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Abstract

The FDI approach to model-based diagnosis is considered. We present a method
for residual generation that combines integral and derivative causality, and also uti-
lizes equation system solvers and theory of differential-algebraic equation systems.
To achieve this, a framework for computation of variables from sets of dependent
differential and/or algebraic equations is introduced. The proposed method is ap-
plied to a model of the gas flow in an automotive diesel engine. The application
clearly shows the benefit of using a mixed causality approach for residual genera-
tion compared with solely integral or derivative causality.

1 Introduction

With the rising demand for reliability and safety of technical systems, fault diagnosis
has become increasingly important. In the FDI approach to model-based fault diag-
nosis a mathematical model of the system, together with measurements, is utilized to
generate residuals that are used to detect and isolate faults present in the system. One
residual generation approach [24] is to, by means of structural analysis, use a part of
the model, i.e. a subset of equations, to compute a subset of the unknown variables and
then use a redundant equation as residual. The generation of a residual will thus consist
of a finite sequence of variable computations ending with an evaluation of an unused
equation, where the computation in each step only require variables that are known, i.e.
measured, or have been computed in some previous step. Similar methods have been
used in [3], [5], [21], [26], and [23].

In these previous methods, the most common approach has been to use one equation
at a time to compute one single unknown variable in each step. This has been done by
using scalar equation solvers for algebraic equations, and by applying either integral or
derivative causality for differential equations.

However, complex models contain dependencies between equations. This fact
gives rise to differential and algebraic loops or cycles, see [3], [13], which corresponds
to systems of dependent differential and/or algebraic equations. Thus, it is important



that a method for residual generation is able to handle such systems of equations. Fur-
thermore, as illustrated in this paper, it may be unnecessarily limiting to consider solely
integral or derivative causality.

The main contribution in this paper is a method for residual generation that utilizes
equation system solvers and combines integral and derivative causality into a mixed
causality approach. To achieve this, we present a unifying framework for computation
of variables from sets of dependent differential and algebraic equations which utilizes
theory for solving and analyzing general differential-algebraic equations. In the pro-
posed method, the causality of differential equations is defused and the way a differ-
ential equation is handled depends on the context in which the variables appear, the
available tools for equation solving, the available tools for approximate differentiation
of measurements, and knowledge about initial conditions.

The paper is organized as follows. Section 2 presents preliminaries and some basic
theory and references for differential-algebraic equations and structural analysis. In
Section 3, a framework for computation of variables from sets of dependent differential
and algebraic equations is presented. Sections 4 to 6 presents the proposed method. In
Section 7, an application example clearly shows the benefits of using a mixed causality
approach compared with either integral or derivative causality. Section 8 concludes the

paper.

2 Preliminaries

Consider a model M(E, X, Z) or M for short, consisting of a set of equations E =
{e1,...,en} relating a set of unknown variables X = {z4,...,2,}, and a set of
known variables Z = {z1, ..., z,}. Introduce a third set, D = {1, ..., 4, }, contain-
ing the derivatives of the variables in X. Without loss of generality, we assume that the
equations in the set E are in the form

e fi(z,x,2)=0, 1<i<m 1)

where &, x, and z are vectors of the elements in the sets D, X, and Z, respectively.
Define the set of trajectories of variables in Z that are consistent with the model
M(E, X, Z) as

OM) ={z:3z; fi (&,2,2) =0,1 <i<m}. (2

The set O (M) is referred to as the observation set of the model M. A residual generator
is here formally defined as follows.

Definition 1 (Residual Generator for M(E, X, Z)). A systemwith input z and output r
isa residual generator for the model M(E, X, Z) and r isaresidual if z € O (M) =
r=0.

2.1 Differential-Algebraic Equation Systems

It is assumed that the model (1) contains both differential and algebraic equations, that
is, it is a differential-algebraic equation (DAE) system, or descriptor system. DAE-
systems appear in large classes of technical systems like mechanical-, electrical-, and
chemical systems. Further, DAE-systems are also the result when using physically
based object-oriented modeling tools, e.g. Modelica, [18].



A common approach when analyzing and solving general DAE-systems, is to first
seek a reformulation of the original DAE into a simpler and well-structured description
with the same set of solutions, see [17], and [4]. To classify how difficult such a
reformulation is, the concept of index has been introduced. There are different index
concepts depending on what kind of reformulation that is sought. In this paper we will
use the differential index, which is defined as the number of times that all or parts of
the DAE must be differentiated with respect to time in order to write the DAE as an
ordinary differential equation (ODE), see for example [4]. The reformulation thus aims
to write the original DAE as an ODE, i.e. a system in state-space form.

2.2 Structure of the M od€l

Let C' C E and introduce the notations

e Of . Of
varx(C) = {xj € X:3e; € C, iy Z0V 9i, ;‘éO},

varp(C) = {j:j e€D:3e; €C, 8f7 E= 0} .
8xj
Let G = (E, X, A) be a bi-partite graph where E and X are the (disjoint) sets of vertices,
and

A={(ej,x;) : x; € varx({ei}),e; € E,x; € X}, 3

the set of arcs. We will call the bi-partite graph G = (E, X, A) the structure of the
model M(E, X, Z). Note that with this representation, there is no structural difference
between the variable z ; and the differentiated variable & ;. An equivalent representation
of G is the bi-adjacency matrix defined as

B = {b;j : bjj = 1if (e;, ;) € A, 0 otherwise} . (4)

A matching I" on the bi-partite graph G is a subset of A such that no two arcs have
common vertices. A matching with maximum cardinality is a maximum matching. A
matching is a complete matching with respect to E (or X), if the matching covers every
vertex in E (or X).

