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Abstract

Recent development has renewed the interest in drivetrain concepts which gives a higher degree of
freedom by disconnecting the engine and vehicle speeds. This freedom raises the demand for active
control, which especially during transients is not trivial, but of which the quality is crucial for the success
of the drivetrain concept. In this work the fuel optimal engine operating point trajectories for a naturally
aspirated and a turbocharged diesel engine, connected to a load which does not restrict the engine speed,
is derived, analysed and utilized for finding a suboptimal operating point trajectory. The analysis and
optimization is made with dynamic programming, Pontryagin’s maximum principle and a suboptimal
strategy based on the static optimal operating points. Methods are derived for using Pontryagin’s
maximum principle for finding the optimal operating point trajectories, for simple load cases. The time
needed for computation is reduced a factor 1000−100, depending on engine layout, compared to dynamic
programming. These methods are only applicable to very simple load cases though. Finally, a suboptimal
calculation method which reduce the time needed for computation a factor > 1000 compared to dynamic
programming, while showing a < 5% increase in fuel consumption compared to the optimal, is presented.

1. Introduction

1.1. Background and motivation

Faster, smaller and cheaper computers have created
the opportunity for more intricate control of mechanical
systems, or even the introduction of new mechanical so-
lutions that would have been unfeasible without a high
level of control. In the field of vehicle engineering this
can be seen in the recent diversification of drivetrain ar-
chitectures [1]. The motivation for altering the drivetrain
is often to reduce the fuel consumption, for environmental
or economical reasons. It is easy to realize that the fuel
consumption also depends on the driving cycle in which
the vehicle operates [2].

The study presented in this report is motivated by
wheel loader operation, and the distinct properties of the
operation of such machines. For wheel loaders there are no
standardized driving cycle, but it is clear that the common
operation is highly transient [3] both in power requirement
and in vehicle speed. This is exemplified by the scaled en-
gine output in Figure 1, which has been recorded during
two consecutive loading cycles.

The drivetrain of the in-production reference vehicle
uses a diesel engine, a torque converter and an automatic
gearbox. This solution has the advantage that it is me-
chanically robust since the torque converter provides some
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Figure 1: Power consumption of a wheel loader performing two short
loading cycles
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disconnection of the wheels from the engine, and that it
automatically adapts to changes in torque. The drawback
is that there is always some slip in the converter, which
reduces the efficiency. The low efficiency is the motivation
for investigating other types of transmissions for these ma-
chines. Any alternative transmission must be able to han-
dle all the distinct features of the operation. The frequent
operation at very low speeds indicates that some type of
continuously (or infinitely) variable transmission (CVT),
such as a diesel-electric solution might be suitable. The in-
troduction of such a layout increases the degree of freedom
in the control, and especially allows for a free choice of en-
gine speed, independent of the vehicle speed. The choice
of engine speed during transients however, is not trivial.
The extremely transient operation of wheel loaders, along
with new possibilities of realizing optimal operation, mo-
tivates further examination of optimal and predictive con-
trol. This report therefore focuses on the derivation of the
fuel optimal engine speed trajectories during power tran-
sients.

1.2. Previous work

There have been some work done on advanced wheel
loader transmission control, but mainly in the fields of low
level actuator control [4], autonomous vehicles [5] [6], and
hybrid-electric powertrains with heuristic controls [7] [8].
There is also a vast amount of research on similar driv-
etrains for on-road passenger vehicles. Most of these use
heuristic control laws [9] [10] or some variant of the ECMS
[11] approach [12] [13]. Apart from these, there are arti-
cles such as [14] and [15] in which optimal trajectories are
derived, but not thoroughly explained. In [16] a thorough
investigation of the optimal solution is made, but only for
a fully stochastic future load.

Since it in general is optimal to operate at a station-
ary point during static conditions, the online optimization
might only require prediction at transients, and then with
a short horizon. Some proposals on how to achieve this
can be found in [17] [18] [19]. In case the vehicle is made
autonomous, as proposed by [5] [6], the controller may also
inform the optimizer about upcoming actions.

1.3. Problem outline

Transmissions that enables higher efficiency through
higher controllability are for example belt type CVTs or
hydrostatic or electric drives. These can all be configured
in numerous ways to emphasize desired properties. This
makes it impossible to make a general analysis that in-
cludes any detail of the transmission. Since transients are
a fundamental part of wheel loader usage, this report is
made to provide deeper understanding of the mechanisms
behind the fuel optimal solutions during transients, with-
out obscuring these by including any possible restrictions
imposed by the transmission. This is done by subjecting
the engine model to a load in the form of a non-stationary
output power, and use different methods for analyzing the
fuel optimal solution.

2. System setup

As a first approximation the powertrain of a CVT ve-
hicle can be divided into one power producing and one
power consuming part. In a diesel electric transmission
the partitioning could be made at the electric connection
by using electric power instead of voltage and current, in
a hydraulic hybrid it could be made by using hydraulic
power instead of pressure and flow, and in a belt type
CVT it could be made by using belt power instead of belt
force and speed. It is assumed here that the device has no
maximum or minimum gear ratio. If such a partitioning
can be made, any driving cycle can be translated, includ-
ing efficiencies on the power consuming side, to an output
power trajectory Pload(t). The efficiencies in the power
producing side of the transmission, see Figure 2, can be
included in the engine efficiency.

Pload

Figure 2: The system consists of an engine, the engine side of an
infinitely variable transmission (e.g. an electric generator) and an
output power.

This report is based on the papers [20], [21] and [22],
which use engines with different maximum output powers.
In this report the engine from [22] is used. The report
treats both a naturally aspirated and a turbocharged en-
gine. The differences between the setups are mentioned as
they appear. The naturally aspirated engine is referred to
as the NA-engine, while the turbocharged is referred to as
the TC-engine.

