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Abstract

In model-based diagnosis the problem of finding all the relations that can be
used to detect and isolate different faults, is solved for linear systems, with e.g.
“The Minimal Polynomial Basis Method”. However, for nonlinear systems the
situation is much more complicated. Here an approach will be taken using the
linear method above together with gain scheduling. Linear residual generators
are designed at a number of stationary points. The approach is based on using
a nominal selector matrix, using null-space redesign dependent on the schedul-
ing variable, and using a proposed optimization method. Two different gain
scheduling strategies are applied to form the residual generators between design
points, namely nearest neighbour approximation and linear interpolation. The
approach is applied to a simple nonlinear system consisting of two coupled water
tanks. The simulations show that the performance of the residual generators
are good under steady state conditions. It is also shown that linear interpola-
tion has better performance than nearest neighbour approximation, especially
during transients.

Keywords: Model-based diagnosis; Gain scheduling; Minimal polynomial ba-
sis; Water-tank system;
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Chapter 1

Introduction

Modern systems are made more and more autonomous and thereby more com-
plex, requiring that the increasing number of sensors that the control system
uses are not faulty. To avoid severe failures for the process, a fault must be
detected and preferably isolated. This is especially important in safety critical
applications, such as e.g. nuclear plants or an aircraft engine. Environmentally
based requirements for diagnosis systems such as OBDII(On Board Diagnostics
II) and EOBD (European On Board Diagnostics) on automotive engines has
also increased both academic and industrial interest in diagnosis.

In model-based diagnosis a model of the system is used to find the relations
that can be used to detect and isolate different faults. Therefore methods of
finding these relations, called residuals, have to be found. For linear systems all
these relations can be found by using a method called“Minimal Polynomial Basis
Method” presented by E. Frisk and M. Nyberg (Frisk & Nyberg 1999). In many
cases it is hard to find a model for a system that is linear in its whole operating
range, but quite easy to find a nonlinear one. In many control applications gain
scheduling has been successfully used together with linear control methods to
control nonlinear systems. This approach will be applied to design of diagnosis
systems, i.e. to use the linear method mentioned earlier at different operating
points and then use a gain scheduling strategy in the diagnosis system for a
nonlinear process. This approach will be applied to a simple nonlinear system
consisting of two coupled water tanks.

Report overview

In Chapter 2 the gain scheduling strategies taken in this paper will be pre-
sented together with the implications it has in model-based diagnosis. Chap-
ter 3 describes the modeling of the water tank system and the faults that can
be introduced. Chapter 4 describes the design of the diagnosis system. Finally
simulations of the water tank system are made and evaluated in Chapter 5,
followed by Chapter 6 where conclusions from the simulations are drawn.
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Chapter 2

Some Gain Scheduling
Strategies

Gain scheduling has been used in control of nonlinear systems for a long time. In
this paper this approach will be applied to diagnosis. It relies on linearization of
the nonlinear system and design of diagnosis residuals for that specific lineariza-
tion locally. Then these residuals are combined using a scheduling strategy into
a nonlinear diagnosis system.

2.1 Model

A general state space description of a nonlinear system

ẋ(t) = f(x(t), u(t)) (2.1a)

y(t) = h(x(t), u(t)) (2.1b)

can be reformulated and parameterized as a Linear Parameter Varying (LPV)
system (2.2) (Lagerberg 1996),

ẋ(t) = A(α)x(t) + B(α)u(t) (2.2a)

y(t) = C(α)x(t) + D(α)u(t) (2.2b)

α = α(x(t), u(t)) (2.2c)

where we for frozen values of α have a linear system. A parameter/signal that
indicate the operating conditions of the system is called/denoted scheduling
variable.

In gain scheduling the linear matrices in (2.2) are not calculated for every
value of α, rather for some specified values used with the scheduling variable
and the chosen gain scheduling strategy to approximate the nonlinear model for
every operating point.

5
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2.2 Residuals

A residual can be defined as (Nyberg 1997)

Definition 2.1 (Residual) A residual r(t) is a scalar or vector which is 0 (or
small) in the fault free case and 6= 0 (or large) when a fault has occured.

The residuals are used to detect and to isolate faults, i.e. determine in which
fault mode the system is. The residuals are generated by a residual generator
(see Figure 2.1), which has the input u and the output y from the system as
inputs. The residual evaluator is then used to determine which fault mode is
present, which is also called a diagnosis.

u(t) y(t)

r(t)

- �Residual
Generator

?
Residual
Evaluator

?

Diagnosis

Figure 2.1: Internal structure of a diagnosis system.