By directing the arcs contained in a matching on the bi-partite graph G in one
direction, and the remaining arcs in the opposite direction, a directed graph can be
obtained from G. A directed graph is said to be strongly connected if for every pair
of vertices x; and x; there is a directed path from x; to z;. The maximal strongly
connected subgraphs of a directed graph is called its strongly connected components
(SCCQ), see for example [1].

There exists a unique structural decomposition of the bi-partite graph G = (E, X, A),
referred to as the Dulmage-Mendelsohn (DM) decomposition, [7], [20]. It decomposes
G into irreducible bi-partite subgraphs G+ = (E*, X*, A1), G = (), X?, A%),1 <
i < s,and G- = (E7, X7, A7), referred to as DM-components, see Figure 1. The
component G is the over-determined part of G, G° = [ J;_, G? the just-determined
part, and G~ the under-determined part. The DM-components G9 = (EY, X?, AY)
correspond to the SCC of the directed graph induced by any complete matching on the
bi-partite graph G°, [20].
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Figure 1: The bi-adjacency matrix showing the DM-decomposition of G. The line
along the diagonal in corresponds to a maximum matching on G.

3 Computability of Variables

Computability of a set of variables from a set of equations generally depends not only
on the analytical properties of the equations in the set, but also on the set of tools that
are available for use. With a tool, we mean methods or algorithms for e.g. equation
solving that returns trajectories of unknown variables, given a set of equations and
known variables.

Introduce the notation X; for the subset of X defined as X; = {z; : i € I},

where I C {1,...,n}. A similar convention will be used to denote subsets of D,
Z, and E. Also, I will be used to denote the complement of the set  in {1,...,n},
ie. I ={1,...,n}\ I. To retrieve the indices of a set of variables (or equations),

the operator ind(-) is introduced, i.e. ind(X;) = I. Now, let I C {1,2,...,n} and
J C{1,2,...,m}, and consider the sets X and E.

Definition 2 (Computability). Given trajectories of the variables var x(E ;) \ X; and
varz(Ey), the variables X; are computable from the equations E ; if trajectories of X;
can be computed with the available tools.

3.1 Toolsfor Computation of Variables
In this paper, three types of tools are considered:
DE Solving Tools:  Tools for solving explicit ordinary differential equations;

AE Solving Tools.  Tools for solving algebraic (not differential) equation systems;

Differentiating Tools: Tools for approximate differentiation of known (measured)
variables.

An AE solving tool is typically some software package for symbolic or numerical
equation solving. A differentiating tool can for example be an implementation of a
low-pass filter or a smoothing-spline approximate differentiator, [28]. In this paper, we



assume that AE solving tools are available through existing standard software packages
like e.g. Maple or Mathematica, and design and implementation of AE solving tools
will not be considered. We also assume that DE solving tools are always available, i.e.
that the states of an explicit ordinary differential equation (a DAE of differential index
0) can be computed if the initial conditions of the states are known and consistent.
This can be motivated by the fact that there exist several efficient methods for solving
ODEs, see for example [4]. Implementations are available in for example MATLAB
and SIMULINK. Of course the assumption is not always valid and humerical solving of
ODEs involves difficulties and problems such as stability and stiffhess but this is not in
the scope of this paper.

Proposition 1. Given trajectories of the variables var x(E;) \ X; and varz(E;), the
variables X; are computable from the equations E ; if

1. the available AE solving tools can be used to transform E ; into

. d /-
Tra =g (l'f,xj,x]d,l']a,z) (5a)

x]"':ga(jtl_w]jl_)ml‘hz)a (Sb)
where I¢ = ind(varp(E;)) N I,and ¢ =T\ I¢,
2. theinitial conditions of the variablesin X ;. are known and consistent, and

3. thederivativesin varp(E;) \ Xz« can be obtained with the available differenti-
ating tools.

Proof. If condition 3 holds, the trajectories of the derivatives & ;7 can be regarded as
known. If condition 1 holds, we can use (5b) to eliminate x ;. in (5a) and obtain

ira = g% (&5, x5, 270, 9% (B7, x5, 210, 2) , 2) = §° (&7, 7, Tpa, 2) (6)

which is an explicit ordinary differential equation. Since we have assumed that DE
solving tools are always available, the trajectories of the variables (or states) x ;« of the
explicit ODE (6) can be computed if condition 2 is fulfilled. By using the algebraic
equations (5b), the variables = ;. can then be computed. O

Remark 1. If all equilibrium points of the system (5a) are, or with for example state-
feedback can be made, (globally) asymptotically stable, the effect of the initial condi-
tions are neglectable and condition 2 can be removed, see for example[14].

Remark 2. Onealternativeto differentiate unknown variablesdirectly, isto propagate
known variables through a set of equations so that derivatives of unknown variables
can be expressed as derivatives of known, i.e. measured, variables. Assume for ex-
ample that we want to compute the derivative =, and we also have that z; = z;. To
compute £, we use a differentiating tool to compute 2, andthenuse &, = 2.

Example 1. Consider the equation set {e1, e} where

e1: T1+x1+x9—21=0

es: —T1+xo+20=0.