2.1. Engine model

The engine speed ωe dynamics is modeled as an inertia
Ie which is affected by the engine torque Te and a load
power Pload.

dωe(t)

dt
· Ie = Te(t)−

Pload(t)

ωe(t)
(1)

The engine torque Te depends on fuel mass per injection
mf and engine speed ωe according to a quadratic Willan’s
model, as described in [23]. Introduce the lower heating
value qlhv, the number of cylinders ncyl, the number of
strokes per injection nr and the parameters ηe00, ηe01, ηe02, ηe10, ηe11, ηeL0, ηeL2

and define

A =
qlhvncyl

2πnr
(2)

ηe = ηe0 − ηe1mf (3a)

ηe0 =ηe00 + ηe01ωe + ηe02ω
2
e (3b)

ηe1 = ηe10 + ηe11ωe (3c)

ηeL = ηeL0 + ηeL2ω
2
e (3d)
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The Willan’s model, expanded with an additional torque
loss Tt caused by lack of air intake pressure, can then be
described by Equation (4). The torque loss Tt is intro-
duced for the modeling of the turbocharged engine, and
for the naturally aspirated engine this loss is zero Tt = 0.

Te = A · ηe ·mf − ηeL − Tt (4)

The engine is also subject to the state and control restric-
tions

ωe,min ≤ ωe
0 ≤ mf

Te ≤ Te,max(ωe)
(5)

2.2. Turbocharger model

The torque loss Tt is caused by low air intake pres-
sure, a pressure which depends on the rotational speed
of the turbocharger. The turbocharger speed is assumed
to be a first order dynamic system with the time con-
stant τt(ωe) and an asymptotic speed that is a function of
ωe,mf . The dynamic relations are expressed in the cor-
responding asymptotic and dynamic air intake pressures.
Denote the asymptotic intake pressure by pt,set and the
time dependent pressure by pt. Introduce the model and
effeiciency parameters ξτ0, ξτ1, ξt1, ξt2, ξt3, ηt10, ηt11, ηt20

and ηt21 and define

τt = ξτ0 + ξτ1ωe (6a)

pt,set = ξt1ωe + ξt2mf + ξt3 (6b)

ηt1 = ηt10 + ηt11ωe (6c)

ηt2 = ηt20 + ηt21ωe (6d)

The pressure dynamics can then be described by

dpt(t)

dt
· τt(ωe) = pt,set(ωe,mf )− pt(t) (7)

By defining pt,off = pt,set(ωe,mf )−pt the torque loss can
then be described by

Tt =

{
ηt1(ωe) · p2

t,off + ηt2(ωe) · pt,off if pt,off > 0

0 if pt,off ≤ 0

(8)

2.3. Efficiency definitions

The quasi-static peak efficiency points Σ are defined
as the (ωe, Te) that maximize (9a) as a function of Pload
under the restrictions (5) and dωe

dt = dpt
dt = 0 as described

by the Equations (9).

ηe,static =
Pload
Pmf

=
Teωe
ωeAmf

(9a)

ωe,Σ(Pload) = argmax
ωe

ηe,static(Pload) (9b)

mf,Σ(Pload) = argmax
mf

ηe,static(Pload, ωe,Σ) (9c)

The Equations (9) also define Te,Σ = Te(ωe,Σ,mf,Σ). In-
dividual points along the line Σ is referred to as (quasi)
static optimal operating points or SOOPs.

3. Problem statement

The problem studied is the minimization of the total
amount of fuel used, according to Equation (10)

min

∫ T

0

Aωemfdt (10)

while fulfilling the engine dynamics Equation (1), the con-
straints (5) and, in case the engine is turbocharged, the
turbo dynamics (7). This also means that no deviations
from the output load trajectory Pload(t) is allowed.

3.1. Load cases

In Equation (1) the time dependent load Pload(t) is in-
troduced. In this report two different types of loads are
used. The first type is from measurements in a short load-
ing cycle, ’DDP sc’ and a long loading cycle, ’DDP lc’.
The total output power is calculated from the measured
wheel torque and speed, and hydraulic pressure and flow.
These load cases are presented in Figure 3.
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Figure 3: The output power trajectories in the load cases ’DDP sc’
and ’DDP lc’.

The other type is artificial load cases, and consists of
the four pulse and step cases presented in Table 1. The
’DDP sc’ and ’DDP lc’ load cases are applied to both
engine setups while the pulse load cases are used for the
NA-engine and the steps load cases are used for the TC-
engine. In all four artificial load cases the time before
the first and after the last steps are selected so that an
increase in any of the times would not affect the transient
optimization result. The time scales in the pulse load cases
are selected so that in the slow pulse the engine has time to
settle at the static optimal operating point (SOOP) of the
intermediate output power, while in the quick step it does
not. Due to the increased complexity of the TC-engine,
this is only subjected to the single step load cases. The
power levels in these load cases are selected so that the
low step is between two SOOPs on the minimum engine
speed limit, while both of the SOOPs of the high step are
above this limit (∼ 85kW ).
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Table 1: Stylized load cases for engine-generator set.

Name Load case: Power(Duration)
Slow pulse 100kW (5s)-180kW (5s)-100kW (5s)
Quick pulse 100kW (5s)-180kW (0.8s)-100kW (5s)
Low step 50kW (5s)-80kW (5s)
High step 100kW (5s)-180kW (5s)

4. Optimization Methods

4.1. General problem statement

Introduce the states x(t) of the system, the decision
variables, or control signals, u(t) and the time dependent,
non-controllable, disturbance signals w(t). Here the only
disturbance signal is the applied load. The problem stud-
ied in this report can then be stated as

min
u∈U

{
JN (x(T )) +

∫ T

0

G(x, u, w)dt
}

ẋ = F (x(t), u(t), w(t)) (11)

x(0) = x0

along with posible state and control constraints. This
problem is, regardless of the timespan, equivalent to an
infinite dimension optimization problem. The problem is
in general discretized for computerized numerical solving,
transforming the problem into a large, but finite, dimen-
sional optimization problem

min
u∈U

{
JN (x(T )) +

N−1∑
k=0

gk(uk, xk, wk)
}

xk+1 = f(xk, uk, t), k = 0, . . . , N − 1 (12)