Residual generation

A general linear residual generator can be written as:

r = Hyr(p)y + Hur(p)u = Q(p)
(

y
u

)
(2.3)

where u is the input and y is the output of the system. p is the derivative
operator. Hyr is the transfer function from y to r with appropriate dimension.
Hur and Q are defined in a similar way. The output y of the system is a function
of the input u, the faults f that can occur and the disturbances d. The output
can therefore be written as:

y = Guy(p)u + Gfy(p)f + Gdy(p)d (2.4)

Replacing y in (2.3) with (2.4) yields:

r = (Hyr(p)Guy(p) + Hur(p))u + Hyr(p)Gfy(p)f + Hyr(p)Gdy(p)d =

= Q(p)
[

Guy(p) Gdy(p)
I 0

] [
u
d

]
+ Q(p)

[
Gfy(p)

0

]
f = 0 (2.5)
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According to Definition 2.1 the residual should in the fault free case be zero, i.e.
Q should be chosen such that (2.6) holds.

Q(p)M(p) = Q(p)
[

Guy(p) Gdy(p)
I 0

]
= 0 (2.6)

To be able to detect faults the transfer function from every fault to the residual
must be non-zero. If such a Q can be found then in an ideal world the residual
would only depend on the faults f , but since not all disturbances and model
uncertainties can be accounted for, here called d́, and therefore not decoupled,
the residual can be expressed as:

r = Gfr(p)f + Gd́r(p)d́ (2.7)

In the design of a residual generator the aim is to make Gfr(p) as large as
possible and Gd́r(p) as small as possible (in some sense).

A feasible method of finding all appropriate Q:s is the Minimal Polynomial
Basis Approach as described in (Frisk & Nyberg 1999). The method finds all
Q:s and parameterize them in a minimal way. The method can be summarized
in two steps:

1. Find a minimal polynomial basis NM (s) for NL(M(s)) , i.e. find the basis
for the left null space of M(s).

2. Choose the polynomial matrices φ(s) and DW (s) in

Q(s) = D−1
W (s)φ(s)NM (s) = D−1

W (s)W (s) (2.8)

where φ(s) is a polynomial matrix used to pick out the appropriate residual
generator from the basis NM (s). To make Q(s) realizable D(s)W is a in-
vertible polynomial matrix with row degree higher or equal to φ(s)NM (s):s
corresponding row degree (Kailath 1980). Since there are no other con-
straints on DW (s) than the degree, the poles of the residual generator
Q(s) can be chosen arbitrarily.

With this method all Q are found and they are parameterized in a minimal
way. The resulting general linear residual generator r as in (2.3) can then be
described as:

r =
A(p)y(t) + B(p)u(t)

C(p)
(2.9a)

A(p) = anpn + · · · + a1p + a0 (2.9b)

with B and C defined in a similar way. The only constraint on C is that r
should be realizable, i.e. the order of C must be equal or larger than the highest
order of A and B.

2.3 Interpolation

A diagnosis system using only one linear residual generator for the entire op-
erating range of a nonlinear system is bound to fail (or at least to have low
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performance). This since the linear model of the system that the design of the
diagnosis system is based upon, does not catch the nonlinear behaviour of a
nonlinear system. However, dividing the operating range into smaller regions,
where every region has a specified design point would probably be better. The
linear residual generators that are designed at specified operating points work
well, when we are close to one of these operating points. But since the system
is nonlinear, the residual generators will not work very well in between these
operating points. One solution could be to find the residual generator at the
present operating point on-line, but is not (for the time being) applicable due to
the computational burden it brings along. Interpolation of residual generators
designed off-line then seems feasible. The interpolation can be made in sev-
eral different ways, but only two of them will be tried out here, namely nearest
neighbour and linear interpolation. Another way to interpolate could of course
be to use a polynomial approximation of higher order.

A linear residual generator is described as in (2.9a), i.e. for every design
point hj the residual generator rj is described as:

rj =
Aj(p)y(t) + Bj(p)u(t)

Cj(p)
(2.10a)

Aj(p) = aj
npn + · · · + aj

1p + aj
0 =

n∑
i=0

aj
ip

i (2.10b)

with Bj and Cj in a obvious fashion. Interpolation between the two parameters
aj

i and aj+1
i then yields ai (the parameter in (2.9b)) determined by the schedul-

ing variable h and the chosen interpolation method.
Here we will neglect that the different residuals have different states when

the interpolation is made. Therefore choosing the same Cj (in (2.10a)) for all
design points hj makes it the same to interpolate the residuals as to interpolate
the coefficients aj

i and bj
i in (2.10b). This will be the approach used in the

simulations.
One disadvantage is that we can not guarantee that (2.6) holds for every op-

erating point, except for the points where the residual generators are designed,
hereon called design points. I.e. we can not guarantee that Q will belong to
NL(M(s)) for any operating point except for the design points and therefore
we can not guarantee that the disturbances and the non-monitored faults are
decoupled.

2.3.1 Gain Switching

One gain scheduling approach is to linearize at all design points, then design
residual generators for all of them, and then just switch between them when
moving around in the operation range, i.e. to use nearest neighbour approxi-
mation. The parameters ai can be calculated as:

ai = βj+1aj+1
i + βjaj

i (2.11)

where

βj+1 =
{

1 β ≥ 0.5
0 β ≤ 0.5
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βj =
{

0 β ≥ 0.5
1 β ≤ 0.5

β =
h − hj

hj+1 − hj
∀h ∈ [hj, hj+1[ (2.12a)

By calculating all the parameters in (2.9a) in this manner, we end up with a
residual generator with gain switching as its gain scheduling strategy.