Assume that the available AE solving tools contains a linear equation solver. We can
then use the AE solving tools to solve e; for &, and e, for zo and thus transform the
equation set {e1, e2} into

T =—x1 — X1+ (7a)

Ty = X1 — 22, (7b)

which is in the form described by (5) with J¢ = {1}, J* = {2}, I? = {1}, and
I* = {2}. Hence, if the initial condition of =, is known and consistent, the variables
{1, 22} are computable from the equations {e1, es}.

There are two important special cases of computability. If the variables X are
computable from E; and I¢ = I, I? = @, i.e.

xlzg(j?]‘,l‘j,z), (8)

the variables X; are said to be algebraically computable from E ;. Conversely, if 7¢ =
Tand I = &, i.e.

i’I:g(‘ffvvaxI;Z)v (9)

the variables X; are said to be differentially computable from E ;. If a set of variables is
algebraically computable, so called derivative causality is used, and if a set of variables
is differentially computable integral causality is used, see [3]. Thus, if a set of variables
is computed according to (5), or if a subset of variables in a model is algebraically
computable and another subset of variables is differentially computable, both integral
and derivative causality is used, i.e. mixed causality.

Remark 3. If the variables X; are regarded as known variables and the sets 7¢ and
1% are both non-empty, (5) is equivalent to a semi-explicit DAE of differential index
1. Furthermore, (8) corresponds to an algebraic equation or equivalently an explicit
DAE of differential index 1, and (9) to an explicit ODE or an explicit DAE of differential
index 0, see[4].

3.2 Initial Conditions and Estimation of Derivatives

The availability of initial conditions in general depends on the knowledge about the
underlying system represented by the model. For complex physical systems, object-
oriented modeling tools, e.g. Modelica [18], are frequently used to build models.
Often, this leads to that differentiated variables in the models correspond to physical
quantities such as pressures and temperatures, which makes initial conditions known.

If the derivatives of a set of variables can be computed or not, depends both on
the available set of differentiating tools and the quality of the measurements of the
known variables. There are several approaches for approximate differentiating, e.g.
smoothing spline approximation [28]. An extensive survey of methods can be found
in [2]. Derivative estimation is not in the scope of this paper, and will not be further
considered.

4 A Method for Residual Generation

One approach to residual generation for a model is to sequentially compute subsets of
the unknown variables from subsets of the equations, and then use an unused equa-
tion as residual. The generation of a residual will then consist of a finite sequence



of variable computations, ending with an evaluation of a residual equation. The com-
putation of variables in each step can thus only use variables that has been computed
in some previous step, and known variables. To describe which variables that should
be computed from which set of equations and in which order the variables should be
computed, we introduce the concept variable set matching.

4.1 Variable Set Matching

AssumethatZ = {I,...,I;}and J = {.J1,..., Ji} are partitions of {1, ... ,n} and
{1,...,m} respectively, and let the corresponding induced partitions of X and E be
denoted X = {)(]17 .. '7XI.<} and £ = {EJ17 .. .,EJ,/}.

Let A be a function from X' to £ and assume that (Xr,, Ej;) € Aand (Xz,,E;;) €
A. Define the binary relation < on X' x & such that (X;,,E;,) < (Xg,;, Ej;) iff X7, N
varX(EJj) # (%]

Definition 3 (Variable Set Matching). The function A is a variable set matching for X
on E if

1. Alisinjective,

2. for every (Xy,, E;,) € Aitholdsthat thevariables X;, are computablefromEj,,
and

3. thedirected graph defined by < on A contains no directed cycles.

Remark 4. The first property ensures that A is complete with respect to the variable
set X. Thethird property prevents that computation of the variablesin X, requiresthe
variablesin X;,, whichin turn requiresthe variablesin Xj,.

Proposition 2. Given trajectories of the variables var z(E), the variables X are com-
putable from the equations E if there exist partitions of X and E such that there exists
a variable set matching A for X on E.

Proof. Let X = {Xp,,..., Xr,} and & = {E,,...,E;,} be partitions of X and E
such that

A:{(XIMEJl)a-“ﬂ(XIstJs)} (10)

is a variable set matching for X on E. Since A is a variable set matching, condition 3 in
Definition 3 is fulfilled. Without loss of generality, we can then assume that the blocks
of the partitions X and £ are numbered and ordered so that

(XIi7 EJl) =< (XIH»I’ EJi+1) or (Xfw EJL) 74 (XLH»I? EJi+1)7 i=1,...,5s—1
(11)
Since condition 2 in Definition 3 holds and the only unknown variables contained in
E;, is Xz,, we can begin to compute the trajectories of the variables X, from the
equations Ez,. Once the trajectories of X, are computed, trajectories of the vari-
ables X;, can be computed from E ;, since (11) and, again, condition 2 in Definition 3
holds. Once this is done, the trajectories of X, and X;, can be used to compute tra-
jectories of the variables X;, from the equations E ;,. In the same way, trajectories
of the variables X;, can be computed by using the already computed trajectories of
Xy, X1yy ooy X1,_,, for i = 4,...,s. Since condition 1 in Definition 3 is fulfilled,
the trajectories of all the variables in X can be sequentially computed in this way and
hence X are computable from E. O



The binary relation < on the variable set matching A defines a computation order
for X on E. A computation order can thus be represented as a directed acyclic graph.