4.2. Dynamic programming (DP)

Dynamic programming is a recursive method for solv-
ing optimization problems which develop in stages, such as
a discrete time. According to [24] and [25] the recursion
can be stated as

Jk(xk) = min
u∈U

{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(13)

The implementation of the recursion as an algorithm in-
cludes a strategic choice. Denote the discretized states
x ∈ X. The ’cost-to-go’, Jk+1, is then only calculated and
stored at the grid points xk+1 ∈ X, and is not explicitly
known for xk+1 /∈ X. The method selected for handling
this highly affects the calculatory effort. Three possible
choices are presented here.

If the function xk+1(xk, uk, wk) is invertible, that is if
uk(xk, wk, xk+1) is well defined, then g+Jk+1 can be eval-
uated for each {xk, xk+1} ∈ X combination. With this
choice the calculatory effort increase with the square of
the size of X but is independent of the controls. If in-
verting xk+1(xk, uk, wk) is not possible or desirable (for

example if X is large) xk+1(xk, uk, wk) can be calculated
for the discretized u ∈ U , not requiring that xk+1 ∈
X. Then ũk(xk, wk, xk+1 ∈ X) can be found by inter-
polation among these uk, followed by the calculation of
g(xk, ũk, wk). Another option is to make the same calcula-
tion of xk+1(xk, uk, wk), but to determine J̃k+1(xk+1(xk, ukwk))
by interpolation among the Jk+1(xk+1 ∈ X). In this case
the calculatory effort increase linearly with the number
of possible state and control combinations. In this the-
sis the third option is used, producing the following algo-
rithm

1: For xN ∈ XN , declare JN (x) = JN
2: for k = N − 1, . . . , 1 do
3: For each xk ∈ Xk, simulate dx

dt for tk to tk+1 for all
u ∈ U to find xk+1(xk, u, wk)

4: For each xk ∈ Xk

Jk(xk) = min
u∈U

(
g(xk, u, wk) + J̃k+1(xk+1(xk, u, wk))

)
(14)

with J̃k+1(xk+1) interpolated from Jk+1(xk+1 ∈ X)
5: end for

This first part establishes a cost-to-go map J(x ∈ X, t).
In the following part the optimal trajectory x∗(t), u∗(t) is
calculated

1: Select an initial state x∗0 = x0

2: for m = 1, . . . , N do
3: For x∗m−1, simulate dx

dt for tm−1 to tm for all u ∈ U
to find xm(x∗m−1, u)

4: Select

u∗m−1 = argmin
u∈U

(
g(x∗m−1, u, wm−1)dt+ ...

+J̃m(xm(x∗m−1, u, wm−1))
)

(15)

with J̃m(xm) interpolated from Jm(xm ∈ X)
5: x∗m = xm(x∗m−1, u

∗
m−1, wm−1)

6: end for

This second part also indicates how DP can be used to
implement an optimal state feedback scheme. In each rep-
etition of the for-loop the optimal control action u∗m−1 is
calculated, depending on the state x∗m−1. Here the state
x∗m−1 is found by simulation, but in a feedback application
the actual state of the system at t = m− 1 would be used
instead. If there is then an unexpected state disturbance
so that x̂m−1 6= x∗m−1, in which x̂ is the actual state of
the system, the algorithm will find the control that mini-
mizes the cost-to-go from this state x̂m−1. Apart from this
attractive property, the method also guarantees that if a
solution is found, this is the global optimum. This does
however require that the grids are sufficiently dense, not
least to avoid infinite cost spread [26]. A well written in-
troduction to dynamic programming can be found in [27],
which also mentions some tricks and pitfalls.

4.3. Pontryagin’s maximum principle (PMP)

Pontryagin’s maximum (or minimum) principle is a
condition necessary for optimality. Before the condition
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is stated, a function called the Hamiltonian is introduced

H = G(x(t), u(t), w(t)) + λT (t)F (x(t), u(t), w(t)) (16)

in which G and F is the cost and dynamics functions from
(11) and λ is a set of continuous functions with one compo-
nent corresponding to each of the components of x. Then
the Pontryagin’s maximum principle, which was presented
in [28] and is described and used in [29], state that for
x∗, u∗ to be optimal, λ∗ must exist and

H(x∗, u∗, w, λ∗) ≤ H(x∗, u, w, λ∗) ∀u, t ∈ [t0, T ] (17)

along with boundary conditions for λ∗, which depend on
whether the final time T is fixed or subject of optimiza-
tion, must be fulfilled. By differentiating H this condition
can be rewritten as a set of necessary conditions. For the
unconstrained problem (11)

∂H

∂u
= 0 (18a)

∂H

∂x
= −λ̇ (18b)

∂H

∂λ
= ẋ (18c)

x(0) = x0, λ(T ) =
∂JN
∂x

(x∗(T )) (18d)

must be fulfilled for x∗, u∗ to be optimal. Condition (18c)
is trivially fulfilled, as can be seen by differentiating (16).
If the problem includes state or control constraints the
Hamiltonian must be expanded, but the conditions (18)
are sufficient for the analysis in Section 7.

4.4. Application of optimization

The application of dynamic programming to this prob-
lem is straightforward. The cost to be minimized is the
total amount of fuel used. In general this cost formulation
will cause all energy stored in the system to be drained at
the end of the cycle. Here this would be seen as the ter-
minal engine speed approaching ωe,min, regardless of the
terminal output power. Especially for output power steps
and pulses, it is instead desired that the engine settles at
the SOOP corresponding to the terminal output power.
Since the energy in the system increase with increasing
ωe(T ), pt(T ), introducing a JN with a sufficient penalty
for ωe(T ) < ωe,Σ(T ), pt(T ) < pt,set(ωe,Σ(T ),mf,Σ(T )) is
sufficient for bringing the end state toward the static op-
timal operating point. In this work the terminal cost

JN =

{
0 for xN ≥ Ω
∞ else

(19)

is used, with Ω being equal to xΣ(Pload(T )) except when
stated otherwise. The states and controls for the two en-
gine setups are collected in Table 2.