One problem with this approach is that at the design points the diagnosis
system will work fine, but the diagnosis performance will decrease/degrade as we
move further away from a design point. When we reach a switch point (a point
where β = 0.5) another problem can occur, namely a jump (discontinuity) in
the residual due to switching of parameters in the residual generator. This can
be avoided if we can find a bump-less transfer function. For control systems this
can be avoided if the controller has integral action (by adjusting the integral
value at the switch point) or by using several controllers, where the inactive
ones are in a stand-by mode and are forced to follow the control signal of the
active controller (Lagerberg 1996). Another problem, called chatter, can occur
when the present operating point moves back and forth over the switching point,
causing the control (or diagnosis) system to switch back and forth. This can
be avoided using hysteresis. These matters will however not be explored any
further here.

2.3.2 Continuous Gain Scheduling

To avoid the problem with discontinuities in the residual when switching the
parameters, continuous gain scheduling can be used. The parameters for the
residual generator are then continuous, and the residuals become continuous
over the entire operating range. Linear interpolation is an example of such an
interpolation. A linear interpolation between the two parameters aj

i and aj+1
i

would be

ai = βaj+1
i + (1 − β)aj

i (2.13)

where β is determined by the scheduling variable h as:

β =
h − hj

hj+1 − hj
∀h ∈ [hj, hj+1[ (2.14)

By calculating all the parameters in (2.9a) in this manner, we end up with a
residual generator with linear interpolation as its gain scheduling strategy.
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Chapter 3

The Water Tank System

The different gain scheduling strategies are to be implemented and tested on a
water tank system. Figure 3.1 shows a schematic picture of the process. The
water tank system consists of two coupled tanks, where the water level of the
upper tank is controlled by the pump. Each tank has a water level sensor and
flow sensors are placed at different places. Leaks in the system can be introduced
by opening the appropriate valves at two different places. Sensor and actuator
faults can also be introduced.

3.1 Modeling (fault free case)

In this section a physical model of the water tank system is derived in the fault
free case. Mass balance for one tank gives us:

A
dh

dt
= Qin − Qout (3.1)

where A is the cross section, h is the water level and Qin/out is the flow in/out
of the tank. The flow out of the tank can be described by Bernoulli’s law

Qout = a
√

2gh (3.2)

where a is the cross section of the outlet hole and g is the acceleration of gravity.
The input to the process is v (input voltage to the pump [0-10 V]) and the

outputs are y1 and y2 (voltage from the level measurement in tank 1 and 2 [0-10
V]), and y3, y4 (voltage from the flow sensors [0-10 V]). Assume that the flow
generated by the pump is proportional to the applied voltage, i.e. Qin = kav.
The model can then be described as

dh1

dt
=

ka

A1
v − a1

A1

√
2gh1 (3.3)

dh2

dt
=

a1

A2

√
2gh1 − a2

A2

√
2gh2 (3.4)

where subscript i corresponds to tank i. Assuming that the measured out-
puts are proportional to the true outputs, the outputs can be modeled as
yi = kihi; i = 1, 2 and yi = kiqi; i = 3, 4 respectively, where qi is the flow
through the flow sensor corresponding to output i, and ki denotes the propor-
tional constant for the level sensors and for the flow sensors respectively.

11
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3.1.1 Stationary Points

The stationary points (h0
1, h

0
2, v

0) for the water tank system are given by setting
the derivatives in (3.3) equal to 0:

ka

A1
v0 =

a1

A1

√
2gh0

1 (3.5)

a1

A2

√
2gh0

1 =
a2

A2

√
2gh0

2 (3.6)

which gives the stationary points:

h0
1 =

k2
a

2ga2
1

(v0)2 (3.7)

h0
2 =

a2
1

a2
2

h0
1 =

k2
a

2ga2
2

(v0)2 (3.8)

parameterized by e.g. the stationary water level h0
1.

3.1.2 Linearization

The linearization at a stationary point (h0
1, h

0
2, v

0) for h0
1 > 0 is given by

ẋ =




−a1
A1

√
g

2h0
1

0
a1
A2

√
g

2h0
1

−a2
A2

√
g

2h0
2


(

x1

x2

)
+

(
ka

A1

0

)
u (3.9)

y − y0 =




1 0
0 1

a1

√
g

2h0
1

0

0 a2

√
g

2h0
2




(
x1

x2

)
+




0
0
0
0


u (3.10)

y0 =




h0
1

h0
2

a1

√
2gh0

1

a2

√
2gh0

2


 (3.11)

where the states xi = hi − h0
i and the input u = v − v0. Introducing the

constants ci = ai

Ai

√
2g and bi = 1

Ai
and using that h0

2 can be expressed in h0
1

the linearization in (3.9)–(3.11) can be rewritten as:

ẋ =


 − c1

2
√

h0
1

0
b2c1

2b1
√

h0
1

− c2

2
√

h0
2


 (

x1

x2

)
+

(
kab1

0

)
u (3.12)

y − y0 =




1 0
0 1
c1

2b1
√

h0
1

0

0 c2
2b1

2c1b22

√
h0
1




(
x1

x2

)
+




0
0
0
0


u (3.13)

y0 =




h0
1

c2
1b22

c2
2b21

h0
1

c1
b1

√
h0

1
c1
b1

√
h0

1


 (3.14)
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The linearization in (3.12) is parameterized by the parameter h0
1 and therefore

the variable h1 will be used as the scheduling variable in gain scheduling. An-
other choice could be v or h2 since the linearization is also parameterized by
these respectively. But the input v will not reflect the current state of the sys-
tem, and therefore it would not be a good choice. Using h2 instead of h1 would
be equivalent with this configuration of the water tanks.

3.2 Fault Modeling

Faults occuring in a system can often be divided into three groups, namely
actuator faults, process faults and sensor faults, where a typical process fault
can be a leak or a clog in the system. An easy way of modeling actuator faults
fa and sensor faults fs are as additive faults on the input signal and the output
signal respectively, i.e. :

y = G(p)(u + fa) + fs (3.15)

where G(p) is the model of the process. In this diagnosis system no process
faults will be considered and therefore not modeled.

The faults (fault modes) listed in Table 3.1 can occur in the water tank
system (compare Figure 3.1): Leaks can also be introduced to the process at

fa Actuator fault
fh1 Sensor fault in the water level sensor in the upper tank (tank 1).
fh2 Sensor fault in the water level sensor in the lower tank (tank 2).
ff1 Fault in flow sensor 1 (flow out of tank 1).
ff2 Fault in flow sensor 2 (flow out of tank 2).

Table 3.1: Faults that can be introduced to the water tank system.

different places, but this will not be utilized here. Equation 3.3 can then be
rewritten to include the faults in Table 3.1 as:

dh1

dt
= kab1(v + fa) − c1

√
h1 (3.16)

dh2

dt
=

b2

b1
c1

√
h1 − c2

√
h2 (3.17)

y =




h1 + fh1

h2 + fh2
c1
b1

√
h1 + ff1

c2
b2

√
h2 + ff2


 (3.18)

This model will be used for simulation of the water tank system in Chapter 5.

3.3 Parameter Identification

To obtain the parameters in (3.12)–(3.14) for the tank system, some simple ex-
periments have been performed on each tank, and the parameters are estimated
from the data using the physical model and least square methods. The outcome
of the parameter identification is summarized in Table 3.3. For convenience the
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Parameter Value Standard deviation
c1 0.0638 6.28·10−5

c2 0.0878 2.22·10−4

b1 0.0452 5.73·10−5

b2 0.0419 2.30·10−5

Table 3.2: The values and standard deviations for the parameters in (3.16)–
(3.18).

gain factor for the pump, ka, as well as the gain factors for all the sensors, ki,
are assumed to be 1 in the simulations.
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FS

FS
Pump

FS

Figure 3.1: A schematic figure of the water tank system, where FS are flow
sensors. Each tank also has a level sensor. The water level in tank 1 is controlled
by the pump. Leaks in the system can be introduced by opening the valves.
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Chapter 4

Diagnosis System

In this chapter the design of the diagnosis system for the coupled water tanks
will be described.

4.1 Structure

To be able to isolate different faults, or fault modes, residuals that are sensitive
to certain faults (called monitored faults) and insensitive to other faults (called
non-monitored faults) are needed. To systematize this a residual structure is
used, where for every residual the monitored faults are denoted with a ’1’ and the
non-monitored faults are denoted with a ’0’. How should the residual structure
be chosen? According to (Gertler 1998) making the number of ’0’:s in each
column as large as possible is preferable. For the water tank system with the
five faults in Table 3.1 this would result in a 5 × 5 residual structure with
three ’0’:s in each column. This would result in a null space of dimension 1,
i.e. the design freedom is unnecessarily limited. Instead a diagonal residual
structure is chosen and shown in Table 4.1. It is able to detect and to isolate
all five faults. A problem is that it can not be guaranteed that the decoupling
of the non-monitored fault is achieved when the actual operating point is not
a design point. For this reason it seems reasonable to decouple as few faults
as possible in each residual to make the residual more robust. By choosing

fh1 fh2 ff1 ff2 fa

r1 0 1 1 1 1
r2 1 0 1 1 1
r3 1 1 0 1 1
r4 1 1 1 0 1
r5 1 1 1 1 0

Table 4.1: A diagonal residual structure.

a structure where only one fault has to be decoupled from a certain residual,
a larger freedom in forming the residual is also given, compared to if more
faults are to be decoupled in each residual. When no faults are decoupled, the