4.2 Computation Sequence

If the variables X are computable from E, the variable set matching A specifies which
variables that should be computed from which equations. The order in which the vari-
ables in X must be computed is specified by the computation order <. From a compu-
tation order, a computation sequence can be obtained.

Definition 4 (Computation Sequence for X on E). Let A be variable set matching for
XonE. Alinear order obtained by topological ordering of the directed (acyclic) graph
defined by < on A is a computation sequence for X on E.

In general, a computation sequence obtained from a computation order is not unique.

Assume that the variables X are computable from E and that X = {X,,..., X, }
and & = {Ej,, ..., Ez} arethe partitions of X and E for which a variable set matching
A exists. If we define

R:{l,...,m}\{UJi}, (12)

the set Er will contain those equations that are not used in the computation of the
variables in X, and will be referred to as the redundant equation set associated with the
variable set matching A.

Proposition 3. A computation sequencefor X on E, together with any equatione ;,i €
Risaresidual generator for M(E, X, 2).

Proof. Consider the model M(E, X, Z) and assume that = € O (M). By finding a
computation sequence for X on E trajectories of the variables in X can be computed
according to the computation sequence and by definition of O (M) it holds that

e filz,z,2)=0, i=1,...,m. (13)

From (12) we have that R C {1,...,m} and thus f;(&,z,2z) = 0 fori € R, and we
can choose r = f;(&,x,z) withi € R. Hence z € O (M) implies r = 0 and the
computation sequence used to compute X together with e is a residual generator for
M(E, X, 2). O

The equation e; will be referred to as the residual equation.

Example 2. To illustrate the concepts presented above, we study the following set of
equations

e1: T1+x1x0+2x5+21=0
es: XTo+x1+a2o+ax3+20=0
e3: Tz3+axz3—ax4=0

es: x3+x4+x5+23=0

es: x5+24=0

es: h(ri,24,25) =0,



where it is assumed that neither z; nor =, can be computed from eg. Let E =
{61, €9, €3, €4, €5, 66}, X= {1‘1, To,T3,T4, J)5}, Z= {2’1, 224,235 24, 25}, D= {i‘l, j)g, J')g, J')47 .135}
and assume that the available set of tools includes an AE solving tool.
By first studying the equations e; and ez, we see that {x1,x2} can be (differen-
tially) computed from {e1, e}, if the initial conditions of z; and zo are known and
consistent, and the AE solving tool can be used to solve e, for &; and e, for 5. We
also see that if e3 can, with the available AE solving tool, be solved for & 3 and e, for
x4, the equation set {es, e4 } becomes

T3 = —x3 + 14
Ty = —T3 — T — 23,
which is on the form (5). Thus, if also the initial condition of x 3 is known, {x3, x4}

are computable from {e3, e4}. If we assume that our AE solving tool can be used to
solve e5 for x5, {x5} is (algebraically) computable in {e5}. With X and E partitioned

as X = {{z1, 22}, {x3, 24}, {xs5}} and € = {{e1, €2}, {es,es}, {e5}, {ec}}, we now
define the function
A ={({z1,22},{e1,e2}), {x3, 24}, {e3,ea}), {5}, {es5})}

from X to €. Since {5} Nvarx({es,es}) = {xs} N {x3, 24,25} = {5}, it holds
that ({z5}, {es}) < ({x3, x4}, {es, e4}), and by similar calculations, we conclude that

({zs}, {es}) < ({w1, 22}, {e1, ea}), and ({3, w4}, {e3, ea}) < ({71, 22}, {e1, ea}).
The directed graph defined by < on A is pictured below.

({(Eg, {E4}, {637 64}) - ({xth}v {617 62})

e

({zs},{es})

Since the directed graph contains no directed cycles, the function A is injective, and all
variables are computable from respective equations for each element of A, we conclude
that A is a variable set matching for X on E. From the directed graph, we obtain the
computation sequence

({zs},{es}), {xs, x4}, {es,ea}), {21, 22}, {€1, €2}). (14)

The variables in X can then be computed in the order specified in (14). The only redun-
dant equation in E is thus e5, and hence the residual is computed as r = h(x1, x4, 25).

5 Finding Computation Sequences
The problem of designing a residual generator for the model M(E, X, Z) can be divided
into the following steps

1. Find a variable set matching;

2. Obtain a computation sequence from the computation order associated with the
variable set matching;

3. Use a redundant equation as residual equation.

Step 2 is trivial, there are many efficient algorithms for topological ordering, see for
example [6]. Since also step 3 is trivial, the key point is to find a variable set matching.



5.1 Finding Variable Set Matchings

A variable set matching A for X on Eis a function froma partition X = {X,,..., X1}
of X to a partition &€ = {E,,,...,E;,} of E, that fulfills the properties specified in
Definition 3. To be more specific, it must hold that for every X;, € X there exists
E;, € £ suchthat X;, are computable from E ;,, and that the directed graph defined by
the relation < on A contains no cycles.

Regarding the tools, we assume the following.

Assumption 1. AE Solving toolsrequirethat |E ;| = | X;|.

Assumption 2. AE Solving tools prefer, for e.g. numerical reasons, equation sets of
small cardinality before equation sets with large cardinality.

An implication of Assumption 2 is that if the variables X are computable from E ;
with some set of tools, but there exists a variable set matching A = {(Xy,,Ez,), ..., (X1, Es.)}
for X; on Ej, it is preferable to compute the variables X; from the smaller equation
sets E, .