Also recapitulate the PMP conditions for these two se-
tups. For the unconstrained TC-engine the Hamiltonian
become

H = Aωemf +
λ1

Ie
(Te −

Pload
ωe

) +
λ2

τt
(pt,set − pt) (20)

Table 2: Standalone engine states and controls.

NA-engine TC-engine
States X ωe ωe, pt
Controls U mf mf

in which λ1 is the adjoint variable related to the engine
speed dynamics (1) and λ2 is the adjoint variable related to
the turbo pressure dynamics (7). This gives the following
conditions necessary for optimality

∂H

∂mf
= Aωe + λ1

∂

∂mf

dωe
dt

+ λ2
∂

∂mf

dpt
dt

= 0 (21a)

∂H

∂ωe
= Amf + λ1

∂

∂ωe

dωe
dt

+ λ2
∂

∂ωe

dpt
dt

= −dλ1

dt
(21b)

∂H

∂pt
= λ1

∂

∂pt

dωe
dt

+ λ2
∂

∂pt

dpt
dt

= −dλ2

dt
(21c)

The optimality conditions for the unconstrained NA-engine
can be retrieved by using λ2 = 0 and disregarding equa-
tion (21c).

5. Engine map and static optimal solution

The quasi-static optimal line Σ is defined in (9). The
Σ for the turbo engine is identical to that of the natu-
rally aspirated engine, since ṗt = 0 ⇒ Tt = 0. This is
a simple problem which can be solved either direct as
the problem (9) or by solving the PMP problem with
d
dt [ωe, λ1, pt, λ2] = 0. The later is valid only when the
solution fulfills ωe,min ≤ ωe though, since the state and
control constraints is not included in the presented PMP
formulation. The engine efficiency map is presented in Fig-
ure 4 along with ωe,min, Te,max, output power (Teωe) lines
and the Σ-line.
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Figure 4: Engine map showing efficiency curves, output power lines
with kW markings, state and control restrictions according to (5) and
the quasi-static optimal line which for output powers below ∼ 85kW
coincide with ωe,min and above ∼ 240kW with Te,max.

6. DP derived optimal trajectories

The optimal engine map trajectories for the pulse load
cases for the NA-engine are presented in Figure 5. In both
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these cases the operating point moves in a counter clock-
wise direction; before the output power increase the op-
erating point diverges toward high speed. When the step
occur, the operating point motion changes direction to-
ward the new static optimum by reducing the speed and
increasing the torque. Before the power reduction the en-
gine speed decreases, and at the step the motion changes
direction and the speed increases while the torque falls and
the operating point converges to the new static optimum.
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Figure 5: Engine map trajectories for the naturally aspirated engine
in the slow (5(a)) and quick (5(b)) pulse load cases.

The optimal engine map trajectories for the steps load
cases for the TC-engine are presented in Figure 6. Just as
for the NA-engine, the engine speed increases before the
step, and when the step occurs the direction of movement
of the operating point changes. After the step the engine
speed drops while the torque increases, converging toward
the new static optimum. Both the trajectories displayed
in Figure 6 are less smooth than those for the NA-engine.
This is caused by a somewhat sparse discretization, which
is motivated by the increase in calculation time caused by
the added state.
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Figure 6: Engine map trajectories for the turbocharged engine in the
low (6(a)) and high (6(b)) step load cases.

In Figure 7 the engine operation trajectories of the NA-
and TC-engines are compared. Figure 7(a) shows the en-
gine speed and torque during the first 10s of the slow pulse
load case for the NA-engine and Figure 7(b) shows the en-
gine speed and turbo-pressure during the high step load
case for the TC-engine. The load case parts are identical,
apart from that the NA-engine does not need to remain at
the higher SOOP at 10s. The NA-engine starts changing
its state about one second before the step, while the TC-

engine starts about three seconds before the step. Note
that while both setups cause a speed overshoot, this is
substantially larger for the TC-engine. Figure 7(b) shows
that before the step, the increasing engine speed alters
the turbo set-pressure so that it is roughly at the new
static optimal level when the step occur. The actual pres-
sure starts to increase as soon as the set pressure starts to
change, but at the time of the step it still is far from the
new static level. After the step, the pressure keeps increas-
ing while the set pressure remains fairly constant and the
engine speed falls back toward the new static optimum.
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(b) Engine speed and turbo pres-
sure in the high step load case for
the TC-engine

Figure 7: Engine operation during steps for the NA- and TC-engines.

Figure 8 shows the engine map trajectories for the two
engine setups in the short loading cycle. These trajecto-
ries should be compared to those in Figures 5 and 6. The
movement is still counter clockwise, and the patterns of
the movement remain, though the direction changes are
less pronounced than in the solutions for the steps and
pulses load cases since the output power changes are more
ramped. The engine speed is generally higher for the TC-
engine (972rpm mean) than for the NA-engine (861rpm
mean), which is caused by the need for keeping the turbo
pressure up. It should be noted that this is despite hav-
ing access to perfect prediction of future load. Note that
the initial operating point for the TC-engine is at a much
higher engine speed than for the NA-engine. The initial
conditions x(t0) are selected so that the results could be
readily used for evaluation of the suboptimal methods de-
scribed in Section 8.
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Figure 8: Engine map trajectories for the naturally aspirated (8(a))
and the turbocharged (8(b)) engine in the ’DDP sc’ cycle.
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7. PMP trajectory derivation

The solution to a DO problem must fulfill the condi-
tions stated by Pontryagin’s maximum principle (PMP).
Section 7.1 analyze the NA-engine step/pulse results pre-
sented in Section 6 using these conditions. In Section 7.2
this analysis is utilized for developing a method for de-
riving the same optimization results. Section 7.3 expands
this method for application on the TC-engine.