17
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dimension of the null-space is equal to the number of measurements in the non-
disturbance case (Lagerberg 1998), i.e. 4 for the water tank system. Therefore
by decoupling one fault per residual, we will end up with a basis for the null
space with dimension 3. As an example the polynomial basis NM (s) for the
design point h0

1 = 3 with the fault fh1 decoupled (i.e. residual 1 in Table 4.1)
is:

NM (s) =


0 0.033 + s −0.042 0 0
0 0 0.016 + s 0 −0.016
0 −0.78 0 1 0


 (4.1)

From the polynomial basis NM (s) in (4.1) all residual generators Q(s) decou-
pling the fault fh1 at the design point h1 = 3 can be found through

Q(s) = D−1
W (s)φ(s)NM (s) = D−1

W (s)W (s) (4.2)

where φ(s) is a polynomial selection matrix used to select the appropriate resid-
ual generator from the basis NM (s). To make Q(s) realizable D(s)W is a in-
vertible polynomial matrix with row degree higher or equal to φ(s)NM (s):s
corresponding row degree (Kailath 1980). Since there are no other constraints
on DW (s) than the degree, the poles of the residual generator Q(s) can be cho-
sen arbitrarily. Here the same low-pass filter DW (s) = s + 1 will be used for all
design points, i.e. Cj = s + 1 for all j (see (2.10a)). Constant faults are often
important to detect and isolate, and therefore a low pass filter s + 1 is chosen.

4.2 Design of Residuals from the Null Basis NM(s)

How should a residual from the null space NM (s) be chosen? By making the
response from all the monitored faults fj to the residual ri as large as possible,
not forgetting that the non-monitored faults should stay decoupled. I.e. the
transfer function Grifj should in some sense be maximized. In this approach
only the constant gain from fj to ri will be used. Further only constant selection
matrices φ(s) will be considered. Then finding the φi(s) in 4.3 gives our Q(s).

Thus, the optimization criterion

φi(s)j = argmax
φi(s)

min
k

‖Grifk
(0)‖2 (4.3)

will yield the selection matrix φi that maximizes the smallest DC-gain from any
of the monitored faults k at the design point j. Using the constraint that every
vector ‖φj

i‖ = 1, we will for the water tank system end up with five residual
generators for every design point hj. When using the optimization criterion in
(4.3) in every design point (i.e. designing locally) yields different φj

i for every
design point hj. This could be an disadvantage when the present operating point
is not a design point, since it then can not be guaranteed that Q ∈ NL(M(s)).
Choosing different φj

i (for j) could result in worse performance, than if the same
φj

i had been chosen for all j, because φj
i and φj+1

i could represent different
permutations leading to improper interpolation. Although in our simulations
this problem has not occured, the same φj

i will be used for all j. Summing up,
we are using a fix selection matrix based on a design point in the middle of
the operating range, but there are different null-spaces W j(s) for the different
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operating points.
Local design at h0

1 = 3 yields the polynomial matrix W j :

W j =




0 −0.018 0.018 + 0.98s 0.02 −0.018
−0.0082 + 0.45s 0 0.02 0.02 + 0.53s −0.02
0.0014 + 0.51s 0.0021 + 0.47s 0 0.017 −0.023
−0.0091 + 0.45s 0.02 + 0.53s 0.02 0 −0.02

−0.28 −0.28 0.69 0.31 0




(4.4)

A typical component of W j(s) is aj
1s + aj

0 (compare (2.9a)). In the application
studied here, the coefficients aj

1 are constant when the design point j is varied.
On the other hand the absolute value of the coefficients aj

0 decreases monotoni-
cally with the design point j, and therefore also the scheduling variable. This is
depicted in Figure 4.1, which shows the coefficient behaviour for the coefficient
W j(1, 2) for different values of the design point (scheduling variable). The non-
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Figure 4.1: Typical coefficient dependence of the scheduling variable.

linearities are apparently bigger for small values of the scheduling variable h1,
so it seems reasonable to have a denser distribution of design points for lower
h1-values. Bearing this in mind, design points are chosen to be:
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Design point j Scheduling variable value h0j
1

1 0.25
2 0.5
3 0.75
4 1
5 1.5
6 2
7 3
8 4
9 5
10 6
11 8
12 10

With the design points above and the interpolation strategies discussed in Sec-
tion 2.3.1 and in Section 2.3.2 respectively, the coefficients dependence of the
scheduling variable h1 is shown in Figure 4.2 for the gain switching strategy
and in Figure 4.3 for the linear interpolation strategy, together with the real de-
pendence of the coefficients. Comparing Figure 4.2 and Figure 4.3, we can con-
clude that linear interpolation strategy is expected to work better than the gain
switching strategy, since it captures the coefficients dependence of the schedul-
ing variable better.