5.1.1 Finding Equation Setswith Minimum Cardinality

Due to Assumption 2, we should find partitions of X and E with maximum cardinality.
Thus, variable set matchings should contain equation (and variable) sets of minimum
cardinality. However, equation sets of cardinality one can not always be used due to
dependencies between equations. The dependencies will naturally induce cycles in the
intended variable set matching.

Consider the bi-partite graph G = (E, X, A), representing the structure of the
model M(E, X, Z) according to Section 2.2. Let I and .J be subsets of {1,...,n} and
{1,...,m} respectively, such that the submodel M(E, X7, Z) of M is just-determined.
Let G = (E;, X1, A) denote the corresponding bi-partite graph representing the struc-
ture of M. Motivated by the fact that the DM-components are irreducible bi-partite sub-
graphs, we apply the DM-decomposition to the graph G to obtain the DM-components
G; = (Ej,, X1,, A;). Since G is just-determined, the DM-components G; are exactly
the SCCs of the directed graph induced by any maximum matching on G, see for ex-
ample [20]. The following proposition holds.

Proposition 4. Let G = (Ej;, X7, A) be a just-determined part of G = (E, X, A),

Gi = (Ej;, X1,, A4;), 1 < i < sitsstrongly-connected components. The set
A ={(X,En),..., (X1, Es.)} (15)

is a variable set matching for X; on E; if for every (Xi,, E;,) € A, the variables X,
are computable from E ;.

Proof. We need to show that conditions 1, 2, and 3 in Definition 3 applies to the set A
defined in (15). Condition 2 is trivially fulfilled due to the formulation of the propo-
sition. The injectiveness, condition 1, follows from the fact that the decomposition of
G into the DM-components G; is a complete matching with respect to X; (or E; as
well). Without loss of generality, we can assume that the SCCs G; = (E;,, X1,, A;)
are numbered according to the SCCs in Figure 1. By definition of SCCs, it holds that
X1, Nvarx(Ey;) = @ whichimplies (Xz,, Ej,) A (X1;,Ej;), forj=1,...,i—1and
i =2,...,s. Hence there will be no cycles in the graph defined by the relation < on A
and condition 3 is satisfied. O

10



A justified question is then if there exists a variable set matching for X; on Ej,
whose equation sets have less cardinality than the equation sets originating from the
SCCs according to Proposition 4.

Proposition 5. Let G = (E;, X;, A) be a SCC. There exist no variable set matching
for X; on E; with cardinality larger than one.

Proof. This follows from the definition and properties of a SCC, see for example [20],
since from any z; € X, there exist a path around the graph back to « ;. This fact will
lead to a cycle in any possible variable set matching with variable sets of cardinality
smaller cardinality than Xj. O

Proposition 5 implies that it is impossible to partition E; into blocks with less
cardinality than the SCC, without ending up with a cycle that prohibits a variable set
matching.

Remark 5. SCCsare utilized in [22] and [13] to determine the causal order [11] of
the variables in a model consisting of algebraic and differential equations. However,
the causal order depends only on the occurrences of variables in the equations and
does not consider computability, i.e. analytical properties of the involved equations,
initial conditions, and available tools. SCCs are also used to partition sparse systems
of equations into the so called BLT-form in tools for non-causal simulation, see for

example [10].

5.2 An Algorithm for Finding Variable Set M atchings

Proposition 4 states a sufficient condition for finding a variable set matching. Motivated
by this and the implication of Proposition 5, we propose Algorithm 1 for finding a
variable set matching for X; on E.

Algorithm 1. findVariableSetMatching
Input: A just determined set of equations E ;, a set of variables X7, a set of AE
solving tools T'4 g5, and a set of differentiating tools T'pr .
Output: A variable set matching A for X; on E;.

1 A:=g;

2 S :=findAl1SCC(E;,X1);

3 foreach (E;,, X1,) € S do

4 if isComputable (Ej,, X1, ,Tars,Iprrr) then
5 AZ:AU(X[”EJI.);

6 ese

7 return @;

8 end

9 end

10 return A;

The function £indal1scc in Algorithm 1 returns equation and variable sets cor-
responding to the SCCs of the specified just-determined equation set, with respect to
the specified set of variables. There are efficient algorithms for finding SCCs in di-
rected graphs, see for example [25]. The function isComputable determines if the
specified set of variables are computable from the specified set of equations. This
function is described in Algorithm 2, and will be further considered in Section 6.

11



5.3 Connection to M SO Sets

The problem of residual generation for a given model can, as said in beginning of
this section, be divided into the three parts: 1) find a variable set matching, 2) obtain
a computation sequence from the variable set matching, 3) use a redundant equation
as residual equation. From the discussion above, it is clear that to find a variable set
matching it is sufficient to consider a just-determined part of the given model. Hence, to
design a residual generator it is sufficient to consider a part of the model that consist of
a just-determined part and one redundant equation, that is, a minimal over-determined
set of equations or in the structural case, a minimal structurally over-determined (MSO)
set. The method for residual generation outlined in the beginning of this section, can
thus be refined:

1. Find a MSO set in the model;
2. Find a variable set matching in the MSO set;

3. Obtain a computation sequence from the computation order associated with the
variable set matching;

4. Use the redundant equation as residual equation.

There exist several efficient algorithms for finding all MSO sets in a model, see for
example [16].