The PMP formulation in Section 4.3 does not include
the constraints (5). A solution to the unconstrained prob-
lem (10) for a specific load Pload(t) is optimal also for
the constrained problem if and only if it does not vio-
late the constraints (5). It is obvious that solutions for
the unconstrained problem for steps to or from loads with
ωe,Σ(Pload) = ωe,min will violate these constraints. There-
fore this section only treat load cases with ωe,Σ(Pload) >
ωe,min.

7.1. Analysis of optimization results

This analysis treats the high step load case, which is
identical to the first part of the slow pulse load case, ap-
plied to the NA-engine. The DP result for the slow pulse
load case is presented in Figure 5(a), and the part used
is presented again in Figure 9(a). Equation (21a) can be
used for transformation of positions in an ωe-Te engine
map into an ωe-λ1 engine map. For the NA-engine this
relation can be rewritten as

λ1 =
ωeIe

2ηe1mf − ηe0
(22)

Figure 9(b) shows such a transformation of the map of Fig-
ure 9(a), including efficiency curves, output power lines
with kW markings, the static optimal line Σ, the con-
straints (5) and the DP derived optimal operating point
trajectory. In Figure 9(a) the trajectory starts at the lower
left, moving toward the upper right, and when the step
occur the direction of motion changes so that the max-
imum engine speed occur at the instant of the step. In
Figure 9(b) this translates to initial movement toward the
lower right and a change of direction of motion at the in-
stant of the step.
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Figure 9: DP derived Optimal solution for the high step load case in
ωe-Te (9(a)) and ωe-λ1 (9(b)) engine maps.

The dynamics of the adjoint variable λ1(t) is described
by Equation (21b) (with λ2 = 0). This equation can for
the NA-engine be rewritten as

λ̇1 = −Amf −
λ1

Ie

(
∂Te
∂ωe

+
Pload
ω2
e

)
(23)

in which

∂Te
∂ωe

= (ηe01 + 2ηe02ωe − ηe11mf )Amf − 2ηeL2ωe (24)

Since Equation (22) eliminates the only degree of freedom,
all dynamics of the optimal solution is governed by Equa-
tions (1) (the engine speed) and (23) (the adjoint variable).
The properties of a two dimensional autonomous dynamic
system can be visualized by phase planes. The time depen-
dent load means this system is not autonomous, though for
piecewise constant loads, such as steps or pulses, the sys-
tem can be regarded as piecewise autonomous. The phase
planes for the system (1),(23) at the two output power lev-
els of the high step load case are presented in Figure 10.
The figure also shows the constraints (5), the static op-
timal line Σ and the DP-derived optimal trajectory, as
shown in Figure 9(b).
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Figure 10: DP derived Optimal solution for the high step load
case along with the 100kW (10(a)) and 180kW (10(b)) ωe-λ1 phase
planes.

Figure 10 shows the dynamics behind the optimal so-
lution for the high step load case. The first segment, the
movement toward the lower right, occur when Pload =
100kW and is therefore governed by the 100kW phase
plane (Figure 10(a)), while the second segment, the ap-
proach of the second SOOP, is governed by the 180kW
phase plane (Figure 10(b)). Section 7.2 starts with these
phase planes and presents a method not only for visualiz-
ing but also for deriving the optimal solutions for similar
load cases.

7.2. Optimal trajectory derivation for the NA-engine

This section shows how the reasoning in the previous
section can be reversed and optimal trajectories be derived
from the PMP conditions. The phase planes shown in
Figure 10 indicate that, for each constant Pload, the SOOP
is a saddle point of the corresponding autonomous system
(25). This is confirmed by the eigenvalues of the Jacobian
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of this system, evaluated at the corresponding SOOP, since
one is positive and the other is negative.

d

dt
[ωe, λ1]T (Pload) (25)

The unstable and stable manifolds of the autonomous
system can, in a small region near the SOOP, be approx-
imated by the eigenvectors of the Jacobian. The stable
(dashed) and unstable (dotted) eigenvectors and the pre-
viously presented phase-planes corresponding to Pload =
100kW and Pload = 180kW are shown in Figure 11. More

800 850 900 950 1000 1050 1100 1150 1200 1250
−2000

−1900

−1800

−1700

−1600

−1500

−1400

−1300

Engine speed [rpm]

λ
1

(a)

800 850 900 950 1000 1050 1100 1150 1200 1250
−2000

−1900

−1800

−1700

−1600

−1500

−1400

−1300

Engine speed [rpm]

λ
1

(b)

Figure 11: Phase planes along with stable (dashed) and unstable
(dotted) eigenvectors of the Jacobian of the dynamic system (25)
with Pload = 100kW (11(a)) and 180kW (11(b)).

accurate approximations of the manifolds, valid outside
the vicinity of the SOOP, can be obtained by simulations
backward in time for the stable manifolds and forward in
time for the unstable manifolds initiated from the SOOP
with small, ε, disturbances in the directions of the eigen-
vectors. The result of such simulations, corresponding to
the situations of Figure 11, are displayed in Figure 12.
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Figure 12: Simulation derived stable (dashed) and unstable (dot-
ted) manifolds of the system (25) with Pload = 100kW (12(a)) and
180kW (12(b)).

