Predictive Force-Centric Emergency Collision Avoidance
A controller for critical vehicle maneuvering is proposed that avoids obstacles and keeps the vehicle on the road while achieving heavy braking. It operates at the limit of friction and is structured in two main steps: a motion-planning step based on receding-horizon planning to obtain acceleration-vector references, and a low-level controller for following these acceleration references and transforming them into actuator commands. The controller is evaluated in a number of challenging scenarios and results in a well behaved vehicle with respect to, e.g., the steering angle, the body slip, and the path. It is also demonstrated that the controller successfully balances braking and avoidance such that it really takes advantage of the braking possibilities. Specifically, for a moving obstacle, it makes use of a widening gap to perform more braking, which is a clear advantage of the online replanning capability if the obstacle should be a moving human or animal. Finally, real-time capabilities are demonstrated. In conclusion, the controller performs well, both from a functional perspective and from a real-time perspective.
Victor Fors, Pavel Anistratov, Björn Olofsson and Lars Nielsen
ASME Journal of Dynamic Systems, Measurement, and Control,
2021
Page responsible: webmaster
Last updated: 2021-11-10