6 Analyzing Computability of Variables

Consider the variable set X; and equation set E; and assume that the available set
of tools contains AE solving and differentiating tools. From the development in Sec-
tion 5.1, it is clear that we can limit our analysis to the case when | X;| = |E;| and E;;
corresponds to a strongly-connected component.

The decomposition into strongly-connected components is based on the structural
representation of the model adopted in Section 2. With this representation, there is
no difference between a variable x; and the corresponding differentiated variable & ;.
The strongly-connected components therefore contains both differentiated and non-
differentiated variables and thus both differential and algebraic equations. This means
that the equation sets corresponding to SCCs are differential-algebraic equations. One
approach for further analysis of computability of X; from E is then to apply methods
for analyzing and solving differential-algebraic equations (DAES).

6.1 Analyzing Computability by Utilizing Differential-Algebraic Equa-
tion Theory

According to Proposition 1, which is motivated by theories for analyzing and solving
differential-algebraic equation systems, we seek a reformulation, or transformation,
of E; into the form (5). The ability to perform such a transformation, depends on
the analytical properties of the equations in E ;, as well as the available AE solving
tools. Having obtained a transformation of E ; into one differential part (5a), and one
algebraic part (5b), it is also desirable that both the differential and algebraic part are
further decomposed into smaller just-determined parts, due to Assumption 1 and 2. We
illustrate our approach for analyzing computability with an example.
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Example 3. Consider the set of equations

e]: $1—$2+$1$4+$2+$§+$7$9:0
ey I +$2+$2$3+2l‘5$§ =0

e3: I3 —$§$3$6+i'7 =0

es: x1x9+xTg4+2a5=0

es: To+xg—ax5+a8=0

es: Tox3Ts + xg + L9 =0,

which for simplicity contains no known variables. The bi-adjacency matrix repre-
senting the structure of the equation set E = {eq,eq, €3, eq, €5, 6} With respect to
X = {x1, 29,23, x4, x5, 6} 1S Shown in (16). It is clear that E corresponds to a SCC
of size 6.

Equation Unknown
I To I3 Ty Is Te
el 1 1 1 1
es 1 1 1 1
es3 1 1 1 (16)
e4 1 1 1
es 1 1 1
€6 1 1 1 1

First consider the equation set {e1, ez, e3}, which contains the differentiated vari-
ables {1, &2, #3}. Ifwe consider the structure of {e1, ez, es } with respectto {i1, @2, @3},
we obtain the bi-adjacency matrix shown in (17). We can now partition {e¢ 1, e2, e3} into
the equation sets {e1, e2}, and {es}, corresponding to SCCs of size two and one, with
respect to the structure in (17).

Equation Unknown
T1 Ty T3

€1 1 1 (17)
€9 1 1
€3 1

If the AE solving tools can be used to transform {e 1, e2} into

1
T = 3 (—xg — ToX3 — T1Lg — x% - 2x5x§ - x7x9) (18a)
L1 B 2 2
Tog = 5 (xg ToT3 + T1T4 + 5 — 22525 + x7x9) , (18b)

and {es} into
i3 = w336 — 7, (19)

we have that {z1,z2} are differentially computable from {e;, ez} and that {zs} is
differentially computable from {e3} if the initial conditions of {1, x>} and {z3} are
known and consistent and the derivative {7} can be computed with the differentiating
tools.

Now instead turn to the equation set {e4, es5,eg}. From the bi-adjacency matrix
in (16), we then see that {e4, e5, es } can be partitioned into the equation sets {e4, e5}
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and {eg}, which corresponds to SCCs of size two and one respectively. Under the
assumption that the AE solving tools can be used to transform {e 4, e5 } into

Ty = % (—xo — 129 — T3) (20a)
x5 = % (xg — 2119 + T38) , (20b)

and {eg} into
Te = —TaT3T5 — Lo, (21)

we see that {x4, x4} are algebraically computable from {e4, e5} and that {z¢} is al-
gebraically computable from {e¢}, if the derivatives {@g} and {9} can be computed
with the available differentiating tools.

We have then transformed the original set of equations E into the form (5), with (18)
and (19) corresponding to (5a), and (20) and (21) to (5b). Thus, we have I ¢ = {1, 2, 3},
I* = {4,5,6}, and I = {7,8,9}. Hence, if the initial conditions of {z1, 22,23}
are known and consistent, and the derivatives {7, &s, @9} can be computed with the
available differentiating tools, the variables X are computable from E.

6.2 An Algorithm for Analyzing Computability

Motivated by Example 3 and the three conditions in Proposition 1, we propose the
following procedure for analyzing if X; are computable from E ;:

1. Partition I into {72, I4}, according to I¢ = ind(varp(E;)) NI, I¢ =T\ I
Determine if the initial conditions of the variables X ;. are known and consistent;
Determine if the derivatives varp(E ;) N Dy can be computed with Tprrr;

Partition .J into J¢ and J¢, such that varp(E.) N D = &;

a & N

Find the SCCs of G* = (Eja, X1a, A?). For each SCC G = (Ejs, Xi2, A7),
determine if X;. are algebraically computable from E j..;

6. Find the SCCs of G = (Ea, Dya, A%). For each SCC G¢ = (E 4, D;a, AY),
determine if X;a are differentially computable from E ;..

A complete, fully automated, algorithm can be found in Algorithm 2. The function
isInitCondKnown determines if the initial conditions of the specified variables are
known and consistent, see Section 3.2. The function isAESolvable determines if
the specified set of equations can be solved for the specified set of variables with the
specified set of AE solving tools. The function isDifferentiable determines
if the derivatives of the specified variables can be computed with the available set of
differentiating tools, see Section 3.2. The function regards propagation of derivatives
as described in Remark 2.