The optimal operating point trajectory for an output
power step (in this example 100kW−180kW ) which starts
and ends at the SOOPs of the initial and terminal out-
put powers, must start by leaving the first SOOP along a
path in the unstable manifold of the earlier autonomous
system. At the instant of the step the operating point
must switch to a path in the stable manifold of the later
autonomous system. Since the trajectory must be con-
tinuous the operating point must be at an intersection of
these manifolds at the instant of the step. In general there

is only one such intersection, which is easily found from
the simulated paths. When the point of intersection is
found the excess parts of the simulated paths are cropped
of and the time-scales of the simulations behind Figure 12
are adjusted so that a single, continuous, ωe(t),λ1(t) tra-
jectory is obtained. This trajectory is then the optimal
solution. Graphically, this solution can be found by sim-
ply superposing Figure 12(a) with Figure 12(b) and crop-
ping of excessive parts of the paths. Figure 13 shows the
results as derived with this method (continuous) and with
dynamic programming (dashed) for the upward and down-
ward steps of the slow pulse load case. This solution can
then be translated into an ωe(t),Te(t) trajectory by Equa-
tion (22).
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Figure 13: PMP (continuous) and DP (dashed) derived optimal so-
lutions for the slow pulse load case.

This method can be expanded to somewhat more com-
plicated load cases. If the case starts and ends with episodes
of constant power, the optimal ωe(t),λ1(t) trajectory must
start with a leaving of the SOOP of the initial output
power along the corresponding unstable manifold, and end
with an approach of the SOOP of the terminal output
power along the stable manifold. This is illustrated in
Figure 14 by the solving of the quick pulse load case.
This case consists of 5s at 100kW , 0.8s at 180kW and
finally 5s at 100kW . The optimal trajectory must there-
fore start with a leaving of the 100kW SOOP along a path
in the corresponding unstable manifold (dotted) and end
by approaching the same SOOP along the stable manifold
(dashed). Solving the quick pulse optimization problem
therefore translates to finding a path in the 180kW phase
plane, as shown in the figure, that starts on the dotted
line, ends on the dashed line and has a transition time
tT = 0.8s. If the starting point of the transition is at ti
from the initial SOOP along the unstable manifold, the
problem can be formulated as minti |tT − 0.8|, which is
locally convex, making the problem easily solved. The re-
sulting transition trajectory is indicated in Figure 14(a) by
the gray line. In Figure 14(b) this solution (continuous) is
translated to an ωe,Te map and compared to the solution
derived with DP (dashed).
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Figure 14: Illustration of the PMP-method for solving the quick
pulse load case. Figure 14(a) shows the stable and unstable 100kW
manifolds along with the 180kW phase plane and the 0.8s, 180kW
transition path. In Figure 14(b) the PMP (continuous) and DP
(dashed) derived optimal solutions are compared.

7.3. Optimal trajectory derivation for the TC-engine

This section expands the method derived in the previ-
ous section for use with the TC-engine. The optimal solu-
tions for the TC-engine is governed by the four dynamics
Equations (26) and the static control relation (21a). The
four dimensions of this problem means that phase planes
can no longer be drawn and the problem can therefore not
be solved graphically.

d

dt
[ωe, λ1, pt, λ2](Pload) (26)

The formulation of the torque loss Tt in Equation (8)
may cause discontinuities in the optimality conditions (21)
due to the differentiation, which severely complicates sim-
ulation. One solution may be to approximate the discon-
tinuities with a tangent function. In a step however it
can instead be assumed that the intake pressure will not
cross the discontinuity; pt will fulfill pt < pt,set in an up-
ward step and pt,set < pt in a downward step, so that for
steps the discontinuity can be disregarded. In this section,
just as in the previous, the upward high step load case is
studied.

In the same way as for the NA-engine, the Jacobian of
the system (26) is evaluated at the SOOPs of, in this exam-
ple, Pload = 100kW and Pload = 180kW and the eigenval-
ues are calculated. These show that the SOOPs are saddle
points, since two of the four eigenvalues are positive while
the other two are negative. For the NA-engine, the opti-
mization problem is easily solved since the trajectories sim-
ulated and presented in Figure 12 covers the entire stable
and unstable manifolds within the reasonable engine oper-
ating region, and the point of intersection is easily found.
For the TC-engine however, each of the manifolds are two
dimensional. Calculation of the complete unstable man-
ifold would therefore require infinitely many simulations,
initiated from the SOOP with small disturbances in all
directions that are combinations of the eigenvectors cor-
responding to the positive eigenvalues, and vice versa for
the stable manifold. Recall however that the objective is
not to find the manifolds, but only the trajectories within
these manifolds that connect the SOOPs of the initial and

terminal Pload. Since the manifolds are two dimensional
and the state space is four dimensional, there is in gen-
eral a single point at which these manifolds intersect, and
therefore only one combination of eigenvectors that pro-
duce trajectories that intersect. Since the location of the
intersection is unknown, the problem is reformulated as
a problem of finding the combination of eigenvectors that
minimizes the minimum distance between the simulated
trajectories. Similar problems are treated for example in
[30]. Denoting the initial and terminal output powers P1

and P2 and using the notation v1,1, v1,2 for the unstable
eigenvectors corresponding to P1 and v2,1, v2,2 for the sta-
ble eigenvectors corresponding to P2 the problem is for-
mulated as

min
s1,t1,s2,t2

‖X1(P1, t1)−X2(P2, t2)‖2 (27)

0 < [t1,−t2]T , 0 ≤ [s1, s2]T ≤ 2π (28)

in which

Xn = [ωe, λ1, pt, λ2]T (Pn, tn), n = 1, 2 (29)

are simulated from tn = 0 forward and backward in time
with initial conditions that are small, ε, perturbations
from the SOOPs according to

Xn(tn = 0) = XΣ(Pn) + ε
(

sin(sn)vn,1 + cos(sn)vn,2
)
, n = 1, 2
(30)

and the components of Xn in (27) being scaled with the
average of the values of the component at the two SOOPs.
Numerically this is solved as one external and one inter-
nal minimization problem. The external minimizes ‖X1−
X2‖2 over the disturbance direction combination s1, s2.
Inside this, with s1, s2 given, X1(0<t1),X2(t2<0) is sim-
ulated and the minimum distance between the trajecto-
ries is determined by minimizing ‖X1 − X2‖2 over t1, t2.
Each of the two internal simulations start at t1 = t2 = 0
and proceed until some state leave a predefined reasonable
operating range. If a solution to the problem is found,
the result of (27) should approach 0. The resulting point
X1(t1) ≈ X2(t2) is then the intersection of the manifolds.
This is the point at which the output power step occur and
the operating point movement switch from one manifold
to the other. Finally the times are shifted so that t1 and t2
coincide with the instant of the step. The result is a con-
tinuous operating point trajectory that start at XΣ(P1),
ends at XΣ(P2) and has the step correctly placed in time.

