination. Another point to notice
is that for non-linear fuel-torque characteristics, in order to avoid inefficient engine
operating points, it can be beneficial to shift gear instead of using maximum fueling.

Optimal solutions for a discrete stepped transmission are close to the continuous
gear ratio solutions in the sense that engine speed for the two cases are close. However,
it is shown in simulations that modeling of gear shifting losses are important for gear
shifting positions.

The theory presented is a good base to formalize the intuition of fuel efficient driv-
ing and one example where the analytical optimality expressions can be used is in de-
sign of a simple low-complexity computationally efficient rule-based controller. Such a
controller has been shown to be able to save a large part of thepossible savings achieved
with more computationally demanding controllers based on numerical optimization.
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Figure 18: Rule based algorithm in a 6 % 300 m upphill slope. LCdenotes Look-ahead
cruise controller and CC denotes the standard cruise controller.
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Figure 19: Rule based algorithm in a -6 % 300 m downhill slope.LC denotes Look-
ahead cruise controller and CC denotes the standard cruise controller.
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Figure 20: Simulation of the rule based algorithm on the Highway E4 between the
cities Södertälje and Norrköping in Sweden. LC denotes Look-ahead cruise controller
and CC denotes the standard cruise controller.
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