6.2.1 Correctnessof Algorithm 2

The correctness of Algorithm 2 is verified in the following theorem.
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Theorem 1. Given a just-determined set of equations E ;, a variable set X;, a set of
AE solving tools T'4 g5, and a set of differentiating tools T'pyp . Thevariables X; are
computable from E ; if Algorithm 2 returns true with E;, Xy, and {Tags, Tprrr}
asinput.

Proof. The variables X; are computable from E; if conditions 1,2, and 3 in Propo-
sition 1 are fulfilled. If Algorithm 2 returns true, lines 1-17 have been success-
fully processed with X% and 7, and and conditions 2 and 3 are trivially fulfilled.
Since also lines 18-23 have been successfully processed, there exists a set of com-
putable SCCs, S, where each SCC (E =, X;a) € S can, due to the successful call to
isAESolvable, be written in the explicit form

where g¢ (-) is a function of known variables and all unknown variables except X ;..
Likewise, since lines 24-29 have been successfully processed, there exists a set of com-
putable SCCs, S<, where each SCC (E ., DId) € S? can, again due to the successful
call to isAESolvable, be written in the explicit form

o =g (), (23)

where g¢ (-) is a function of known variables and all unknown variables and their
derivatives except D;4. Hence the equation set E ; can be transformed into the form (5)
where the explicit differential equations (5a) consists of the equation sets Ejd all of
them written in the form (23), and the algebraic equations (5b) of the equation sets E Je
written in the form (22). This implies that also condition 1 in Proposition 1 is fulfilled
and thus X are computable from E ;.

O

From Theorem 1 it follows that if Algorithm 2 returns true with the equations
E; and variables X; as input, the equations E; can be transformed into the form (5),
possibly with either of the sets 7¢ or I® empty. From Remark 3 it then follows that E ;
is a semi-explicit DAE of differential index 0, explicit DAE of index 1 or explicit DAE
of index 0.

Remark 6. Although only semi-explicit DAEs of differential index 1 can be handled
with Algorithm 2, equation setsthat are of higher index as a whol e can often be handled
with the proposed method. Consider the equation set

ey . i,’l—(L'Q:O
€9 : .1'32—.133:0

es: x1—2z2 =0,

which is a DAE of differential index 3, taken from [19]. If we assume that our AE and
differentiating tools are ideal, Algorithm 1 returns the variable set matching

A = {(z1,e3), (x3,€2), (w2,€1)},

where each element corresponds to a SCC of size 1. The associated computation se-
guenceis

(mla 63)5 (m27 61)7 (.133, 62)5
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and the variables {z1, x2, x5} can be computed from {e1, e, e3} as

r1 = 21
"L'Q:Qtl
XT3 = da

Thus, even though the original systemisa DAE of index 3, the proposed method can be
used to find a variable set matching since the SCCs of {e1, e2, e3} are DAES of index
1.

7 Application Example

In this section, the proposed method for residual generation is applied to a complex
model of the gas flow in an automotive diesel engine.

7.1 TheEngine Model

The modeled engine is a six cylinder Scania diesel engine equipped with exhaust gas
recirculation (EGR) and a variable geometry turbocharger (VGT). The model focuses
on the gas flow in the engine and is described in [27]. To be better suited for residual
generation, it was modified in [15]. The modified model contains in total 50 equa-
tions, 47 unknown variables, and 11 known variables. The variables represent physical
quantities such as pressures, temperatures, and rotational speeds. The model consists
of 8 differential equations and 42 algebraic equations, i.e. the model is a differential-
algebraic equation. A description of the differentiated variables (states or descriptor
variables) and measured variables is shown in Table 1.

7.2 Configurations of the Algorithm

For comparison, the algorithm was applied to the engine model with three different
configurations. The following parameters were used for configuration

e Availability of initial conditions;
e Characteristics of AE solving tools;
e Characteristics of differentiating tools.

These parameters naturally influences the possibility to compute variables in different
ways, and thus also the possibility to find variable set matchings.

The configurations used are shown in Table 2. With configuration C; the only way
a set of variables can be computed from a set of differential equations is algebraically
since no initial conditions are available, cf. (8). This is often referred to as derivative
causality, see [3]. This approach for handling differential equations has been used in
for example [12] and [8]. With configuration C4 on the other hand, the only way to
compute a set of variables from a set of differential equations is according to (9), with
the additional condition that Dy = &, since no derivatives are available. This is in
the literature referred to as integral causality, which is the way differential equations
are handled in for example [23] (still their framework supports the use of both integral
and derivative causality). Configuration C3 thus handles both integral and derivative
causality and if a set of variables is computable from a set of equations depends on
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the analytical properties of the equations in the set and the available AE solving tools,
according to Proposition 1. In all three configurations it is assumed that the AE solving
tools only can handle equation sets with one element, i.e. SCCs of size one.

7.3 Resaults

By using an implementation of the engine model in MATLAB/SIMULINK, and a MAT-
LAB implementation of Algorithm 1, the proposed method was applied to the engine
model. The implementation utilizes the fact discussed in Section 5.3 and hence as a first
step, all MSO sets are computed. This step was achieved with the toolbox described
in [9].