The method is illustrated by the high step load case.
Figure 15 shows the static optimal line (gray), the SOOPs
(markers), the unstable (dotted) and stable (dashed) tra-
jectories and a dark gray line which indicate the position
of the minimum distance between the trajectories. Fig-
ure 16 shows the ωe,Te translated trajectories in an en-
gine map. Figure 17 shows the time-adjusted unstable
and stable engine speed and turbo pressure trajectories
along with the DP-derived solution (gray). Typical calcu-
lation times experienced for finding this solution have been
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around 30s, which is considerably faster than the more
than 2500s needed for finding the solution with dynamic
programming. On the other hand, this method works only
for load steps and, since the engine speed overshoots are
larger for the TC-engine than for the NA-engine, at a nar-
row output power range.
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Figure 15: Intersecting stable (dashed) and unstable (dotted) trajec-
tories for the high step load case in ωe,pt (Figure 15(a)) and λ1,λ2

(Figure 15(b)) maps. The minimum distance between the trajecto-
ries is marked with gray.
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Figure 16: Intersecting stable (dashed) and unstable (dotted) tra-
jectories for the high step case in an ωe,Te map. Note the minimum
distance marker (gray).
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Figure 17: PMP-derived (dotted & dashed) compared to DP-derived
(gray) solution for the high step load case. The dark gray lines
indicate XΣ(Pload(t)).

8. Suboptimal method development

8.0.1. Method for the NA-engine:

As mentioned, DP has several advantages but is slow
while the PMP methods presented above are fast but very
restrictive in which load cases can be treated. Another
method which is fast and works for all load cases is de-
sired, even if the resulting trajectories become suboptimal.
Using ωe(t) = ωe,Σ(Pload(t)) is not possible, since output
power steps would then imply engine speed steps. Inspi-
ration for a method can instead be found in the optimal
trajectories, for example in Figure 8. The operating point
of the NA-engine seldom move far from the static optimal
line Σ. A natural suboptimal strategy is to keep the op-
erating point exactly on the line Σ at all times. Such a
trajectory can be found by adding a large cost for devia-
tion from this line to the DP algorithm, but solving this
problem would be as computationally costly as solving the
original problem. Instead start by redefining the static op-
timal line by introducing a small inclination in the mini-
mum engine speed, so that at high torque the minimum
speed is somewhat higher, to make Te,Σ(ωe) well defined.
The rule

Te(t) = Te,Σ(ωe(t)) (31)

then define the control signal, and thereby eliminate the
only degree of freedom. The problem is therefore reduced
from an optimization problem to finding the state and
control trajectories that correspond to a set of admissible
boundary conditions. Observe that as long as Te,Σ(ωe) ·
ωe increase with increasing ωe applying (31) will make
the system unstable. This means that at the instant of
an output power step the engine must already have ex-
actly reached the terminal stationary operating point by a
preceding divergence from the initial stationary operating
point, initiated by a small disturbance. Since the system
is always unstable it can easily be simulated backward in
time from an arbitrary terminal engine speed, for example
using the Euler method according to Equation (32).

ωe,k−1 = ωe,k −
(
Te,Σ(ωe,k)ωe,k − Pload

ωe,kIe

)
dt (32)

This method works well, as illustrated by Table 3, for all
cases tested. The table shows fuel usage in the solutions
derived with DP and the suboptimal method, along with
typical calculation times experienced. The same x(T ) is
used in both methods and the x(0) from the suboptimal
method is used as initial condition for the DP solving.
The last row shows the relative increase in fuel consump-
tion and reduction of calculation time for the suboptimal
method compared to DP. Figure 18 shows the suboptimal
and optimal engine speed and torque trajectories. The
ωe,Σ(Pload(t)), Te,Σ(Pload(t)) trajectories that would have
been applicable and indeed optimal for an engine with zero
inertia Ie are included as a reference. The figure shows that
the engine speed reacts somewhat later to upcoming load
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changes in the suboptimal solution than in the optimal.
The example is a cutout from the ’DDP sc’ load case.

Table 3: Calculation effort and fuel usage with the suboptimal
method.

Fuel usage [ml] Calculation time [s]
DDP ’sc’ DDP ’lc’ DDP ’sc’ DDP ’lc’

DP 152.8 675.9 1270 6480
Suboptimal 152.9 676.5 0.38 1.89
Relation +.086% +.099% 1 : 3340 1 : 3430
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Figure 18: Engine speed and torque. Gray is static opti-
mum (ωe,Σ(Pload(t)),Te,Σ(Pload(t))), continuous is suboptimal and
dashed is optimal.