With DW (s) = s + 1 as mentioned earlier, the monitored (and non-
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Figure 4.2: Typical coefficient dependence of the scheduling variable together
with coefficient dependence when using the gain switching strategy.
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Figure 4.3: Typical coefficient dependence of the scheduling variable together
with coefficient dependence when using the linear interpolation strategy.

monitored) faults response in the residuals can be calculated as

Grf = Q

[
Gyf

0

]
(4.5)

shown in Figure 4.4 for the first residual r1 where fault fh1 was decoupled
in design point 7. The DC-gain from the monitored faults to residual r1 are
approximately the same, which was the goal of the optimization criteria in (4.3).
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Figure 4.4: The monitored faults response in residual r1 for design point 7.



Chapter 5

Simulations

In this chapter the gain scheduled diagnosis system will be tested through sim-
ulations of the water tank system. As a test case a 480 seconds long test cycle
has been defined, shown in Figure 5.1.
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Figure 5.1: The reference signal for the test case.

5.1 Description of the test case

The test case can be divided into several interesting regions (Table 5.1), all of
them showing a specific behaviour for the diagnosis system. The transients are
less steep on the second half of the test cycle, when the tank levels are sinking,
due to the slow dynamics when emptying the tanks. In the simulations the faults
described in Table 3.1 can be introduced as steps at a specific time, here chosen

23
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Test region T [s] Description of time interval
1 0–20 Actual operating point h1 ' 0.6 between dp2

and dp3.
2 20–45 Slow transient behaviour, when moving from

h1 = 0.6 to h1 = 1 (dp4).
3 45–85 Transient behaviour, when moving from h1 = 1

to h1 = 4 (dp4 to dp8)
4 85–115 Moving from h1 = 4 to h1 = 4.5, i.e. from dp8

to the switch point between dp8 and dp9.
5 115–135 Slow sinusoidal behaviour around the switch

point h1 = 4.5.
6 135–145 Steady state operation at operation point h1 =

4.5.
7 145–170 Fast transient behaviour, when moving from

h1 = 4.5 to h1 = 9, i.e. from the switch point
between dp8 and dp9 to the switch point be-
tween dp11 and dp12.

8 170–210 Constant reference signal aiming for h1 = 9.
9 210–275 Fast transient behaviour, when moving from

h1 = 9 to h1 = 4.5, i.e. from the switch point
between dp11 and dp12 to the switch point be-
tween dp8 and dp9.

10 275–295 Slow sinusoidal behaviour around the switch
point h1 = 4.5.

11 295–315 Steady state operation at operation point h1 =
4.5.

12 315–340 Moving from h1 = 4.5 to h1 = 4, i.e. from the
switch point between dp8 and dp9 to dp 8.

13 340–420 Transient behaviour, when moving from h1 = 4
to h1 = 1 (dp8 to dp4)

14 420–455 Slow transient behaviour, when moving from
h1 = 1 (dp4) to h1 = 0.6.

15 455–480 Actual operating point h1 ' 0.6 between dp2
and dp3.

Table 5.1: A description of the different regions for the test case in Figure 5.1.
The acronym dp means design point.
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to be tstep = 15s. The size of the faults are all chosen to be 0.5. The different
regions in Table 5.1 represent different problems for the residual generator that
can occur with the gain scheduling strategy. These problems are:

1. Slow transient behaviour, i.e. when the water level in tank 1 is changed
slowly. (Test regions 2,4,12,14)

2. Fast transient behaviour, i.e. when the water level in tank 1 is changed
quickly. (Test regions 3,7,9,13)

3. The chatter problem, described in Section 2.3.1. The scheduling variable
is jumping back and forth around the switch point, causing the diagnosis
system to switch residual generator back and forth. This will be a prob-
lem when gain switching is used as gain scheduling strategy, but not when
linear interpolation is used. (Test regions 5,10)

4. Faults in the scheduling variable. (Test regions 1,2,8)

5. Decoupling when the actual operation point is not a design point. (Test
regions 1,6,8,11,15)

6. Decoupling when the actual operation point is a design point. (Test re-
gions are parts of the regions 2, 3 ,12 and 13.)

5.2 Results

Simulations are made with the test cycle defined above, using both gain switch-
ing and linear interpolation as gain scheduling strategy for all the cases of a
single fault of size 0.5 occuring at t = 15 s and in the fault free case. The
resulting residuals of these simulations are shown in Appendix A. Parts of these
residuals are enlarged in the following to describe the problems above and in
the last two cases another test cycle is used.