In total, 90 MSO sets were found in the engine model. In Table 3 it is shown
in which of the MSO sets a variable set matching could be found with the different
configurations of the algorithm. With configuration C, a variable set matching could
only be found in one of the MSO sets, with configuration C in four of the MSO sets,
and with configuration C5 a variable set matching could be found in 35 of the 90 MSO
sets.

7.3.1 Detailed Study of a Specific M SO Set

We will now consider one of the MSO sets where a variable set matching could be
found with configuration C3, but not with the configurations C; and C,. The MSO set,
referred to as MSO set 4 in Table 3, contains 36 equations and 35 unknown variables.
Of the 36 equations, only five are differential equations. By using an equation named
esg as residual equation, a variable set matching could be found. The structure of the
corresponding just-determined part of MSO 4 is shown in Figure 2.

The found variable set matching contains variable sets corresponding to 32 SCCs
of size one, and one SCC of size three. The SCCs are marked with a square in Fig-
ure 2. The SCC of size three contains the variable set {74, T, z,} and equation set
{e11, e12, e13}, which are on the form

€11 - fll (Q.mer;T17Weiapim;Wtapem):0
612 : f12 (T1)T17T€)mT7Ti7n,) = O
€13 f13 (TlaTe;xra Weq;pima Wt;pem) =0.

To compute {T, T., . } from {e11, e12, e13}, a scalar equation solver implemented in
MATLAB was used to compute .. from eqq, Ty from e12, and T, from eq5. The equa-
tions {e11, e12, e13} could then be written on the form (5) and since the initial condi-
tions of . and Ty were known, {7, T, x,-} were computable from {e11, e12, e13}.

In the SCC of size one corresponding to the equation set {e}, the variable W,
was algebraically computed by using the differentiated variable p;,,,. The derivative
Pim Was computed with a smoothing spline approximate differentiator implemented in
MATLAB, and propagation of measured variables. In a similar way, the variables W,
and P. were algebraically computed from {e2} and {e2; }, respectively. This was done
by using the derivatives p.,, and W,

Since integral causality were used to compute variables from the equation set {e 11, e12, €13},
and derivative causality to compute variables from the equation sets {e1}, {e2}, and
{ea1}, it is clear that no residual generator could have been created from MSO set 4,
with esg as residual equation, if either integral or derivative causality had been used.
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8 Conclusions

We have presented a mixed causality approach to residual generation, that combines
integral and derivative causality and also utilizes equation system solvers and theory of
differential-algebraic equations. An important part of the proposed method is a frame-
work for computation of variables from sets of dependent differential and/or algebraic
equations. In the mixed causality approach, the way a differential equation is han-
dled depends on the context in which variables appear, the available tools for equation
solving and approximate differentiating of measurements, and knowledge about initial
conditions.

Complete algorithms for finding residual generators with the proposed method,
as well as analysis of computability of variables from dependent differential-algebraic
equation systems, have been presented. The algorithms have been applied to a model of
the gas flow in an automotive diesel engine. By applying three different configurations
of the algorithm, corresponding to integral and derivative causality alone and mixed
causality, it has been shown that considerably more residual generators can be found in
the engine model with the mixed causality approach.
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Algorithm 2: isComputable
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Input: A just-determined set of equations E ;, a set of variables X7, a set of AE
solving tools T'4 g5, and a set of differentiating tools T'pr .
Output: True if X; is computable from E ;, else false.
I := ind(varp(E;) N Dy);
if not isInitCondKnown (X;a) then
return false;
end
if not isDifferentiable (varp(E;) N Dy, Tprrr) then
return false;
end
I¢ =1\ 1%
J =2
J* =g,
foreachi € J do
if varp({e;}) N Dy = @ then

Jo = J*ud{i};
else
Jé:=Jiu {i};
end
end

S% = £indAl11SCC(Eja,Xja);
foreach (Eja, Xja) € S® do
if not isAESolvable (E; X1, Taps) then
return false;
end
end
S84 := £indA11SCC (E a,Da);
foreach (E 4, D;a) € S do
if not isAESolvable (E,4,D;4,Taps) then
return false; o
end
end
return true;
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Variable | Description Unit
Pim Intake manifold pressure* Pa
Pem Exhaust manifold pressure* Pa
Xoim Intake manifold oxygen concentration* -
Xoem Exhaust manifold oxygen concentration®* | —

wy Turbine rotational speed* rad/s
Uogt VGT valve position* —

T Cylinder temperature after intake stroke* | K

T, Residual gas fraction* —

Us Mass of injected fuel mg/cycle
Uegr EGR control signal %
Upgt VGT control signal %

Ne Engine rotational speed rpm
T; Intake manifold temperature K
Tomb Ambient temperature K
Damb Ambient pressure Pa
Wemp Compressor mass flow kg/s
Nirb Turbine rotational speed rpm

Table 1: A description of the measured variables and differentiated variables (marked
with *) in the engine model.

Initial Conditions | AE Sol. Tools Diff. Tools
Cy | no scalar equations | yes
Cy | yes scalar equations | no
Cs | yes scalar equations | yes

Table 2: Configurations of the algorithm

MSO set
12 45 7 8 10 11 12 20 21 23 24 25 39 40 41 43 44 45 46 51 53 57 58 60 61 62 63 74 76 85 86 88 90
Cl X
CQ X X X X
CS X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Table 3: A table showing in which of the MSO sets a variable set matching could be
found with the different configurations of Algorithm 1.
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