8.0.2. Method for the TC-engine:
The expansion to the TC-engine is not trivial. The tur-

bocharger stable in the forward direction, so it appears un-
stable in the backward direction and cannot be included in
the simulation (32). It is tempting to derive an ωe(t), Te(t)
trajectory while disregarding pt(t), and then simulate (7)
forward in time while compensating for Tt with increased
mf . Unfortunately this is not possible for a general load
case for this engine. This is most obvious for an upward
step between two SOOPs with ωe,Σ = ωe,min. With this
method, and with a neglectable minimum speed inclina-
tion, a step in Pload requires a step in Te, and thereby in
mf . Equations (6)-(8) indicate that the pt dynamics pre-
vents making arbitrarily big steps in Te simply by steps in
mf . It is therefore necessary to increase pt in preparation
for upcoming output power steps and/or to use power from
the engine inertia Ie. Preparatory increasing of pt has to
be done by altering the engine speed and torque trajecto-
ries, possibly deviating from the static optimal line. The
following algorithm is therefore proposed:

1) Find ωe(t),mf (t) either by backward simulation of (1)
assuming pt,off = 0 or by assuming Ie = τt = 0 ⇒
ωeTe = Pload, pt,off = 0 with Te = Te,Σ(ωe).

2) Using ωe(t),mf (t) from 1), simulate (7) forward in time
to find a first estimate of pt(t), and thereby also of Tt(t).

3) Update ωe(t),Te(t) by simulating (1) backward in time
while adding the result form 2) to the load; Te(t) =
Te,Σ(ωe)− Tt(t) = Pload

ωe
− dωe

dt Ie.

4) Update mf (t),pt(t),Tt(t) by simulating pt forward in
time, in each step solving Equations (1)-(6) for mf so
that Te = Pload

ωe
− dωe

dt Ie.

If Ie=τt= 0 is assumed in step 1), this step can be per-
formed inside step 2). After step 4) a feasible ωe(t),pt(t),mf (t)
trajectory has been found. This method works well for all
cases tested, as illustrated by Table 4. The table shows
the fuel usage in the trajectories derived with DP and the
suboptimal method, along with typical calculation times
experienced. The same x(T ) is used in both methods and
the x(0) from the suboptimal method is used as initial con-
dition for the DP solving. This is also the cause of the high
initial engine speed in Figure 8(b). The last row shows the
relative increase in fuel consumption and reduction of cal-
culation time for the suboptimal method compared to DP.

Table 4: Calculation effort and fuel usage with the suboptimal
method.

Fuel usage [ml] Calculation time [s]
DDP ’sc’ DDP ’lc’ DDP ’sc’ DDP ’lc’

DP 154.8 701.0 6800 38500
Suboptimal 157.2 725.2 2.10 10.2
Relation +1.54% +3.46% 1 : 3240 1 : 3800

An example of resulting engine speed and turbo pres-
sure trajectories are compared to the optimal in Figure 19.
The example is a cutout from the ’DDP sc’ load case. The
figure shows that while the suboptimal engine speed differs
significantly from the optimal, the suboptimal turbo pres-
sure trajectory is close to the optimal. Since the operating
point is forced to leave the static optimal line, the engine
map trajectories for the low and high steps load cases are
also presented in Figure 20. In the high step load case
the suboptimal and optimal trajectories are close. In the
low step load case, just as in the ’DDP sc’ case, the engine
speed reacts later in preparation for upcoming loads in the
suboptimal solution.

9. Discussions and comments

9.1. Dynamic programming

The dynamic programming optimization in this report
is fairly straight-forward. The result for the naturally as-
pirated engine is a bit unexpected though; before output
power steps it is optimal to accelerate or decelerate past
the upcoming static optimal engine speed, and approach
the new static optimum from the ’wrong’ direction after
the step. The motion of the engine operating point is
counter clockwise in all cases studied, so that it travels
toward higher engine speeds below the static optimal line
and toward lower speeds above this line. This differs from
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Figure 19: Engine speed and turbo pressure. Gray is static optimum
(ωe,Σ(Pload(t)),pt,Σ(Pload(t))), continuous is suboptimal and dashed
is optimal.
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Figure 20: Suboptimal (continuous) and optimal (dashed) trajecto-
ries for the TC-engine in the low (20(a)) and high (20(b)) step load
cases.

the result presented in [15], in which the initial operating
point movement is in a clockwise direction. The main op-
erating point motions in [15] however seems to be caused
by a bad choice of initial and terminal states. In this pa-
per the engine is forced to start and finish at the static
optimal points corresponding to the initial and terminal
output powers, and given sufficient time to move between
these so that the trajectories would not change if more time
were added to the beginning or the end of the load cases.
The primary problem with DP, which is encountered in
both engine setups but especially for the turbocharged en-
gine, is the high calculatory effort. The most obvious way
of countering this is to reduce the discretization grid densi-
ties, though care has to be taken to avoid large simulation
errors and faulty infinite-cost spread (as mentioned in Sec-
tion 4.2).

9.2. PMP based methods

The phase planes in Section 7.1 is used to validate the
results derived with dynamic programming and to provide
insight into the the mechanisms behind the trajectories.
This insight is enhanced by the actual derivation of opti-
mal trajectories in Section 7.2, and the expansion in Sec-
tion 7.3 which show that the reasoning is valid also for
the TC-engine. The actual solving of the dynamic opti-
mization problems in this section is also fast, compared to
dynamic programming. The treatment therefore provide

an excellent pedagogic example of optimization with Pon-
tryagin’s maximum principle. The methods are however
highly restrictive in the load cases which can be treated.
The PMP formulation used does not include the state and
control constraints (5) and the methods are only practi-
cally usable for output power steps or, for the NA-engine,
slightly more complicated cases.

9.3. Suboptimal methods

The developed methods for finding suboptimal solu-
tions works well for both of the engine setups. In both
cases the time for finding a solution is reduced by a factor
> 3000, while the amount of fuel required only increase by
< 0.1% for the NA-engine and < 5% for the TC-engine.
It should be noted that in both cases, and in particular
for the TC-engine, finding even a feasible solution is not a
trivial problem. The developed methods does not require
analytic expressions neither for the engine efficiency nor
for the static optimal line. The only requirements for the
NA-engine are that Te,Σ(ωe) is well defined for all ωe and
that Te,Σ(ωe) · ωe is strictly increasing with increasing ωe,
so that the rule (31) makes the system unstable.
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