5.2.1 Transient behaviour

When the water tank system is exposed to a change in the reference signal, the
value of the scheduling variable changes, moving the system to another operating
point. This will cause a transient behaviour for the residual generator. Since
the linearizations are made in equilibrium, they will not correspond to well with
the nonlinear system during transients and this model error can cause residuals
to signal even in the fault free case. This is exemplified in Figure 5.2, where
residual 5 is shown in the fault free case with linear interpolation as the gain
scheduling strategy. During the time intervals where transients are present
(compare with Figure 5.1) the amplitude of the residual becomes considerably
higher, making the evaluation of the residual harder (i.e. determine if it is
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Figure 5.2: Residual 5 in the fault free case for the whole test cycle (0–480 s),
when using linear interpolation as gain scheduling strategy. During transients
the residual becomes bigger, due to the difference between the nonlinear model
and the gain scheduled (linear) model.
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Figure 5.3: Residual 5 in the fault free case for the whole test cycle (0–480 s),
when using linear interpolation and gain switching as gain scheduling strategy.
During transients the residual becomes bigger, due to the difference between the
nonlinear model and the gain scheduled (linear) model.
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big or small). In Figure 5.3 the gain switched variant is also shown together
with the linearly interpolated variant. The second method here proves to be
better since the peak value during a transient is smaller for linear interpolation,
than for gain switching. This suggests that linear interpolation should be used.
(The reason for the residual being larger for the last transient is yet unknown.)
During transients a weighting factor on the significance of the residual could be
introduced, being small when the system is subject to transient behaviour in
the scheduling variable. This is not investigated any further here.

5.2.2 Chatter

The chattering problem is now considered. Test region no 5 (from Table 5.1)
with parts of the neighbouring intervals is used in Figure 5.4, where residual 1
is simulated using gain switching and linear interpolation in the fault free case.
The gain switched type has large discontinuities and higher amplitude than the
linearly interpolated type. For comparison purposes a constant fault ff1 = 0.5
is introduced (at t = 15 s) and the resulting residuals for both strategies are
shown in Figure 5.5 together with the fault free case from Figure 5.4. The
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Figure 5.4: Residual 1 for the time interval 110–140 s, when using gain switching
and linear interpolation as gain scheduling strategies in the fault free case. The
gain switching yields as a more abruptly changing residual.

levels of the residuals subjected to the fault have a clearly larger amplitude, so
evaluation would not be a problem here. But the ratio between the residual
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subject to ff1 and the residual in the fault free case is much larger in the
linearly interpolated case, suggesting that smaller faults could be detected with
the linearly interpolated case.
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Figure 5.5: Residual 1 for the time interval 110–140 s, when using gain switching
and linear interpolation as gain scheduling strategies, in both the fault free case
and in the case with the fault ff1 = 0.5.

5.2.3 Decoupling Problem for a Fault in the Scheduling
Variable

A so far neglected problem, is that the use of the measurement signal y1 as the
gain scheduled variable h1 could severly degrade the performance of the diagno-
sis system. When the scheduling variable is subject to a fault, the consequence
will be that the diagnosis system concludes that the water tank system is at
a particular operating point, different from the actual operating point of the
water tank system. That situation has occured in Figure 5.6, where residual
1 is shown using linear interpolation as gain scheduling strategy. The residual
is shown in the fault free case, together with the residuals when the faults fh1

and ff1 respectively, are introduced at t = 15 s. According to the design of
residual 1 (see Table 4.1) the fault fh1 should be decoupled, but apparently it
is not. Comparing this to when the fault ff1 is introduced, the amplitude of
the residual is smaller than for the case with the fault fh1. Therefore evaluating
the first residual as big and the second as small would therefore be very hard,
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Figure 5.6: Residual 1 for the time interval 0–50 s, when using linear inter-
polation as gain scheduling strategy. The fault free case (dash-dotted line) is
shown together with the cases with the fault fh1 = 0.5 (solid line) and with the
fault ff2 = 0.5 (dashed line). The faults are introduced at t = 15 s. Although
residual 1 should decouple fh1, it does not. Comparing with the residual when
ff2 is introduced, it can be concluded that fh1 is not decoupled.
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which we want to do according to the definition of a residual (Definition 2.1).
This is a problem for the situation in Figure 5.6, but not for the situation

in Figure 5.7, where the same faults are introduced at t = 180 s. Here residual
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Figure 5.7: Residual 1 for the time interval 170–210 s, when using linear inter-
polation as gain scheduling strategy. The fault free case (dash-dotted line) is
shown together with the cases with the fault fh1 = 0.5 (solid line) and with the
fault ff2 = 0.5 (dashed line). The faults are introduced at t = 180 s. Comparing
fh1 with the residual when ff2 is introduced, it can be concluded that fh1 is
decoupled.

1 subject to the fault ff1 is much larger than residual 1 subject to the fault
fh1. The last one is approximately the same as the fault free case, suggesting
that the fault fh1 is approximately decoupled. The better decoupling of the
fault fh1 in test region 8 than in the combined test region 1 and 2, is expected
since the coefficients in the residual generator change quicker for low water tank
levels than for higher water tank levels, as shown in Figure 4.1. This suggests
that for the low level case that the linearization at a certain design point has
a smaller validity range than the high level case, which corresponds well to the
observation that the nonlinear model is approximated better by a linear model
in the high level case, than in the low level case.

To solve the problem with the decoupling of a fault in the scheduling variable,
we could either put in an extra “1” in the residual structure in Table 4.1 and
thereby limit the isolation abilities of the diagnosis system or we could use e.g.
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an observer for h1 not using measurement signal y1, as the scheduling variable
for (at least) residual 1. If the observer follows the real water level in tank 1
well, the fault fh1 would probably be decoupled in residual 1.

