Hide menu


Fault isolation for an industrial gas turbine with a model-based diagnosis approach

Model based diagnosis and supervision of industrial gas turbines are studied. Monitoring of an industrial gas turbine is important as it gives valuable information for the customer about service performance and process health. The overall objective of the paper is to develop a systematic procedure for modelling and design of a model based diagnosis system, where each step in the process can be automated and implemented using available software tools. A new Modelica gas media library is developed, resulting in a significant model size reduction compared to if standard Modelica components are used. A systematic method is developed that, based on the diagnosis model, extracts relevant parts of the model and transforms it into a form suitable for stan- dard observer design techniques. This method involves techniques from simulation of DAE models and a model reduction step. The size of the final diagnosis model is 20% of the original model size. Combining the modeling results with fault isolation techniques, simultaneous isolation of sensor faults and fault tolerant health parameter estimation is achieved.

Emil Larsson, Jan Åslund, Erik Frisk and Lars Eriksson


Download Article (pdf-file)Show BibTeX entry

Page responsible: webmaster
Last updated: 2021-11-10