Göm meny


Modeling of Fuel Dynamics in a Small Two-Stroke Engine Crankcase

ÿþFor any crankcase scavenged two-stroke engine, the fuel dynamics is not easily predicted. This is due to the fact that the fuel has to pass the crankcase volume before it enters the combustion chamber. This thesis is about the development of a model for fuel dynamics in the crankcase of a small crankcase scavenged two-stroke engine that gives realistic dynamic behavior. The crankcase model developed in this thesis has two parts. One part is a model for wall wetting and the other part is a model for concentration of evaporated fuel in the crankcase. Wall wetting is a phenomenon where fuel is accumulated in fuel films on the crankcase walls. The wall wetting model has two parameters that have to be tuned. One is for the fraction of fuel from the carburetor that is not directly evaporated and one parameter is for the evaporation time of the fuel film. The thesis treats tuning of these parameters by running the model with input data from measurements. Since not all input data are possible to measure, models for these inputs are also needed. Hence, development of simple models for air flows, fuel flow, gas mixing in the exhaust and the behavior of the »-probe used for measurements are also treated in this thesis. The parameter estimation for the crankcase model made in this thesis results in parameters that corresponds to constant fraction of fuel from the carburetor that evaporates directly and a wall wetting evaporation rate that increases with increasing engine speed. The parameter estimation is made with measurements at normal operation and three specific engine speeds. The validity of the model is limited to these speeds and does not apply during engine heat-up. The model is run and compared to validation data at some different operation conditions. The model predicts dynamic behavior well, but has a bias in terms of mean level of the output ». Since this mean value depends on the relation between input air and fuel flow, this bias is probably an effect of inaccuracy in the simple models developed for these flows.

Johan Andersson and Oscar Wyckman


Download Article (pdf-file)Show BibTeX entry

Informationsansvarig: webmaster
Senast uppdaterad: 2021-11-10