5.2.4 The cases (Operation Point 6= Design Point) and
(Operation Point = Design Point)

With a new test cycle (see Figure 5.8), where the reference signal is constant
during longer periods than in the earlier defined test cycle (see Figure 5.1), the
residuals are allowed to find their final value. In Figure 5.9 and in Figure 5.10
residual 1 is shown using gain switching and linear interpolation respectively.
In the first time interval (0–60 s) the residual converges to a nonzero value
(although small), showing that perfect decoupling is not achieved when the
actual operating point is not a design point, or rather that we have a model
fault. In the second time interval (70–130 s) the residual converges to zero,
showing that perfect decoupling can be achieved, since the model now is perfect.
This shows that one should not expect the residual generator to work as well
between design points as at design points. The final values of the residuals in
the first time interval are approximately the same for the gain switching and
linear interpolation strategy. In the transient region (60–70 s) we once again
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Figure 5.8: The reference signal for a new test cycle with longer steady state
periods than in Figure 5.1.
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Figure 5.9: The steady state behaviour for residual 1 (linearly interpolated case)
in the fault free case, for h1 = 0.6 (between dp 2 and 3) in the time interval 0–60
s and for h1 = 1 (dp 4) in the time interval 70–130 s. Note the small amplitude
for the steady-state conditions for t = 30 s to t = 60 s and for t = 100 s to
t = 130 s. The dotted line is zero.
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Figure 5.10: The steady state behaviour for residual 1 (gain switched case) in
the fault free case, for h1 = 0.6 (between dp 2 and 3) in the time interval 0–60
s and for h1 = 1 (dp 4) in the time interval 70–130 s. Note the small amplitude
for the steady-state conditions for t = 30 s to t = 60 s and for t = 100 s to
t = 130 s. The dotted line is zero.
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see that the transient behaviour of the linear interpolation strategy is better
than the gain switched strategy.
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Chapter 6

Conclusions

Design of residual generators for a coupled water tank system has been done us-
ing gain scheduling. Simulations of the water tank system have been performed
to evaluate the behaviour of the residual generators. The nonlinear system is lin-
earized in different stationary points, and residual generators are then designed
using the minimal polynomial basis method and a newly proposed optimization
method. Two interpolation methods have then been used as gain scheduling
strategies, namely nearest neighbour approximation and linear interpolation for
the coefficients in the residual generators. Simulations show that during steady
state operation, the residual generators behave well, but during transients the
performance of the residual generators decrease significantly. Simulations also
propose that linear interpolation as gain scheduling strategy is better than near-
est neighbour (gain switching) approximation, especially during transients.

A fault in the scheduling variable causes problems for the diagnosis system,
especially for low water tank levels, since the system is not approximated well
by the linearizations in that operating range. It is also proposed that different
scheduling variables should be used, or rather that they should be calculated in
different ways, using different signals from the system. This to make sure that
a fault in the scheduling variable can be decoupled.

Future work

To attack the problem with the transient behaviour of the residual generator, one
feasible method could be to put in weighting factor on the residual, small during
transients on the scheduling variable and big during steady state operation.
Another problem is how dense must the distribution of design points be, to give
the resulting diagnosis system good performance.

37
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Appendix A

Residuals from the
Simulation of the Test Case

In this Appendix the residuals from the simulation of the water tank system
with the 480 s long test cycle defined in Chapter 5 (Figure 5.1 and Table 5.1)
are shown. The water tank system is simulated both in the fault free case and
when a single fault occurs at t = 15 s for all of the five faults mentioned in
Chapter 3 (Table 3.1). The residuals from both the gain switching strategy
(Figure A.1–A.5) and the linear interpolation strategy (Figure A.6–A.10) are
shown. Note that the scales in the figures are not always the same.
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Figure A.1: Residual 1 for the test cycle when using gain switching as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 1 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.2: Residual 2 for the test cycle when using gain switching as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 2 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.3: Residual 3 for the test cycle when using gain switching as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 3 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.4: Residual 4 for the test cycle when using gain switching as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 4 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case(dotted line).
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Figure A.5: Residual 5 for the test cycle when using gain switching as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 5 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.6: Residual 1 for the test cycle when using linear interpolation as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 1 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.7: Residual 2 for the test cycle when using linear interpolation as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 2 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.8: Residual 3 for the test cycle when using linear interpolation as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 3 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.9: Residual 4 for the test cycle when using linear interpolation as gain
scheduling strategy. The first figure shows the residual in the fault free case
(dotted line). The following figures show residual 4 when the fault fh1, fh2, ff1,
ff2 and fa respectively (solid line) have been introduced after 15 s, together
with the fault free case (dotted line).
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Figure A.10: Residual 5 for the test cycle when using linear interpolation as
gain scheduling strategy. The first figure shows the residual in the fault free
case (dotted line). The following figures show residual 5 when the fault fh1,
fh2, ff1, ff2 and fa respectively (solid line) have been introduced after 15 s,
together with the fault free case (dotted line).
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